
Copyright Information

This document is copyright Code Time Technologies Inc. ©2011-2013. All rights reserved. No part of this document may be
reproduced or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of

Code Time Technologies Inc.

Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

Abassi RTOS

CMSIS Version 3.0

RTOS API

Disclaimer

Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,

but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is

error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the

document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in
the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally

available the product(s) described herein.

ARM and Cortex are registered trademarks of ARM Limited. Vision is a registered trademark of Keil Elektronik GmbH / Keil

Software Inc. Atollic TrueSTUDIO is a registered trademark of Atollic AB. Code Composer Studio is a registered trademark of Texas

Instruments. IAR Embedded Workbench is a trademark owned by IAR Systems AB. All other trademarks are the property of their
respective owners.

Abassi RTOS Port – ARM Cortex-M3 – IAR 2013.05.13

Rev 1.1 Page 3

Table of Contents

1 INTRODUCTION .. 5

1.1 DISTRIBUTION CONTENTS ... 5
1.2 COMPLIANCE ... 5

2 FEATURES ... 6

2.1 UNSUPPORTED FEATURES ... 6
2.2 BUILD OPTIONS ... 6
2.3 EXTRA INFORMATION .. 8

2.3.1 main() threading ... 8
2.3.2 Signals .. 9
2.3.3 Function Arguments ... 9
2.3.4 Abassi components ... 9

3 METRICS ..11

Abassi RTOS Port – ARM Cortex-M3 – IAR 2013.05.13

Rev 1.1 Page 4

List of Tables
TABLE 1-1 DISTRIBUTION ... 5
TABLE 2-1 DISTRIBUTION ... 6
TABLE 2-2: BUILD OPTIONS FOR CMSIS MINIMUM FEATURE SET ... 8
TABLE 2-3: MAIN() INITIAL CODE .. 9
TABLE 2-4 DESCRIPTORS CROSS-REFERENCE .. 9
TABLE 2-5 PRIORITY NUMBERING TRANSFORMERS ..10
TABLE 2-6: PRIORITY REMAPPING ..10
TABLE 3-1 CMSIS API CODE SIZE REQUIREMENTS ..11

Abassi RTOS Port – ARM Cortex-M3 – IAR 2013.05.13

Rev 1.1 Page 5

1 Introduction

Introduced in version 3.0 of the Cortex Microcontroller Software Interface Standard, commonly known as

CMSIS, a standard API for RTOS was defined. This document details the adaptation layer created by

Code-Time Technologies to make the Abassi compliant with the CMSIS V3.0 RTOS API.

The CMSIS compliance is obtained through an adaptation layer; the native Abassi interface hasn’t been

modified. This CMSIS compliant adaptation layer internally uses the native Abassi components.

1.1 Distribution Contents

The set of files supplied with this distribution are listed in Table 1-1 below:

Table 1-1 Distribution

File Name Description

cmsis_oh.h Required include file for the CMSIS V3.0

cmsis_os.c Adaptation layer source code

1.2 Compliance

The CMSIS V3.0 RTOS API layer is fully compliant with the standard except for three aspects. Abassi’s

possible state transitions do not match the CMSIS state transitions. This non-compliance cannot be

removed as an active state thread is put into the inactive state by using the thread suspension capabilities of

Abassi. As explained in Abassi’s User Guide, the transition from the ready-to-run state or from blocked

state to the suspended state require the task to go into the running state before getting suspended. One must

remember this constrain was added in Abassi as a protection mechanism against application lock-up. As

the osThreadCreate() requires the task to be inactive, if a thread that was previously terminated never

reached the running state, the call to osThreadCreate() will fail.

Extending Abassi’s deadlock protection when suspending a task, all CMSIS function osXxxxxCreate()

possess an added protection against deadlocks too. If an instance of a service to be re-initialized with a

osXxxxxCreate() have one or more task blocked on it, the re-initialization will not occur and the fact

reported as the Service ID returned by the function is set to NULL;

The adaptation layer does not support multiple instance of thread for a single definition. This restriction is

enforced in osThreadCreate(). So if the number of instances specified in osThreadDef() is different

than one, the thread creation will fail and will be reported as such.

In the standard, there is no mention indicating the function osSemaphoreWait() should not be used in an

ISR. As it is possible that a task blocking occurs when calling this function, the Abassi adaptation layer

always returns 0 when this function is called in an ISR.

The CMSIS adaptation layer is not MISRA-C:2004 compliant.

Abassi RTOS Port – ARM Cortex-M3 – IAR 2013.05.13

Rev 1.1 Page 6

2 Features

2.1 Unsupported Features

Some features are optional in the CMSIS V3.0 RTOS API. Abassi does not support the followings:

 The osWait() function is not supported as this feature does not fit with Abassi’s architecture. As

required, the definition of osFeature_Wait is set to 0.

The Message Queue Management and the Mail Queue Management features availability depends on the

setting of Abassi’s build option OS_MAILBOX. If mailboxes are part of the build, the Message Queue

Management and the Mail Queue Management features are available and as required, the definition of

osFeature_MessageQ and osFeature_MailQ are set to 1. If Abassi’s mailboxes are not part of the

build, with the build option OS_MAILBOX set to zero, the Message Queue Management and the Mail Queue

Management features are not available and as required, the definition of osFeature_MessageQ and

osFeature_MailQ are set to 0.

The Memory Pool Management feature does not use Abassi’s native memory block components, as the two

are not compatible. Therefore there is no need to define the build option OS_MEM_BLOCK, or define it with

a non-zero value, when using CMSIS RTOS API Memory Pool Management.

2.2 Build Options

To inform Abassi that the CMSIS adaptation layer is used, the build option OS_CMSIS_RTOS must be

defined. The value of the definition is not important, but if this build option is not defined, Abassi will not

be configured for the CMSIS adaptation layer. To comply with the CMSIS RTOS API, there are constrains

on the build options as some optional features of Abassi are in conflict with the CMSIS standard. To

eliminate the conflicts, these build options must be set to the values indicated in the following table:

Table 2-1 Distribution

Build Option Value Description

OS_CMSIS_RTOS Don’t care Must be defined to enable the CMSIS RTOS API

OS_PRIO_MIN 6 The possible priority level are defined in the standards and the

minimum priority value, according to Abassi’s numbering, is 6

OS_PRIO_CHANGE  0 The standard requires the function osThreadSetPriority()

which means task priorities can be modified at runtime.

OS_RUNTIME 0 Runtime service creation is not CMSIS compliant

OS_STATIC_BUF_MX 0 Runtime service creation is not CMSIS compliant

OS_STATIC_MBX 0 Runtime service creation is not CMSIS compliant

OS_STATIC_NAME 0 Runtime service creation is not CMSIS compliant

OS_STATIC_SEMA 0 Runtime service creation is not CMSIS compliant

OS_STATIC_STACK 0 Runtime service creation is not CMSIS compliant

OS_STATIC_TASK 0 Runtime service creation is not CMSIS compliant

OS_TASK_SUSPEND  0 The standard requires the function osThreadTerminate()

which is mapped to Abassi’s task suspension operation.

OS_TIMEOUT  0 The CMSIS standard requires timeout on services.

OS_TIMER_SRV  0 The CMSIS standard requires the timer services.

OS_TIMER_US  0 The CMSIS standard requires a timer.

Abassi RTOS Port – ARM Cortex-M3 – IAR 2013.05.13

Rev 1.1 Page 7

OS_USE_TASK_ARG  0 The CMSIS standard requires the capability of passing

arguments to the thread function.

The value of each one of the above build options is verified in the header file cmsis_os.h. Any non-

compliance will generate an error at compile time.

The CMSIS adaptation layer for Abassi does not use dynamic memory allocation. Therefore, unless the

application requires dynamic memory allocation then the build option OS_ALLOC_SIZE should be set to a

value of zero; that’s unless it is desired the application use memory reserved for the component

OSalloc(). This said, using OSalloc(), with or without memory reserved for it with OS_ALLOC_SIZE,

does have its advantages as the memory allocation gets multi-threading protection through Abassi’s internal

kernel mutex.

The following table shows the setting of the build options that will deliver the strict minimum set of

features required with the CMSIS standard:

Abassi RTOS Port – ARM Cortex-M3 – IAR 2013.05.13

Rev 1.1 Page 8

Table 2-2: Build Options for CMSIS Minimum Feature Set

#define OS_CMSIS_RTOS 1 /* Abassi need this to be defined for CMSIS */

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */

#define OS_EVENTS 1 /* != 0 when event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve services */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* != 0 when mailboxes are used */

#define OS_MAX_PEND_RQST xxU /* Maximum number of requests performed in ISRs */

#define OS_MEM_BLOCK 0 /* If the block memory pool part of the build */

#define OS_MIN_STACK_USE x /* If the kernel minimizes its stack usage */

#define OS_MTX_DEADLOCK 0 /* != 0 to enable mutex deadlock protection */

#define OS_MTX_INVERSION 0 /* >0 priority inheritance, <0 priority ceiling */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* != 0 operating with nested interrupts */

#define OS_OUT_OF_MEM 0 /* If trapping out of memory conditions */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 6 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STACK_CHECK 0 /* Set to != for checking stack coillisions */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBLK 0 /* When OS_STATIC_MBLK != 0, # of memory bytes */

#define OS_STATIC_MBLK 0 /* If !=0 how many block memory descriptors */

#define OS_STATIC_BUF_MBX 0 /* When OS_STATIC_MBX != 0, # of buffer elements */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_STATIC_TIM_SRV 0 /* If !=0 how many timer services */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 1 /* !=0 includes the timer services */

#define OS_TIMER_US xx /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

2.3 Extra information

Some features in the standard are dependent on the underlying RTOS. This sub-section explains in more

details what they are.

2.3.1 main() threading

In Abassi, the function main() is normally used to start the RTOS, through the component OSstart().

Doing so converts the function main() into the highest priority task. This is not the model used in the

CMSIS RTOS API, but the adaptation layer complies with the standard by supplying all the related

information. The definition of osFeature_MainThread is set to 0, reporting that main() is not a thread

upon entry.

The proper generic main() initial code, valid for any compliant CMSIS RTOS API, should look alike

what is shown in the following table:

Abassi RTOS Port – ARM Cortex-M3 – IAR 2013.05.13

Rev 1.1 Page 9

Table 2-3: main() initial code

 …

osThreadDef(TaskMain, osPriorityNormal, 1, STACK_SIZE);

 …

main()

{

 …

 if (!osKernelRunning()) {

 osKernelStart(osThread(TaskMain), Arg);

 }

 else {

 TaskMain(Arg);

 }

 return(0);

2.3.2 Signals

The Abassi adaptation layer supports 31 signal flags, and this is reported in the definition of

osFeature_Signals.

2.3.3 Function Arguments

Abassi’s technique to pass arguments to the function implementing a task is performed through the

TSKsetArg() and TSKgetArg() components. This mechanism is still used as the adaptation layer

creates a “pre” function to the task’s function. So when osThreadDef() is used, the function argument is

memorized in the osThreadDef_t data structure. Also performed when osThreadDef() is used, the

pre-function is created, which performs the extraction of the argument from Abassi’s task descriptor

through TSKgetArg() and then calls the task’s real fucntin, passing the argument extracted with

TSKgetArg(). The argument is set in the descriptor, using TSKsetArg() when the function

osThreadCreate() is used and the function attached to the thread is the “pre” function..

2.3.4 Abassi components

When using the CMSIS adaptation layer, all Abassi’s components are available, according to the setting of

the build options. There is a one-on-one mapping of the CMSIS descriptors to Abassi’s descriptors. The

following table shows the mapping:

Table 2-4 Descriptors cross-reference

CMSIS ABASSI

osThreadId TSK_t *

osTimerId TIM_t *

osMutexId MTX_t *

osSemaphoreId SEM_t *

osMessageQId MBX_t *

osPoolId n/a

Abassi RTOS Port – ARM Cortex-M3 – IAR 2013.05.13

Rev 1.1 Page 10

osMailQId n/a

The CMSIS priority numbering, through the osPriority enumeration, does not match the numbering

used by Abassi. If priorities are involved when using native components of Abassi, the priority numbering

must be re-mapped.

Two components are available to re-map the numbering between Abassi & CMSIS.

Table 2-5 Priority numbering transformers

Tranformer Description

PRIO_CMSIS_2_ABASSI(XXX) Transforms CMSIS priority value XXX to Abassi’s numbering

PRIO_ABASSI_2_CMSIS(XXX) Transforms Abassi’s priority value XXX to CMSIS’s enumeration

For example, to set the priority ceiling of a mutex to a priority of osPriorityAboveNormal, one would

do the following:

Table 2-6: Priority remapping

 …

osMutexId MyMutex;

 …

 MTXsetCeilPrio(MyMutex, PRIO_CMSIS_2_ABASSI(osPriorityAboveNormal));

 …

The fact the Abassi native components are still available when using the CMSIS adaptation layer means the

CMSIS standard can be extended in a non-standard way. It also means that all the features Abassi offers

are still available. There are a lots of features that can be enable which don’t require runtime configuration

as their configuration can be specified solely by the build options. The most important are:

 Fixed time round robin

 Task starvation protection

 Mutex priority inheritance

 Mutex priority ceiling

 Mutex deadlock detection

Abassi RTOS Port – ARM Cortex-M3 – IAR 2013.05.13

Rev 1.1 Page 11

3 Metrics

This section gives some information on the extra code size required when the CMSIS adaptation layer is

used with Abassi; the numbers were obtained using a Cortex M3 as the target device. Latency

measurements are not provided as the use of any adaptation layer degrades the intrinsic performance of the

native RTOS. If real-time performance is critical, then Abassi’s native components should be the preferred

choice.

Table 3-1 CMSIS API Code Size Requirements

Compiler / Tools Version Optimization Code Size

Code Composer Studio 5.2.0.00069 -O 3 -mf 0 < 2000 bytes

GCC (Atollic) 4.0.1 -Os < 2025 bytes

IAR Embedded Workbench 6.30.6.3387 Level High / Size < 2000 bytes

Keil uVision 4.50.0.0 Level 3 (-O3) < 1975 bytes

NOTE: Smaller code size should occur if some CMSIS services are not used. This is possible, as most

linkers will remove unused functions.

Abassi’s CMSIS adaptation layer requires approximately the same size as the code used by Abassi itself.

On most port the Abassi code size for the CMSIS feature set
1
 is in the order of 2 KB. The reason the

adaptation layer requires that much memory finds its origins in the need to select the appropriate function

exit condition to report. The standard specifies for most CMSIS functions to report between 2 to 5 different

exit conditions. Each of these conditions must be verified and the bulk of the code required lays in all these

conditions, not in the use of the Abassi’s components within the CMSIS adaptation layer functions.

1
 This is the minimum feature set for the CMSIS API. This means for example the priority inversion or the

starvation protection are not part of the Abassi build.

