

Copyright Information

This document is copyright Code Time Technologies Inc. ©2012. All rights reserved. No part of this document may be reproduced
or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of Code Time

Technologies Inc.

Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

Abassi RTOS

MISRA-C:2004

Compliance Report

Disclaimer

Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is

error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the
document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in

the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally

available the product(s) described herein.

IAR Embedded Workbench is a trademark owned by IAR Systems AB. ARM and Cortex are registered trademarks of ARM Limited.

Code Composer Studio is a registered trademarks of Texas Instruments. All other trademarks are the property of their respective
owners.

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 3

Table of Contents

1 INTRODUCTION .. 5

2 OVERVIEW ... 6

3 BUILD OPTIONS .. 7

3.1 OS_LOGGING_TYPE ... 7
3.2 OS_RUNTIME ... 7
3.3 OS_SEARCH_ALGO .. 7

4 RULES WITH ISSUES .. 8

4.1 REQUIRED RULES ... 8
4.2 OPTIONAL RULES ... 8

5 RULE SET .. 9

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 4

 List of Tables
TABLE 4-1 REQUIRED RULES LIST ... 8
TABLE 4-2 OPTIONAL RULES LIST ... 8

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 5

1 Introduction

This document is a report on the compliance of the Abassi RTOS to the MISRA-C:2004 coding standard.

The first section describes the techniques used to verify the MISRA-C:2004 compliance of Abassi. The

second section gives a list of build options that affect the MISRA-C:2004 compliance of Abassi, and their

impact. The third section gives an overview of all rules that could be broken due to the setting of build

options. And, finally, the last section enumerates each rule and sometime gives a description of the

limitations of the rule.

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 6

2 Overview

The MISRA-C:2004 compliance was verified using IAR’s Embedded Workbench for the ARM processor

family, and Texas Instrument’s Code Composer Studio for the MSP430.

The Abassi RTOS is not built using individual function and/or files. A single “C” file holds all the code for

the RTOS, and build options control which features are included in the build through the use of “C”

pre-processor #if statements. As there are a large number of build options combinations, the code

submitted to the MISRA compliance checking was built using each of the Code Time Technologies 40-plus

test configurations, which have been verified to perform full code coverage. Therefore, using all the test

configurations, the whole code of Abassi was checked for compliance.

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 7

3 Build Options

There are some settings through the build options that void the MISRA compliance of Abassi. These build

options are listed in this section.

3.1 OS_LOGGING_TYPE

The build option OS_LOGGING_TYPE must be set to a value of zero otherwise Abassi is not

MISRA-C:2004 compliant. As stated in the Abassi User Guide, the logging facilities are targeted for

debugging an application during the development, as it is quite intrusive. Logging should not be part of

production software.

3.2 OS_RUNTIME

The build option OS_RUNTIME must be set to a negative value otherwise Abassi is not MISRA-C:2004

compliant. Setting the build option OS_RUNTIME to a non-negative value will enable the compile time

creation of descriptors. The static creation of descriptors uses the “C” pre-processor in ways that do not

comply with MISRA-C:2004.

3.3 OS_SEARCH_ALGO

The build option OS_SEARCH_ALGO must be set to a non-positive value otherwise Abassi is not

MISRA-C:2004 compliant. Setting the build option OS_SEARCH_ALGO to a positive value was deemed to

reduce the reliability of Abassi as two look-up tables are used to determine the next task to run. Holding

redundant information in a second table creates a search algorithm with two points of failures instead of a

single one. No effort was spent to make the double table search algorithm to comply with MISRA-C:2004.

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 8

4 Rules with issues

This section lists the rules that could make Abassi non-compliant. Refer to the next sections for a full

description of the possible issues.

4.1 Required rules

Table 4-1 Required rules list

Rule Description

8.7 Port dependent, can be fulfilled at a cost on the code footprint

10.1 Non-compliant when the build option OS_SEARCH_ALGO is positive

10.6 Non-compliant when the build option OS_SEARCH_ALGO is positive

12.4 The components TSKstate(), TSKisRdy(), TSKisBlk() and TSKisSusp() do not

adhere to this rule. Not using any of these components fulfills the compliance.

12.7 Non-compliant when the build option OS_SEARCH_ALGO is positive

12.10 Non-compliant when the build option OS_EVENTS is non-zero

14.7 Non-compliant when the build option OS_LOGGING_TYPE is non-zero

16.1 Non-compliant when the build option OS_LOGGING_TYPE is non-zero

17.4 Non-compliant when the build option OS_MAILBOX is non-zero

19.4 Non-compliant when the build option OS_RUNTIME is non-negative. Also, when

OS_RUNTIME is negative, some ports do not comply, but compliance can be fulfilled

through minor small code changes.

19.12 Non-compliant when the build option OS_RUNTIME is non-negative

19.13 Non-compliant when the build option OS_RUNTIME is non-negative

20.4 Only compliant when the build options OS_STATIC_XXX are non-zero

20.9 Non-compliant when the build option OS_LOGGING_TYPE is non-zero

21.1 Clause c) should not be relied on

4.2 Optional rules

Table 4-2 Optional rules list

Rule Description

6.3 The native “C” data types were chosen by design

11.3 Abassi cannot comply with this rule due to the use of the intptr_t data type

12.13 Not adhering to this rule delivers a more real-time efficient code

19.1 Port dependent

19.7 Many components are macros

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 9

5 Rule Set

Rule 1.1 (Required) All code shall conform to ISO 9899:1990 Programming languages – C,

amended and corrected by ISO/IEC 9899/COR1:1995, ISO/IEC

9899/AMD1:1995, and ISO/IEC 9899/COR2:1996.

Compliance: YES

Notes: The data type intptr_t defined in the library stdint.h is used as an

argument to the kernel and also as the data type for the mailboxes. The data

type intptr_t is standardized in C99, but not previous versions. This does

not remove the compliance of the Kernel code with all previous “C” standards

as an equivalent data type to intptr_t could have been typedef in

Abassi.h for the same purpose.

Rule 1.2 (Required) No reliance shall be placed on undefined or unspecified behavior.

Compliance: YES

Notes:

Rule 1.3 (Required) Multiple compilers and/or languages shall only be used if there is a common

defined interface standard for object code to which the language / compilers /

assemblers conform.

Compliance: YES

Notes: By its nature and target market, the Abassi Kernel is multi-platform, multi-

compiler and the API remains the same no matter what is the target the

processor or compiler.

Rule 1.4 (Required) The compiler / linker shall be checked to ensure that 31 character significance

and case sensitivity are supported for external identifiers.

Compliance: YES

Notes: All identifiers in Abassi are shorter than 31 characters. Most of Abassi’s

identifiers are unique over the first 7 characters.

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 10

Rule 1.5 (Advisory) Floating-point implementations should comply with a defined floating-point

standard.

Compliance: YES

Notes: Floating point numbers are not used in Abassi.

Rule 2.1 (Advisory) Assembler language shall be encapsulated and isolated.

Compliance: YES

Notes: All assembly code is located in the file Abassi_PROCESSOR_COMPILER.ext,

which is specific to the target processor and the target compiler / assembler /

linker suite.

Rule 2.2 (Required) Source code shall only use /* ... */ style comments.

Compliance: YES

Notes:

Rule 2.3 (Required) The character sequence /* shall not be used within a comment.

Compliance: YES

Notes:

Rule 2.4 (Advisory) Sections of code should not be commented out.

Compliance: YES

Notes:

Rule 3.1 (Required) All usage of implementation-defined behavior shall be documented.

Compliance: YES

Notes: The code is fully documented, where there is almost one comment per line of

code.

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 11

Rule 3.2 (Required) The character set and the corresponding encoding shall be documented.

Compliance: YES

Notes: No special character set is used by the Abassi code.

Rule 3.3 (Advisory) The implementation of integer division in the chosen compiler should be

determined, documented, and taken into account.

Compliance: YES

Notes: Integer division in Abassi only involves positive numbers divided by 1, 2, 4 or

8 and the division operation can be a real arithmetic division or a simple shift

right, with no remainder.

Rule 3.4 (Required) All uses of the #pragma directive shall be documented and explained.

Compliance: YES

Notes: #pragma are only use in two ports and they are commented where used.

Rule 3.5 (Required) If it is being relied upon, the implementation-defined behavior and packing of

bit fields shall be documented.

Compliance: YES

Notes: Bit fields are not used in Abassi.

Rule 3.6 (Required) All libraries used in production code shall be written to comply with the

provisions of this document, and shall have been subject to appropriate

validation.

Compliance: N/A

Notes:

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 12

Rule 4.1 (Required) Only those escape sequences that are defined in the ISO C standard shall be

used.

Compliance: YES

Notes: Only the logging facilities (when the build option OS_LOGGING_TYPE is

non-zero) use formatted strings, and the logging facility must be turned off for

MISRA-C:2004 compliance. Even if enabled, the logging facilities use only

the ‘\n’ escape character which is defined in the ISO C standard.

Rule 4.2 (Required) Trigraphs shall not be used.

Compliance: YES

Notes:

Rule 5.1 (Required) Identifiers (internal and external) shall not rely on the significance of more

than 31characters.

Compliance: YES

Notes:

Rule 5.2 (Required) Identifiers in an inner scope shall not use the same name as an identifier in an

outer scope, and therefore hide that identifier.

Compliance: YES

Notes:

Rule 5.3 (Required) A typedef name shall be a unique identifier.

Compliance: YES

Notes:

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 13

Rule 5.4 (Required) A tag name shall be a unique identifier.

Compliance: YES

Notes: All tag names for data structure re-use the data structure identifier pre-pended

with “_”.

Rule 5.5 (Advisory) No object or function identifier with static storage duration should be reused.

Compliance: YES

Notes: All static storage in Abassi is global.

Rule 5.6 (Advisory) No identifier in one namespace should have the same spelling as an identifier

in another namespace, with the exception of structure member and union

member names.

Compliance: YES

Notes:

Rule 5.7 (Advisory) No identifier name should be reused.

Compliance: YES

Notes:

Rule 6.1 (Required) The plain char type shall be used only for the storage and use of character

values.

Compliance: YES

Notes:

Rule 6.2 (Required) signed and unsigned char type shall be used only for the storage and use

of numeric values.

Compliance: YES

Notes:

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 14

Rule 6.3 (Advisory) typedefs that indicate size and signedness should be used in place of the

basic types.

Compliance: NO

Notes: As explained in Abassi User’s Guide, by design Abassi only uses native “C”

data type (except for intptr_t) for optimal real-time efficiency.

Rule 6.4 (Required) Bit fields shall only be defined to be of type unsigned int or signed int.

Compliance: YES

Notes: Abassi does not use bit fields.

Rule 6.5 (Required) Bit fields of signed type shall be at least 2 bits long.

Compliance: YES

Notes: Abassi does not use bit fields.

Rule 7.1 (Required) Octal constants (other than zero) and octal escape sequences shall not be used.

Compliance: YES

Notes: Octal constants are not used in Abassi.

Rule 8.1 (Required) Functions shall have prototype declarations and the prototype shall be visible at

both the function definition and call.

Compliance: YES

Notes:

Rule 8.2 (Required) Whenever an object or function is declared or defined, its type shall be

explicitly stated.

Compliance: YES

Notes:

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 15

Rule 8.3 (Required) For each function parameter, the type given in the declaration and definition

shall be identical and the return types shall also be identical.

Compliance: YES

Notes:

Rule 8.4 (Required) If objects or functions are declared more than once, their types shall be

compatible.

Compliance: YES

Notes:

Rule 8.5 (Required) There shall be no definitions of objects or functions in a header file.

Compliance: YES

Notes:

Rule 8.6 (Required) Functions shall be declared at file scope.

Compliance: YES

Notes:

Rule 8.7 (Required) Objects shall be defined at block scope if they are only accessed from within a

single function.

Compliance: YES

Notes: Abassi’s global variables are initialized in OSstart(). But when the compiler

performs a zeroing of the uninitialized data section, the global variables that

must be set to zero upon start of the RTOS are not initialized as the compiler

does it at start-up. This means that some global variables are only accessed in

a single function, which violates this rule. To fully abide to this rule when the

port compiler zeroes the BSS, all there is to do is to set the token

OX_BSS_ZEROED to a zero value. As a side effect, it will increase the code

size of the RTOS.

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 16

Rule 8.8 (Required) An external object or function shall be declared in one and only one file.

Compliance: YES

Notes: Everything related to the RTOS is defined in Abassi.h

Rule 8.9 (Required) An identifier with external linkage shall have exactly one external definition.

Compliance: YES

Notes:

Rule 8.10 (Required) All declarations and definitions of objects or functions at file scope shall have

internal linkage unless external linkage is required.

Compliance: YES

Notes:

Rule 8.11 (Required) The static storage class specifier shall be used in definitions and declarations of

objects and functions that have internal linkage.

Compliance: YES

Notes:

Rule 8.12 (Required) When an array is declared with external linkage, its size shall be stated

explicitly or defined implicitly by initialization.

Compliance: YES

Notes:

Rule 9.1 (Required) All automatic variables shall have been assigned a value before being used.

Compliance: YES

Notes:

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 17

Rule 9.2 (Required) Braces shall be used to indicate and match the structure in the non-zero

initialization of arrays and structures.

Compliance: YES

Notes:

Rule 9.3 (Required) In an enumerator list, the “=” construct shall not be used to explicitly initialize

members other than the first, unless all items are explicitly initialized.

Compliance: YES

Notes: Enumerations are not used in Abassi.

Rule 10.1 (Required) The value of an expression of integer type shall not be implicitly converted to a

different underlying type if:

 a. it is not a conversion to a wider integer type of the same signedness, or

 b. the expression is complex, or

 c. the expression is not constant and is a function argument, or

 d. the expression is not constant and is a return expression.

Compliance: YES

Notes: Abassi does not comply with this rule when the build option

OS_SEARCH_ALGO is set to a value greater than 1. As explained, no effort was

made to make Abassi compliant when the build option OS_SEARCH_ALGO is

set to a value greater than zero.

Rule 10.2 (Required) The value of an expression of floating type shall not be implicitly converted to

a different underlying type if:

 a. it is not a conversion to a wider floating type, or

 b. the expression is complex, or

 c. the expression is a function argument, or

 d. the expression is a return expression..

Compliance: YES

Notes: Floating points numbers are not used in Abassi.

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 18

Rule 10.3 (Required) The value of a complex expression of integer type shall only be cast to a type

that is not wider and of the same signedness as the underlying type of the

expression.

Compliance: YES

Notes:

Rule 10.4 (Required) The value of a complex expression of floating type shall only be cast to a

floating type, which is narrower or of the same size.

Compliance: YES

Notes: Floating points numbers are not used in Abassi.

Rule 10.5 (Required) If the bitwise operators ~ and << are applied to an operand of underlying type

unsigned char or unsigned short, the result shall be immediately cast to the

underlying type of the operand.

Compliance: YES

Notes:

Rule 10.6 (Required) A U suffix shall be applied to all constants of unsigned type.

Compliance: YES

Notes: Abassi does not comply with this rule when the build option

OS_SEARCH_ALGO is set to a value greater than 1. As explained, no effort was

made to make Abassi compliant when the build option OS_SEARCH_ALGO is

set to a value greater than zero. As stated in the Abassi User Guide, the build

option OS_MAX_PEND_RQST must be set to a numerical value with the suffix U.

Rule 11.1 (Required) Conversions shall not be performed between a pointer to a function and any

type other than an integral type.

Compliance: YES

Notes:

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 19

Rule 11.2 (Required) Conversions shall not be performed between a pointer to object and any type

other than an integral type, another pointer to object type, or a pointer to void.

Compliance: YES

Notes:

Rule 11.3 (Advisory) A cast should not be performed between a pointer type and an integral type.

Compliance: NO

Notes: The use of the data type intptr_t breaks this rule. But using intptr_t

eliminates one argument to be passed to the kernel, and as the kernel is the

function called for a large number of components, this decision helps reduce

the CPU usage and the code space usage. This said, intptr_t is used exactly

as it is intended to be. Unions, according to Rule 18.4, are not authorized,

therefore Abassi does not create a union of integer and pointer, and instead

uses intptr_t. As this rule is Advisory, and Rule 18.4 is Required, it was

decided to sacrifice compliance of this rule instead.

Rule 11.4 (Advisory) A cast should not be performed between a pointer to object type and a different

pointer to object type.

Compliance: YES

Notes:

Rule 11.5 (Required) A cast shall not be performed that removes any const or volatile

qualification from the type addressed by a pointer.

Compliance: YES

Notes:

Rule 12.1 (Advisory) Limited dependence should be placed on the C operator precedence rules in

expressions.

Compliance: YES

Notes: Parentheses are used everywhere in the code.

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 20

Rule 12.2 (Required) The value of an expression shall be the same under any order of evaluation that

the standard permits.

Compliance: YES

Notes:

Rule 12.3 (Required) The sizeof operator shall not be used on expressions that contain side effects.

Compliance: YES

Notes:

Rule 12.4 (Required) The right-hand operand of a logical && or || operator shall not contain side

effects.

Compliance: NO

Notes: The components TSKstate(), TSKisRdy(), TSKisBlk() and

TSKisSusp() cast to volatile entries in the task descriptors. It is necessary to

cast as volatile the fields involved otherwise the optimizer could affect the

result if any of these component is used in a loop, such as waiting for a task to

become Ready.

Rule 12.5 (Required) The operands of a logical && or || shall be primary expressions.

Compliance: YES

Notes:

Rule 12.6 (Advisory) The operands of logical operators (&&, ||, and !) should be effectively

Boolean. Expressions that are effectively Boolean should not be used as

operands to operators other than (&&, ||, !, =, ==, !=, and ?:) .

Compliance: YES

Notes:

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 21

Rule 12.7 (Required) Bitwise operators shall not be applied to operands whose underlying type is

signed.

Compliance: YES

Notes: Abassi does not comply with this rule when the build option

OS_SEARCH_ALGO is set to a value greater than zero. As explained, no effort

was made to make Abassi compliant when the build option OS_SEARCH_ALGO

is set to a value greater than zero.

Rule 12.8 (Required) The right-hand operand of a shift operator shall lie between zero and one less

than the width in bits of the underlying type of the left-hand operand.

Compliance: YES

Notes:

Rule 12.9 (Required) The unary minus operator shall not be applied to an expression whose

underlying type is unsigned.

Compliance: YES

Notes:

Rule 12.10 (Required) The comma operator shall not be used.

Compliance: NO

Notes: The component EVTwait(), a macro definition, uses the comma operator.

This is the only component that does not comply with this rule. Implemention

as a macro most of the time creates a smaller code footprint than what is

required to call a function that would implement the same code. If compliance

is required, the macro can be converted into a function, at the expense of code

footprint.

Rule 12.11 (Advisory) Evaluation of constant unsigned integer expressions should not lead to wrap-

around.

Compliance: YES

Notes:

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 22

Rule 12.12 (Required) The underlying bit representations of floating-point values shall not be used.

Compliance: YES

Notes: Floating point numbers are not used in Abassi.

Rule 12.13 (Advisory) The increment (++) and decrement (--) operators should not be mixed with

other operators in an expression.

Compliance: NO

Notes: These are used in comparisons and resource distribution for optimal real time

code generation.

Rule 13.1 (Required) Assignment operators shall not be used in expressions that yield a Boolean

value.

Compliance: YES

Notes:

Rule 13.2 (Advisory) Tests of a value against zero should be made explicit, unless the operand is

effectively Boolean.

Compliance: YES

Notes: Even with Booleans, all tests against zero are explicitly performed.

Rule 13.3 (Required) Floating-point expressions shall not be tested for equality or inequality.

Compliance: YES

Notes: Floating point numbers are not used in Abassi

Rule 13.4 (Required) The controlling expression of a for statement shall not contain any objects of

floating type.

Compliance: YES

Notes: Floating point numbers are not used in Abassi

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 23

Rule 13.5 (Required) The three expressions of a for statement shall be concerned only with loop

control.

Compliance: YES

Notes:

Rule 13.6 (Required) Numeric variables being used within a for loop for iteration counting shall not

be modified in the body of the loop.

Compliance: YES

Notes:

Rule 13.7 (Required) Boolean operations whose results are invariant shall not be permitted.

Compliance: YES

Notes:

Rule 14.1 (Required) There shall be no unreachable code.

Compliance: YES

Notes:

Rule 14.2 (Required) All non-null statements shall either have at least one side effect however

executed, or cause control flow to change.

Compliance: YES

Notes:

Rule 14.3 (Required) Before preprocessing, a null statement shall only occur on a line by itself; it

may be followed by a comment, provided that the first character following the

null statement is a whitespace character.

Compliance: YES

Notes:

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 24

Rule 14.4 (Required) The goto statement shall not be used.

Compliance: YES

Notes:

Rule 14.5 (Required) The continue statement shall not be used.

Compliance: YES

Notes:

Rule 14.6 (Required) For any iteration statement, there shall be at most one break statement used

for loop termination.

Compliance: YES

Notes: break statements within loops are not used in Abassi.

Rule 14.7 (Required) A function shall have a single point of exit at the end of the function.

Compliance: YES

Notes: Enabling the logging facilities breaks this rule, and the logging facilities must

be turned off for MISRA-C:2004 compliance

Rule 14.8 (Required) The statement forming the body of a switch, while, do ... while, or for

statement shall be a compound statement.

Compliance: YES

Notes:

Rule 14.9 (Required) An if expression construct shall be followed by a compound statement.

The else keyword shall be followed by either a compound statement or

another if statement.

Compliance: YES

Notes:

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 25

Rule 14.10 (Required) All if ... else if constructs shall be terminated with an else clause.

Compliance: YES

Notes:

Rule 15.1 (Required) A switch label shall only be used when the most closely-enclosing compound

statement is the body of a switch statement.

Compliance: YES

Notes: switch statements are only used in the logging facilities and the logging

facilities must be turned off for MISRA-C:2004 compliance. Even with

logging enabled, Abassi complies to this rule.

Rule 15.2 (Required) An unconditional break statement shall terminate every non-empty switch

clause.

Compliance: YES

Notes: switch statements are only used in the logging facilities and the logging

facilities must be turned off for MISRA-C:2004 compliance. Even with

logging enabled, Abassi complies to this rule.

Rule 15.3 (Required) The final clause of a switch statement shall be the default clause.

Compliance: YES

Notes: switch statements are only used in the logging facilities and the logging

facilities must be turned off for MISRA-C:2004 compliance.

Rule 15.4 (Required) A switch expression shall not represent a value that is effectively Boolean.

Compliance: YES

Notes: switch statements are only used in the logging facilities and the logging

facilities must be turned off for MISRA-C:2004 compliance. Even with

logging enabled, Abassi complies to this rule.

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 26

Rule 15.5 (Required) Every switch statement shall have at least one case clause.

Compliance: YES

Notes: switch statements are only used in the logging facilities and the logging

facilities must be turned off for MISRA-C:2004 compliance. Even with

logging enabled, Abassi complies to this rule.

Rule 16.1 (Required) Functions shall not be defined with a variable number of arguments.

Compliance: YES

Notes: printf are only used in the logging facilities and the logging facilities must

be turned off for MISRA-C:2004 compliance.

Rule 16.2 (Required) Functions shall not call themselves, either directly or indirectly.

Compliance: YES

Notes:

Rule 16.3 (Required) Identifiers shall be given for all of the parameters in a function prototype

declaration.

Compliance: YES

Notes:

Rule 16.4 (Required) The identifiers used in the declaration and definition of a function shall be

identical.

Compliance: YES

Notes:

Rule 16.5 (Required) Functions with no parameters shall be declared and defined with the parameter

list void.

Compliance: YES

Notes:

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 27

Rule 16.6 (Required) The number of arguments passed to a function shall match the number of

parameters.

Compliance: YES

Notes: It may look like this rule is not respected in the assembly code when the kernel

is entered, but all arguments are passed to Abassi(), except that only the

argument Ops is set to a 0, and with Ops set to 0, the two others arguments are

not used by Abassi().

Rule 16.7 (Advisory) A pointer parameter in a function prototype should be declared as pointer to

const if the pointer is not used to modify the addressed object.

Compliance: YES

Notes:

Rule 16.8 (Required) All exit paths from a function with non-void return type shall have an explicit

return statement with an expression.

Compliance: YES

Notes:

Rule 16.9 (Required) A function identifier shall only be used with either a preceding &, or with a

parenthesized parameter list, which may be empty.

Compliance: YES

Notes:

Rule 16.10 (Required) If a function returns error information, then that error information shall be

tested.

Compliance: YES

Notes:

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 28

Rule 17.1 (Required) Pointer arithmetic shall only be applied to pointers that address an array or

array element.

Compliance: YES

Notes:

Rule 17.2 (Required) Pointer subtraction shall only be applied to pointers that address elements of

the same array.

Compliance: YES

Notes:

Rule 17.3 (Required) >, >=, <, <= shall not be applied to pointer types except where they point to the

same array.

Compliance: YES

Notes:

Rule 17.4 (Required) Array indexing shall be the only allowed form of pointer arithmetic.

Compliance: YES

Notes: Abassi complies to this rules as long as the mailboxes are not part of the build

(the build option OS_MAILBOX). If the mailboxes are part of the build, because

the mailboxes have a selectable buffer size, then a pointer is used to hold the

base address of the buffer, and this buffer is accessed using read and write

indexes.

Rule 17.5 (Advisory) The declaration of objects should contain no more than two levels of pointer

indirection.

Compliance: YES

Notes:

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 29

Rule 17.6 (Required) The address of an object with automatic storage shall not be assigned to

another object that may persist after the first object has ceased to exist.

Compliance: YES

Notes: It may look like the kernel breaks this rule when it queues the requests when in

an interrupt context, but Abassi does not allow the destruction of descriptors.

Therefore all objects memorized when queuing requests are permanent.

Rule 18.1 (Required) All structure and union types shall be complete at the end of the translation

unit.

Compliance: YES

Notes:

Rule 18.2 (Required) An object shall not be assigned to an overlapping object.

Compliance: YES

Notes:

Rule 18.3 (Required) An area of memory shall not be used for unrelated purposes.

Compliance: YES

Notes:

Rule 18.4 (Required) Unions shall not be used.

Compliance: YES

Notes:

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 30

Rule 19.1 (Advisory) #include statements in a file should only be preceded by other preprocessor

directives or comments.

Compliance: YES

Notes: For most ports Abassi complies with this rule, but a few ports need special

include files for start-up configuration and / or for added functionality. As all

port specific code is grouped together in Abassi.h, these #include are not at

the beginning of the file.

Rule 19.2 (Advisory) Non-standard characters should not occur in header file names in #include

directives.

Compliance: YES

Notes:

Rule 19.3 (Required) The #include directive shall be followed by either a <filename> or

“filename” sequence.

Compliance: YES

Notes:

Rule 19.4 (Required) C macros shall only expand to a braced initializer, a constant, a string literal, a

parenthesized expression, a type qualifier, a storage class specifier, or a do-

while-zero construct.

Compliance: YES

Notes: 1) Only if the build option OS_RUNTIME is set to a negative value, meaning

compile time creation of descriptors is disabled. This means for

MISRA-C:2004 compliance the components TSK_STATIC(), SEM_STATIC(),

MTX_STATIC(), MBX_STATIC() and TIM_STATIC() cannot be used, nor be

available.

 2) For most ports Abassi complies with this rule, but a few ports need extra

functions for added functionality. As all port specific code is grouped together

in Abassi.h, and not in Abassi.c, extra functions are defined by a

pre-processor macro. Doing so keeps the kernel code untouched when a new

port is added. If compliance is required, the culprit macro can be manually

expanded in Abassi.c.

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 31

Rule 19.5 (Required) Macros shall not be #define’d or #undef’d within a block.

Compliance: YES

Notes:

Rule 19.6 (Required) #undef shall not be used.

Compliance: YES

Notes:

Rule 19.7 (Advisory) A function should be used in preference to a function-like macro.

Compliance: NO

Notes: Many components are macros.

Rule 19.8 (Required) A function-like macro shall not be invoked without all of its arguments.

Compliance: YES

Notes:

Rule 19.9 (Required) Arguments to a function-like macro shall not contain tokens that look like

preprocessing directives.

Compliance: YES

Notes:

Rule 19.10 (Required) In the definition of a function-like macro, each instance of a parameter shall be

enclosed in parentheses unless it is used as the operand of # or ##.

Compliance: YES

Notes:

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 32

Rule 19.11 (Required) All macro identifiers in preprocessor directives shall be defined before use,

except in #ifdef and #ifndef preprocessor directives and the defined()

operator.

Compliance: YES

Notes:

Rule 19.12 (Required) There shall be at most one occurrence of the # or ## preprocessor operators in

a single macro definition.

Compliance: YES

Notes: Only if the build option OS_RUNTIME is set to a negative value, meaning

compile time creation of descriptors is disabled. This means for

MISRA-C:2004 compliance, the components TSK_STATIC(),

SEM_STATIC(), MTX_STATIC(), MBX_STATIC() and TIM_STATIC() cannot

be used, nor be available.

Rule 19.13 (Advisory) The # and ## preprocessor operators should not be used.

Compliance: YES

Notes: Only if the build option OS_RUNTIME is set to a negative value, meaning

compile time creation of descriptors is disabled. This means for

MISRA-C:2004 compliance, the components TSK_STATIC(),

SEM_STATIC(), MTX_STATIC(), MBX_STATIC() and TIM_STATIC() cannot

be used, nor be available.

Rule 19.14 (Required) The defined preprocessor operator shall only be used in one of the two

standard forms.

Compliance: YES

Notes:

Rule 19.15 (Required) Precautions shall be taken in order to prevent the contents of a header file

being included twice.

Compliance: YES

Notes:

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 33

Rule 19.16 (Required) Preprocessing directives shall be syntactically meaningful even when excluded

by the preprocessor.

Compliance: YES

Notes:

Rule 19.17 (Required) All #else, #elif, and #endif preprocessor directives shall reside in the

same file as the #if or #ifdef directive to which they are related.

Compliance: YES

Notes:

Rule 20.1 (Required) Reserved identifiers, macros, and functions in the standard library shall not be

defined, redefined, or undefined.

Compliance: YES

Notes:

Rule 20.2 (Required) The names of Standard Library macros, objects, and functions shall not be

reused.

Compliance: YES

Notes:

Rule 20.3 (Required) The validity of values passed to library functions shall be checked.

Compliance: YES

Notes:

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 34

Rule 20.4 (Required) Dynamic heap memory allocation shall not be used.

Compliance: YES

Notes: Only if the build options OS_STATIC_XXX are non-zero. These build options

define how many tasks, semaphore, mailboxes, etc. the application needs. If

any of these build option is zero, and a descriptor is needed by the application,

dynamic memory allocation will be used, either from the memory pool defined

by OS_ALLOC_SIZE or through malloc() if OS_ALLOC_SIZE is set to zero.

Rule 20.5 (Required) The error indicator errno shall not be used.

Compliance: YES

Notes:

Rule 20.6 (Required) The macro offsetof in the stddef.h library shall not be used.

Compliance: YES

Notes:

Rule 20.7 (Required) The setjmp macro and the longjmp function shall not be used.

Compliance: YES

Notes:

Rule 20.8 (Required) The signal handling facilities of signal.h shall not be used.

Compliance: YES

Notes:

Rule 20.9 (Required) The input/output library stdio.h shall not be used in production code.

Compliance: YES

Notes: Only the logging facilities (when the build option OS_LOGGING_TYPE is non-

zero) needs stdio.h, and the logging facility must be turned off for

MISRA-C:2004 compliance.

Abassi RTOS MISRA-C:2004 Compliance Report 2012.04.30

Rev 1.1 Page 35

Rule 20.10 (Required) The functions atof, atoi, and atol from the library stdlib.h shall not be

used.

Compliance: YES

Notes: Floating points numbers are not used in Abassi.

Rule 20.11 (Required) The functions abort, exit, getenv, and system from the library stdlib.h

shall not be used.

Compliance: YES

Notes:

Rule 20.12 (Required) The time handling functions of time.h shall not be used.

Compliance: YES

Notes:

Rule 21.1 (Required) Minimization of runtime failures shall be ensured by the use of at least one of:

 a. static analysis tools/techniques

 b. dynamic analysis tools/techniques

 c. explicit coding of checks to handle runtime faults.

Compliance: YES

Notes: There are no run-time checks performed in Abassi.

 The two most common cases of run-time failures are:

 Task stack overflow

 Not enough descriptors in a class are reserved with the build

option OS_STATIC_XXX. When a class of descriptors are not

reserved with OS_STATIC_XXX, then a dynamic memory

allocation failure could happen.

 These run time failures can easily be controlled during the design phase of the

application.

