
Copyright Information
This document is copyright Code Time Technologies Inc. ©2019. All rights reserved. No part of this document may be reproduced
or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of Code Time
Technologies Inc.
Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

Abassi RTOS
Debug / Monitoring Shell

Disclaimer
Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the
document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in
the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

ARM and Cortex are registered trademarks of ARM Limited. Sourcery CodeBench is a registered trademark of Mentor Graphics. All
other trademarks are the property of their respective owners.

Abassi RTOS Debug / Monitoring Shell 2019.01.23

Rev 1.1 Page 3

Table of Contents
1 INTRODUCTION .. 6

1.1 DISTRIBUTION CONTENTS .. 6
1.2 LIMITATIONS .. 6
1.3 FEATURES ... 6
1.4 TARGET SET-UP .. 6
1.5 BUILD OPTIONS .. 7

1.5.1 SHELL_CMD_LEN .. 8
1.5.2 SHELL_FILES .. 8
1.5.3 SHELL_HISTORY ... 8
1.5.4 SHELL_INPUT ... 8
1.5.5 SHELL_LOGIN ... 9
1.5.6 SHELL_USE_SUB .. 9
1.5.7 SH_USERNAME_#, SH_PASSWORD_# and SH_RDONLY_# ... 9

2 COMMANDS .. 10
3 REFERENCES .. 12
4 REVISION HISTORY ... 12

Abassi RTOS Debug / Monitoring Shell 2019.01.23

Rev 1.1 Page 4

List of Figures

Abassi RTOS Debug / Monitoring Shell 2019.01.23

Rev 1.1 Page 5

List of Tables
TABLE 1-1 DISTRIBUTION ... 6
TABLE 1-2 SHELL SET-UP .. 7
TABLE 2-1 BUILD OPTIONS ... 7
TABLE 2-2 COMMAND LINE SET OF OS_BUILD_OPTON (ASM) ... 8
TABLE 2-3 OS_BUILD_OPTION MODIFICATION .. 8
TABLE 2-1 EXAMPLE OF HELP ... 10
TABLE 2-2 LIST OF COMMANDS ... 10

Abassi RTOS Debug / Monitoring Shell 2019.01.23

Rev 1.1 Page 6

1 Introduction
This document describes the Debug / Monitoring shell add-on provided with Abassi1 [R1] (including
mAbassi [R2] and µAbassi [R3]). The shell complements software development environments by
providing a way to access the RTOS services in the application. The Shell is part of the application so it
can be also be used to monitor and debug in the field the RTOS part of an application.

1.1 Distribution Contents
The set of files supplied with this distribution are listed in Table 1-1 below:

Table 1-1 Distribution

File Name Description

Shell.h Include file for the debug / monitoring shell

Shell.c “C” file for the debug / monitoring shell

SubShell.c “C” file template to add application specific debug /
monitoring commands

1.2 Limitations
Ø The debug / monitoring shell requires the OS_NAMES build options to be defined and set to a non-

zero value. If it is set to a zero value a compile time error is generated.

Ø The shell can handle statically defined / allocated descriptors but it cannot deal with them on a
name basis. They can only be accessed using their addresses.

Ø The shell is single user only. Creating multiple instances (tasks) running the shell will create
conflicts between multiple users and possibly an application crash.

Ø At the present time all input and output are performed through stdin and stdout. In a future
release the capability to use alternate I/Os will be added.

1.3 Features
The debug / monitoring shell provides a supplemental way to debug / control / inspect an application using
Abassi. It is not a source code debugger alike the Eclipse GUI but it is instead it’s a debugger for the
RTOS. It allows the inspection (information dump) of all the services created and used in application and it
also allows the modification on the services and performing some operations on the services, for example
posting a semaphore. It also provides a file system shell to perform basic operation alike mkdir, ls or
cat. Application specific commands can easily be added to the Shell making them accessible through the
Shell user interface..

The input and output of the shell are done through stdin and stdout, which typically are mapped through
the system call layer to an UART on the target platform. If a re-direction is desired, refer to the Abassi
UART driver [R4] as it explains how to redirect stdin, stdout, and stderr to another device.

1.4 Target Set-up
All there is to do to configure and enable the use of the shell is to include the following files in the build:

Ø Shell.c

Ø SubShell.c (If application specific commands are added)

1 When Abassi is mentioned in this document, unless explicitly stated, it always means Abassi, mAbassi and µAbassi.

Abassi RTOS Debug / Monitoring Shell 2019.01.23

Rev 1.1 Page 7

and to set-up the include search directory path making sure the file Shell.h is found and to define the
build options as required. The shell may or may not, depending on the target platform, be independent
from other include files.

The shell is in fact a task and the shell is included and runs in an application by creating a task for it and
letting the task run. The priority of the shell task should be set to either a very high priority or a very low
priority. When it is set to a very high priority, the shell will likely impact the real-time processing but on
the positive side it should always be accessible even under heavy CPU utilization by the application. On
the opposite end, running the shell at a very low priority won’t impact much (or not at all if it’s alone at the
lowest priority) but under heavy application load the access to the shell could become be intermittent if not
completely inaccessible.

The shell task can be created and resumed using for example:

Table 1-2 Shell set-up

 #include “Shell./h”

 TSKcreate("Shell", SHELL_PRIO, SHELL_STACK_SIZE, &OSshell, 1);

1.5 Build Options
The debug / monitoring shell relies on a few build options for its configuration and they are listed in the
following table:

Table 1-3 Build options

Build Option Default Description

SHELL_CMD_LEN 128 Maximum number of character the shell
processes on a single command line

SHELL_FILES 0 Boolean to enable/disable the access to the
file system commands

SHELL_HISTORY 0
Selects if a command line history is available
and if available how many previous
commands it memorizes

SHELL_INPUT 10 Specifies how the shell gets the command line
characters

SHELL_LOGIN 0 Boolean to enable/disable the login accesses
credentials; i.e. username & password

SHELL_USE_SUB 0 Boolean to enable/disable application specific
commands add-on

SH_USERNAME_#

SH_PASSWORD_#

SH_RDONLY_#

Not defined

Triplets of build options specifying a
username password and if that user is logged
in RW access or RO access.

All build options can be set (overloaded) through the command line. Using a fictitious build option
SHELL_BUILD_OPTION, the default value assigned to DMA_BUILD_OPTION can be overloaded by using the
compiler command line option –D DMA_BUILD_OPTION and specifying the new value (1234), as shown in
the following example:

Abassi RTOS Debug / Monitoring Shell 2019.01.23

Rev 1.1 Page 8

Table 1-4 Command line set of OS_BUILD_OPTON (ASM)

…cc … -D SHELL_BUILD_OPTION=256 …

All default build options are set as show on the previoss table and can be directly changed by editing the
#define value assigned in the target specific ”.c” file:

Table 1-5 OS_BUILD_OPTION modification

#ifndef DMA_BUILD_OPTION
 #define DMA_BUILD_OPTION 1234 /* Comment…. */
#endif

1.5.1 SHELL_CMD_LEN
The build option SHELL_CMD_LEN specifies the maximum number of characters the shell can process on a
command line. If more characters than SHELL_CMD_LEN are “typed”, the excess characters are ignored.

1.5.2 SHELL_FILES
The build option SHELL_FILES is a Boolean controlling is file system commands are include in the shell or
not. By default this build option is set to 0, meaning the file system commands are not available in the
shell. To include the file system commands define the build option SHELL_FILES and set it to a non-zero
value. The file system commands are only useable with the System Call Layer.

1.5.3 SHELL_HISTORY
Alike most modern command line systems the shell support the capability to memorize past commands and
recall and edit them as needed. The build option SHELL_HISTORY specifies if past commands are
memorized and if they are, how many can be memorized. Command history is not supported if the build
option SHELL_HISTORY is not defined or if it is define with a value of 0 or less. To support command
history, define and set the build option SHELL_HISTORY to a positive value. The positive value is the
maximum number of commands the shell can memorize. When SHELL_HISTORY commands have been
typed and a new command is typed, the oldest command held in the history buffer is deleted to make room
for the newest command.

Past commands, up to SHELL_HISTORY of them, can be recalled and edited. The recall and editing
recognizes the arrow key of a VT100 terminal and it also recognized the equivalent EMACS movement
control characters. Use the command help edit in the shell for more details.

1.5.4 SHELL_INPUT
The shell supports 2 type of handling for the input command: one is blocking and the other one is polling.
When the shell is waiting for a command line with blocking, it uses the standard “C” function getchar()
and the task gets blocked until a <CR> is encountered. The polling method relies on the system call
GetKey() function which is non-blocking. When polling is used the shell task will sleep for a specified
time duration when no characters are available; that way the task will not consume excessive processing
resource waiting for a new character. To use the blocking (getchar()) method, define the build option
SHELL_INPUT and set it to a value of 0 or less. By default the shell uses the polling method (GetKey())
with sleep time of 10 ms. To use polling with a different sleep time, define the build option SHELL_INPUT
and set its value to the desired sleep time specified in ms; e.g. for 50 ms set the value of SHELL_INPUT to
50.

Abassi RTOS Debug / Monitoring Shell 2019.01.23

Rev 1.1 Page 9

Selecting blocking (getchar()) vs. polling (GetKey()) is related to the priority the shell task is running
at. When the task is running at a high priority it is desirable for it to be blocked until the whole command
line has been typed. In that case, the UART driver should be configured to use circular with interrupts to
minimize the processing resource usage. When the shell task is running at a low priority, then the task
sleep time allows the shell task to relinquish the CPU to other task that are at the same or lower priority. If
there wasn’t a sleep time for the input then the shell task would remain running and not allow the other
tasks at the same or lower priority to run.

1.5.5 SHELL_LOGIN
The build option SHELL_LOGIN controls if login credentials are required to access the shell. If
SHELL_LOGIN is not defined or is defined and set to a value less or equal to 0 then no access credentials
are required. If it is defined and set to a value greater than 0 then access credentials are required with the
possibility of doing an automatic “logout” after a pre-programmed time of input inactivity. If the value is
set to 1, no automatic logout occurs and any value greater than 1 specifies the inactivity timeout in seconds.

The shell supports two type of accesses: read-write and read-only and the type of access is user specific.
There are 2 default username / password already hard coded and one of them has full read-write access
when the other is restricted to read-only operations. Up to 10 triplets of username / password / access type
can be added with the build option SH_USERNAME_#, SH_PASSWORD_#, and SH_RDONLY_# (See section
1.5.7).

Inactivity time out is only useable when the selected shell input is GetKey() because getchar() is a
blocking operation with no timeout capabilities (See section 1.5.4).

1.5.6 SHELL_USE_SUB
It is possible to add application-specific commands to the shell by defining and setting the build option
SHELL_USE_SUB to a non-zero value. A template with two examples dummy commands is provided in the
file SubShell.c. When adding commands one must make sure there are no conflicts with already existing
commands: the shell commands and the file system commands. If a conflict arises, the shell or file system
command will be the one executed and not the application specific command.

1.5.7 SH_USERNAME_#, SH_PASSWORD_# and SH_RDONLY_#
When the build option SHELL_LOGIN is defined and set to a value greater than 0 login credentials are
required to access the shell. Up to 10 triplets of username / password and access type can be added through
the triplets SH_USERNAME_#, SH_PASSWORD_#, and SH_RDONLY_#. # in the build option name can have
any values 0 to 9 and it is not necessary to have continuous numbering but it is necessary to always define
the whole triplet. SH_USERNAME_#, SH_PASSWORD_# must be defined as strings, which typically involve
to use the form \”name\” on the compiler command line. The build option SH_RDONLY_# is a Boolean
when set to zero allows the username specified in the triplet to have full read and write access. If
SH_RDONLY_# is set to a non-zero value then the associated username has restricted access only allow it to
perform read operations, in other words the user cannot change anything in the RTOS.

Abassi RTOS Debug / Monitoring Shell 2019.01.23

Rev 1.1 Page 10

2 Commands
All shell commands have an intrinsic help and all there is to do in the shell to get a full details on how to
use a command. For example, the help for the command sem (semaphore monitoring / debug) is shown in
the following table:

Table 2-1 Example of help

Abassi> help sem
sem : semaphore information / processing
usage:
 sem
 show all the semaphores in the application
 sem ##
 dump the semaphore descriptor field memory offsets
 sem <SemName>
 dump info on the semaphore <SemName>
 sem <SemName> post
 post the semaphore <SemName>
 - component SEMpost()
 sem <SemName> wait
 wait on the semaphore <SemName> with a timeout of 0
 - component SEMwait()
 sem <SemName> wait #
 wait on the semaphore <SemName> with a timeout of #
 - component SemWait()
 sem <SemName> reset
 reset the count of the semaphore <SemName>
 - component SEMreset()
 sem <SemName> value #
 set the count of the semaphore <SemName> to #
 - component - none - direct field update
 sem <SemName> abort
 abort the blocking of all tasks on the semaphore <SemName>
 - component SEMabort()
 sem <SemName> order FCFS
 set First-Come-First-Served unblocking order for semaphore <SemName>
 - component SEMsetFCFS()
 sem <SemName> order prio
 set priority unblocking order for the semaphore <SemName>
 - component SEMnotFCFS()

Some expressions are used in the help display:

Numerical value, either decimal or hexadecimal (“C” representation)

This is NOT an expression, ## must be used on the command line

<Name> Indicate to use the name of an existing service in the application

The available commands for the shell and file system at the time the document was written:

Table 2-2 List of commands

List of commands:

help : me
edit : command line control characters
evt : event operations

Abassi RTOS Debug / Monitoring Shell 2019.01.23

Rev 1.1 Page 11

exit : exit from the shell
grp : group information / processing
log : logging - not supported (OS_LOGGING_TYPE <= 0)
mblk : memory blocks - not supported (OS_MEM_BLOCK == 0)
mbx : mailbox information / processing
mem : memory information / setting
mtx : mutex information / processing
sem : semaphore information / processing
sys : system information
task : task information / processing
tim : timer services information / processing

File commands:
cat : Redirect a file to stdout or redirect stdin to a file
cd : Change directory
chmod : Change a file / directory access modes
cp : Copy a file
du : Show disk usage
errno : Read or reset errno
fmt : Format a drive
 fmt # [FAT16|FAT32|exFAT]
ls : List the current directory contents
mkdir : Make a new directory
mnt : Mount a drive to a mount point e.g. mnt 0 /
mv : Move / rename a file
perf : Throughput measurements
pwd : Show current directory
rm : Remove / delete a file
rmdir : Remove / delete a directory
umnt : Unmount a mount point

Abassi RTOS Debug / Monitoring Shell 2019.01.23

Rev 1.1 Page 12

3 References
[R1] Abassi RTOS – User Guide, available at http://www.code-time.com
[R2] mAbassi RTOS – User Guide, available at http://www.code-time.com
[R3] uAbassi RTOS – User Guide, available at http://www.code-time.com
[R4] Abassi RTOS – UART Support, available at http://www.code-time.com

