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Introduction 
In embedded computing, an interrupt is an asynchronous signal indicating the need for attention, and is a 

mechanism used to avoid wasting the processor's valuable time in polling loops, waiting for external 

events.  Modern microcontrollers typically support dozens or even hundreds of interrupt sources.  As 

such, it is critical that interrupt handling occur in a timely, and memory and processor efficient manner. 

This paper examines the problem of handling interrupts in a RTOS based application in more depth, and 

details the available remedies, including those unique to the Abassi real-time kernel. 

Interrupt Latency 
In real-time systems, interrupt latency is the time between the validation of an interrupt signal and the 

servicing of that interrupt by the interrupt handler.  However, what exactly constitutes this duration varies 

between real-time operating system vendors, and frequently ignores or deemphasizes their weaknesses. 

Truly, there is a single, complete definition for interrupt latency, which contains multiple components.  

Some of these components are present in all kernels, and others are present in only a subset.  However, to 

intelligently compare different real-time kernels, all components need to be understood and analyzed. 

The best way to analyze interrupt latency is to consider all aspects of entering an interrupt handler: 

 

Figure 1. Interrupt latency components 

For all real-time kernels on a given platform, Time "A" is the same.  This is because it is a function of the 

underlying interrupt controller hardware, and is not affected by the RTOS. 
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Most real-time kernels disable interrupts during critical sections (Time “B”), such as updating their 

internal structures.  If this occurs during the time that an interrupt arrives, the interrupt will be delayed 

until the interrupts are re-enabled.  This can range from a few tens to many hundreds of CPU cycles, 

depending on the RTOS architecture. 

On processors that automatically push (Time “C”) and pop (Time “H”) registers at interrupt entry and 

exit, there will be an overhead that is a function of the processor itself, and is equal for all real-time 

kernels. 

Some real-time operating systems utilize an interrupt dispatcher (Time “D”) for forwarding interrupts to 

the appropriate interrupt handler.  Using a dispatcher eliminates the need for each interrupt handler to 

instantiate interrupt prologue and epilogue code, used to interact with the RTOS, resulting in significant 

program memory savings.  A dispatcher can also eliminate restrictions on the RTOS services available 

within an interrupt handler, and can allow interrupt handlers to be standard ‘C’ functions, for improved 

code portability. 

Real-time kernels that do not employ an interrupt dispatcher usually require the addition of interrupt 

prologue (Time “E”) and epilog code (Time “G”) to all interrupt handlers, to facilitate the use of RTOS 

services within an interrupt handler.  If such code is not required, then strict limitations usually exist on 

which kernel services are available within an interrupt handler, and such services are usually accessed 

through a unique API. 

The interrupt handler itself (Time “F”) is also affected by the RTOS architecture and efficiency.  

Whenever an interrupt handler utilizes a RTOS service, this lengthens the time the system remains in an 

interrupt context, and delays the processing of additional interrupts.  The more efficient the RTOS 

implementation, the less time the interrupt handler requires, and the higher the rate of interrupts that can 

be processed; and more time available for the application itself. 

Interrupt Stack Usage 
When an interrupt occurs, the system halts whatever processing is happening such that the interrupt can 

be serviced.  Since, after the interrupt handler has executed, the system must return to its original state, it 

is necessary to save and restore the processor registers modified during interrupt handling.  And, if the 

interrupt handler utilizes a RTOS service that causes a task switch to occur, the entire register context 

must be saved and replaced with that of the new task.  Depending on the processor, this can require 

significant data memory and processing time. 

In a preemptive multitasking system, two possibilities exist for where the registers used during interrupt 

handling can be temporarily preserved: the current task stack; or, a dedicated interrupt stack. 

If the current task stack is used, then all tasks must be dimensioned to reserve enough room to handle the 

worst-case interrupt handler memory usage.  This becomes much more of an issue if interrupt nesting can 

occur.  Nesting allows higher priority interrupts to interrupt lower priority ones, and increases the 

cumulative per task memory requirements. 
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For example, consider a system with 8 tasks, on a platform that supports nested interrupts.  Further 

assume that the individual interrupt handlers require 100 words of memory each, and that up to 4 levels of 

interrupt nesting can occur.  This necessitates allocating 4*100 words of additional stack to each of the 8 

tasks, requiring a total of 3,200 words of RAM. 

By using a dedicated interrupt stack, only a single 400 word interrupt stack is required, saving 2,800 

words of RAM. 

Even more important is the safety and testability improvements provided by the dedicated interrupt stack. 

By using a dedicated interrupt stack, it is much easier to prove that it has been properly dimensioned, 

versus needing to validate every possible interrupt/task interaction.  The dedicated interrupt stack helps 

eliminate the random failures and crashes seen when a task stack is incorrectly dimensioned and 

“overflows” due to an interrupt. 

Abassi Advantages 
Continuing the practice of high performance without sacrificing memory and processing overhead, the 

Abassi kernel implements a hybrid interrupt stack, and highly optimized kernel service handling, to 

minimize the duration spent in an interrupt context.  This greatly improves interrupt handling response 

time, while keeping stack memory usage to a minimum. 

Hybrid Interrupt Stack 
Abassi improves upon the traditional dedicated interrupt stack by preserving the first level interrupt 

registers on the current task stack, and then switching to the use of the dedicated interrupt stack.  The 

reasoning behind this is that most meaningful interrupt handlers access some kernel service, which may 

trigger a task switch.  If the dedicated interrupt stack was used to preserve the first level interrupt registers 

also, and a task switch was triggered, this would necessitate the copying of the interrupt registers to the 

pre-empted tasks stack.  By utilizing a hybrid interrupt stack, and requiring the additional of only a trivial 

amount of space on each task stack, task switch time is optimized. 

Optimized Kernel Service Handling 
In order to minimize the time spent in an interrupt context, and maximize the rate interrupts can be 

processed and the time available for the application itself, Abassi optimizes access to its kernel services.  

By deferring handling until the interrupt context is exited, additional pending interrupts are not blocked, 

and task context switches are kept to a strict minimum, without any application modifications.  Abassi is 

also architected such that the kernel does not disable the interrupts (Time “B” is zero), and does not 

require an interrupt prologue (Time “E”) or interrupt epilog (Time “G”). 

Consider two cases: a single interrupt being handled; and, a second interrupt arriving during the time 

another is being handled (non-nested).  In both cases, the interrupt handlers access kernel services that 

would result in a task context switch. 
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Figure 2. Single interrupt handling 

In the single interrupt case, a standard RTOS will perform the entire kernel service handling (Time “Fx”) 

within the interrupt context, including any task context switch.  However, Abassi defers the kernel service 

handling for outside the interrupt context (Time “O”).  In this scenario, the total time to handle both the 

interrupt and the kernel service is not decreased, but the time in an interrupt context is greatly decreased.  

This improves the interrupt response time, since additional pending interrupts are not blocked for longer 

than necessary. 

Even though the handling of kernel requests is deferred until after the interrupt handler has exited, this 

does not translate into a delay in task switching.  Since the system is servicing an interrupt, the currently 

running task is already suspended, and a newly running task would only resume once the interrupt handler 

was exited.  By deferring the task switch itself until the interrupt handler exits, the total time that the 

application itself is halted remains the same or improves. 

Deferring the task switch until the main interrupt handler has completed is comparable to the mechanism 

many real-time kernels use when operating on an ARM Cortex processor.  The Cortex processor provides 

access to a PendSV exception, which is serviced by a low priority exception handler.  This allows the 

RTOS kernel access to be separated into two parts: kernel service handler; and, task switch.  Abassi 

improves upon this by not only deferring the task switch until the main interrupt handler has exited, but 

by also deferring the bulk of the kernel service handling itself.  And, more importantly, this optimization 

is available on all platforms Abassi supports, not just the Cortex family of processors. 
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Figure 3. Multiple interrupt handling 

In a multiple interrupt scenario, a standard RTOS simply repeats the same process it does for the single 

interrupt case.  That is, it will perform the entire kernel service handling (Time “Fx”) within the interrupt 

context, including any task context switches.  This can result in “wasted” task switches, if the second 

interrupt causes a task switch which supersedes the one initiated by the first interrupt.  In addition, 

entering the kernel for each interrupt multiplies the overhead of reading and updating the kernel variables, 

task scheduling, etc. 
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By deferring the kernel service handling for outside the interrupt context, Abassi optimizes performance 

by only accessing the kernel and its variables once, and minimizes scheduling overhead by only 

performing a single task switch once all kernel requests are handled.  This minimizes both the time in an 

interrupt context, and the total time handling the interrupt and kernel access, resulting in improved overall 

system responsiveness and efficiency.  And, again, Abassi is architected such that the kernel does not 

disable the interrupts (Time “B” is zero), and does not require an interrupt prologue (Time “E”) or 

interrupt epilog (Time “G”). 

The same applies in the case of nested interrupts.  A standard RTOS simply repeats the same process it 

does for the single interrupt case, potentially resulting in wasted task switches.  However, Abassi 

minimizes both the time in an interrupt context, and the total time handling the interrupt and kernel 

access, by deferring the kernel service handling. 

 

Figure 4. Nested interrupt handling 
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Interrupt Dispatcher 
The Abassi interrupt dispatcher forwards interrupts to their appropriate interrupt handler.  Using a 

dispatcher eliminates the need for each interrupt handler to instantiate interrupt prologue and epilogue 

code, used to interact with the RTOS, resulting in significant program memory savings.  It also eliminates 

restrictions on the RTOS services available within an interrupt handler, and allows interrupt handlers to 

be standard ‘C’ functions, for improved code portability.  Furthermore, API functions exist to easily 

install or uninstall interrupt handlers, eliminating the need to manually modify linker and assembler files 

to update the interrupt vector table. 

Consider the case of an application that contains 3 interrupt sources, and compare the simplicity and 

program memory savings afforded by the use of an interrupt dispatcher. 

Standard RTOS 

main.c: 

#include “OS_Interrupts.h” 

… 

__interrupt void ISR_Handler1(void) 

{ 

OS_EnterInterrupt(); 

… /* Interrupt handler */ 

OS_ExitInterrupt(); 

} 

 

__interrupt void ISR_Handler2(void) 

{ 

OS_EnterInterrupt(); 

… /* Interrupt handler */ 

OS_ExitInterrupt(); 

} 

 

__interrupt void ISR_Handler3(void) 

{ 

OS_EnterInterrupt(); 

… /* Interrupt handler */ 

OS_ExitInterrupt(); 

} 

 

int main(void) { 

… 

} 

vector.s: 

… 

EXTERN  ISR_Handler1 

EXTERN  ISR_Handler2 

EXTERN  ISR_Handler3 

… 

DC32   ISR_Handler1 

DC32   ISR_Handler2 

DC32   ISR_Handler3 

… 

Abassi 

main.c: 

#include “Abassi.h” 

… 

void ISR_Handler1(void) { 

… /* Interrupt handler */ 

} 

 

void ISR_Handler2(void) { 

… /* Interrupt handler */ 

} 

 

void ISR_Handler3(void) { 

… /* Interrupt handler */ 

} 

 

int main(void) { 

OSisrInstall(1, &ISR_Hander1); 

OSisrInstall(2, &ISR_Hander2); 

OSisrInstall(3, &ISR_Hander3); 

… 

}
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Abassi eliminates the need to manually modify the interrupt vector table, allows the use of standard, 

portable ‘C’ function for the interrupt handlers, and saves significant program memory by eliminating the 

need to duplicate interrupt entry/exit code. 

Fast Interrupts 
Interrupts that do not access RTOS services can bypass the interrupt dispatcher, and be implemented as 

fast interrupts instead.  Fast interrupts safely co-exist with dispatched interrupts, but do not benefit from 

the ease-of-use enhancements the dispatcher provides.  They require the use of non-portable interrupt 

definitions (interrupt void func() { } or __attribute__((__interrupt__)), and require the 

manual update of linker and assembler files to install the interrupt in the vector table, instead of the 

in-built interrupt handler installer. 

By using the interrupt dispatcher, instead of hard-coding fast interrupts, improved code portability is 

achieved, with virtually no added overhead.  It also eliminates future issues if interrupt handlers are 

updated to include RTOS service calls, and gives access to simplified API functions to install or uninstall 

interrupt handlers. 

Conclusion 
By employing a greenfield design approach, Code Time Technologies has been able to create a next 

generation real-time kernel that vastly improves upon any available today.  The Abassi real-time kernel 

outperforms all existing platforms by combining code size and CPU efficiency with an unrivalled set of 

features and usability enhancements. 


