

Copyright Information
This document is copyright Code Time Technologies Inc. ©2011. All rights reserved. Code Time Technologies Inc. may have patents or
pending applications covering the subject matter in this document. The furnishing of this document does not give you any license to these

patents.

CODE TIME TECHNOLOGIES

Starvation Protection

Whitepaper

Code Time Technologies, Inc.

toll-free: +1 (855) 7-ABASSI web: www.code-time.com email: info@code-time.com

Introduction
As processors become increasingly powerful, more and more features are being executed on a single

device. Networking, user interface, signal processing; tasks that used to be handled by individual chips

now compete for system resources on a single processor. And, in cases of extreme processing demands,

the processor can become so heavily loaded by critical tasks that lower priority tasks may never have the

chance to run. This is called resource starvation.

Many solutions exist to help enforce equitable resource scheduling, although they are usually

implemented only on advanced real-time kernels, due to complexity. Furthermore, some of these

solutions share the burden between the kernel and the end user, requiring careful analysis at the design

phase and often result in suboptimal performance as the product evolves.

This paper examines the problem in more depth and details the available remedies, including those unique

to the Abassi real-time kernel.

Priority Window
Traditionally, tasks are assigned a fixed priority at design time and the kernel schedules them accordingly.

A higher priority task that needs to run will seize control of the processor from a lower priority task, and

maintain control as long as required. However, this hard priority enforcement can be relaxed to allow

flexibility on when a lower priority task gets preempted.

By assigning a priority window to each task, the designer has greater control over task preemption. Each

task gets assigned both a base priority and a priority delta, below which it will not be preempted. The

user is now able to specify that a running task should only be preempted by a much higher priority task,

and not just any higher priority task.

Unfortunately, this mechanism can introduce a much worse problem whereby a high priority task within

the window may be blocked indefinitely by a lower priority task, causing starvation of the high priority

task.

Resource Partitioning
Instead of having all tasks in the system compete for unfettered access to the processor, resource

partitioning segments the tasks into smaller groups, and the groups are allocated a portion of the processor

time. The tasks within each group only contend with one another, and can never exceed the processor

allocation of the group.

Two type of resource partitioning exist: fixed and adaptive. With fixed partitioning, if a group of tasks

does not require all the CPU cycles assigned to it, those cycles are not reallocated and end up wasted.

This can result in a very high performance processor being greatly underutilized. Adaptive partitioning

remedies this by reassigning unused cycles from one partition to another.

Code Time Technologies, Inc.

toll-free: +1 (855) 7-ABASSI web: www.code-time.com email: info@code-time.com

Regardless of the partitioning method employed, this approach does not eliminate resource starvation, and

may in fact exacerbate the problem. For example, on a fully utilized system containing three partitions,

each with 3 tasks of different priorities, you may end up having 6 starved tasks; only the highest priority

task within each partition would execute. Resource partitioning offers protection between task groups,

but not within the group itself.

Priority Aging
Priority aging is a mechanism usually reserved for high performance multiuser systems. With it, tasks are

monitored to ensure they are not being starved of access to the processor. If they are, priority aging

gradually increases the task’s priority until it gets scheduled, after which the task will revert to its initial

priority upon blocking or getting suspended.

This is most valuable for short duration tasks that must execute at least occasionally, even on heavily

loaded systems, and for very long duration tasks which do not have hard deadlines but need to run

predictably.

However, a task which runs due to priority aging must not cause a critical task to become starved for

resources either, and a robust priority aging implementation will prevent this, such that hard real-time

requirements are met.

Abassi Advantages
Recognizing the inherent flaws with priority windows and resource partitioning, the Abassi kernel

implements a highly modified priority aging mechanism, optimized for hard real-time environments. By

adding an age ceiling, enforcing limits on an aged task’s access to the processor, and confining priority

aging to a single task at a time, overall system reliability and predictability is greatly improved. And the

solution seamlessly coexists with all other kernel features, including priority inheritance, round robin

scheduling, etc.

Priority Cap
Traditional priority aging steadily increases a task’s priority until it is scheduled. In systems containing

critical tasks which must not be preempted, or must execute in a timely manner, this behavior is not

acceptable. To correct this, Abassi allows the user to selectively limit the maximum priority a task can be

aged to.

A good example of this is a vehicle’s collision avoidance system. If such a mechanism has engaged and

is in the process of computing the necessary countermeasures, even a short interruption could be

catastrophic, versus the temperature control system which can be delayed without adverse effect.

By adding a priority cap, Abassi combines standard priority aging with the solitary benefit of priority

windowing, creating a robust yet automated protection mechanism, perfectly tailored for hard real-time

demands.

Code Time Technologies, Inc.

toll-free: +1 (855) 7-ABASSI web: www.code-time.com email: info@code-time.com

Priority Snap Back
Conventional priority aging does not limit the time an aged task can keep control of the processor once it

has been scheduled. This can result in unbounded priority inversion, as a lower priority task can preempt

a high priority task for an unlimited duration.

The Abassi real-time kernel only permits the aged task to execute for a user defined duration, after which

it reverts to its original priority, and may begin the priority aging process again. If it was not for priority

snap back, very low priority tasks that were aged to the running state could monopolize the system. This

mechanism preserves overall system responsiveness, and enables background tasks to execute, even on a

fully utilized processor.

Consider an example with the starvation mechanism configured for a wait time of 100ms, a run time of

100ms, and a priority cap of 2. Round robin scheduling is present at priority 3, with a time slice of 50ms.

A low priority task is under starvation protection and was not scheduled within the 100ms wait time, so

its priority is increased from 5 to 4. This happens again the next 100ms; its priority increases to 3, and it

enters the round robin queue. Depending on the round robin scheduling, the task may execute for a single

50ms time slice, but will not reach the 100ms run time requirement, and will be promoted a final time.

Since the task has reached the priority cap, it remains at that priority until it has fulfilled the 100ms run

time requirement, at which time it snaps back to its original priority of 5.

Aging Queue

The Abassi real-time kernel allows multiple tasks to be queued for starvation protection, but only one will

be actively in the aging process. Once the aging task has run for its configured duration, it reenters the

queue, and the next protected task will begin the aging process.

This is done to guarantee fairness for all tasks in the queue, and to ensure that high priority tasks do not

get stalled by multiple aged tasks sequentially. If multiple tasks could age simultaneously, the aging

could overlap such that high priority tasks were blocked for a long duration, adversely affecting the

overall system.

Code Time Technologies, Inc.

toll-free: +1 (855) 7-ABASSI web: www.code-time.com email: info@code-time.com

Adaptive Resource Partitioning
Even though resource partitioning is not effective protection against starvation, it can be approximated

through judicious use of the Abassi round robin scheduling mechanism, which permits per task time slice

configuration.

For example, consider three partitions, each containing two tasks, which should receive 50%, 30% and

20% of the CPU, respectively. All tasks must have the same priority level, with tasks in the first partition

configured for 5 time slices each, in the second for 3 time slices each, and in the final one for 2 time slices

each. Now, the tasks will all execute for up to their configured duration, or if they do not need the entire

allocation, they will block and the remaining time will be automatically reallocated to the other queued

tasks.

Conclusion
By employing a greenfield design approach, Code Time Technologies has been able to create a next

generation real-time kernel that vastly improves upon any available today. The Abassi real-time kernel

outperforms all existing platforms by combining code size and CPU efficiency with an unrivalled set of

features.

