
Copyright Information
This document is copyright Code Time Technologies Inc. ©2012-2018. All rights reserved. No part of this document may be
reproduced or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of
Code Time Technologies Inc.
Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

mAbassi RTOS
User’s Guide

Disclaimer

Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either
expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose.

Code Time Technologies Inc. does not warrant that the contents of this document will meet your
requirements or that the document is error-free. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the document. Code Time Technologies Inc. may
make improvements and/or changes in the product(s) and/or program(s) described in the document at any
time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make
generally available the product(s) described herein.

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 3

Table of Contents
1 INTRODUCTION .. 6

1.1 GLOSSARY .. 6
2 FEATURES ... 7

2.1 LIMITATIONS .. 7
3 OVERVIEW .. 8

3.1 DESIGN CHOICES ... 8
3.1.1 Portability ... 8
3.1.2 Feature set .. 8
3.1.3 Scalability ... 8
3.1.4 Code Size ... 8
3.1.5 Data Size ... 8
3.1.6 Interrupts not disabled .. 8

3.2 SERVICES .. 8
3.2.1 Tasks ... 8

3.2.1.1 Load Balancing .. 9
3.2.1.2 Multi-Processor Mode ... 9

3.2.2 Semaphores ... 9
3.2.3 Mutexes ... 9
3.2.4 Event Flags ... 9
3.2.5 Mailboxes .. 9
3.2.6 Timer ... 9
3.2.7 Interrupts Handlers ... 9

3.3 CONSTRAINTS AND DON’TS .. 9
3.3.1 Idle Task .. 9
3.3.2 Interrupts... 10
3.3.3 Task Suspension .. 10
3.3.4 Single Task per Priority .. 10

3.4 DISTRIBUTION CONTENTS .. 10
4 CONFIGURATION .. 11

4.1 BUILD OPTIONS .. 11
4.1.1 mAbassi Specific Build Options .. 11

4.1.1.1 OS_MP_TYPE .. 11
4.1.1.2 OS_SPINLOCK_BASE .. 11
4.1.1.3 OS_START_STACK .. 12
4.1.1.4 OS_N_CORE .. 12
4.1.1.5 OS_TIM_TICK_MULTI ... 12

4.1.2 Constraints on Abassi Build Options .. 13
4.1.2.1 OS_COOPERATIVE .. 13
4.1.2.2 OS_PRIO_SAME .. 13

4.2 BUILD OPTION SELECTION ... 13
4.3 BUILD EXAMPLES ... 13

5 QUICK START ... 14
6 COMPONENTS .. 15

6.1 CORE COMPONENTS ... 15
6.1.1 COREgetID ... 16
6.1.2 CORElock ... 17
6.1.3 COREunlock ... 19
6.1.4 SPINlock ... 20
6.1.5 SPINtrylock ... 21

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 4

6.1.6 SPINunlock ... 23
6.2 TASK COMPONENTS .. 24

6.2.1 TSKsetCore ... 25
7 APPENDIX A: MABASSI START-UP .. 27
8 APPENDIX B: BMP ... 29
9 APPENDIX C: LOAD BALANCING ... 30
10 APPENDIX D: RE-ENTRANT SPINLOCK ... 31
11 REFERENCES .. 33
12 REVISION HISTORY ... 34

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 5

List of Tables
TABLE 4-1: OS_MP_TYPE SETTING ... 11
TABLE 4-2 SPINLOCK HARDWARE REGISTER INDEX USAGE .. 12
TABLE 6-1 CORE COMPONENT LIST .. 15
TABLE 6-2 SPINTRYLOCK EXAMPLE .. 21
TABLE 6-2 CORE COMPONENT LIST .. 24
TABLE 7-1 CORESTARTN EXAMPLE FOR THE ARM9 .. 28
TABLE 10-1 SPINLOCK RE-ENTRANCE EXAMPLE .. 31
TABLE 10-2 SPINLOCK RE-ENTRANCE USE ... 32

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 6

1 Introduction
This document is the User’s Guide for the mAbassi RTOS, the multi-processor version of Abassi, and it
provides all the information the reader requires to configure and use the RTOS on multi-processor devices.
It is an addendum to the User’s Guide for the Abassi RTOS [R1]. Unless indicated, all features present in
Abassi are also in mAbassi.

Although mAbassi is the multi-core version of the single core Abassi, mAbassi can be configured to
operate in a single core fashion. When configured for single core operation, the code of mAbassi is
functionally the same as Abassi.

1.1 Glossary
BMP Bounded Multi-Processing.

Load Balancing Distribute workload across multiple processing units.

SMP Symmetric Multi-Processing.

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 7

2 Features
Every one of the features offered by the single core Abassi [R1] are also available in the multi-core version,
named mAbassi. As mAbassi is the multi-core version of Abassi, there are new features:

Ø Symmetric Multi-Processing

Ø Bounded Multi-Processing

Ø True automatic load balancing

Ø Packed automatic load balancing

Ø No limits on the number of cores

Ø Can be used on a single core (the single core Abassi is an intrinsic part of the distribution)

2.1 Limitations
There are a few features in the single core Abassi that not available when the mAbassi RTOS is configured
for multi-core.

Ø The cooperative emulation mode is not available.

Ø The build configuration of single task per priority is not supported.

 If mAbassi is configured to operate on a single core, these features are available.

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 8

3 Overview
This section gives an overview of the mAbassi RTOS. The design choices are explained so as to give the
reader an understanding of the decisions made when mAbassi was architected and implemented.

From the designer point of view, the only difference between the single core Abassi and the multi-core
mAbassi is the name of the RTOS source files. In the single core Abassi, the name of the files are
Abassi.c and Abassi.h, but in the multi-core mAbassi, the names were changed to mAbassi.c and
mAbassi.h.

3.1 Design choices
Same as Abassi, see [R1].

3.1.1 Portability
Same as Abassi, see [R1].

3.1.2 Feature set
Same as Abassi, see [R1].

3.1.3 Scalability
Same as Abassi, see [R1].

3.1.4 Code Size
Same as Abassi, see [R1].

3.1.5 Data Size
Same as Abassi, see [R1].

3.1.6 Interrupts not disabled
By the nature of SMP, it is not possible to never disable the interrupts, unlike the single core version of
Abassi. The reason for this is that it is necessary to have mutually exclusive access to the kernel between
the different cores. As a task execution can move, due to pre-emption, from one core to another core at
anytime (except in BMP mode, which offers the targeting of tasks to a specific core), a tiny critical region
exists. Upon entering the kernel, the core on which the task is running must be known, as this information
is used to report at large which core has entered the kernel. This means the core number has to be read
first and a flag set to report that the task on that core is now in the kernel, inhibiting any other core from
entering the kernel at the same time. These two very simple operations must be performed without risk of
pre-emption in between, so the interrupts must be disabled. The same pre-emption protection is needed
when retrieving the task descriptor of the currently running task. The core number must be obtained, as it
is used to index an array holding the task descriptors running on all the cores.

On most devices, Abassi disables the interrupts for less than 5 to 10 cycles.

3.2 Services
Same as Abassi, see [R1].

3.2.1 Tasks
Same as Abassi, see [R1].

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 9

3.2.1.1 Load Balancing
For Symmetric Multi-Processing (SMP) and Bounded Multi-Processing (BMP), load balancing is
automatically handled by mAbassi, so there is no involvement required from the application. A complete
description of mAbassi load balancing algorithms is given in Section 9.

3.2.1.2 Multi-Processor Mode
mAbassi offers two types of multi-processing mode:

Ø Symmetric Multi-Processing (SMP)

Ø Bounded Multi-Processing (BMP)

When mAbassi is configured in SMP mode, tasks are free to run on any core. The automatic load
balancing always determines the optimal core for a task to execute on, such that tasks to do continually
swap cores.

When mAbassi is configured in BMP mode, it becomes possible to inform the load balancing algorithm to
assign selected tasks to execute on a specific core. Upon creation, all tasks are free to execute on any core.
Using the component TSKsetCore() (Section 6.2.1) informs the load balancing algorithm to always
execute the specified task on the indicated core. The same component is also used to remove the
attachment of a task to a specific core.

More information on SMP and BMP is given in Section 8.

3.2.2 Semaphores
Same as Abassi, see [R1].

3.2.3 Mutexes
Same as Abassi, see [R1].

3.2.4 Event Flags
Same as Abassi, see [R1].

3.2.5 Mailboxes
Same as Abassi, see [R1].

3.2.6 Timer
Same as Abassi, see [R1].

3.2.7 Interrupts Handlers
Same as Abassi, see [R1].

3.3 Constraints and Don’ts
Same as Abassi, see [R1].

3.3.1 Idle Task
Same as Abassi, see [R1].

NOTE: On a multi-core target configured for packed load balancing, the Idle Task immediately starts
executing upon creation in OSstart(). Precautions must be taken to make sure the IdleTask
does not use uninitialized services, as none of the application services can yet be initialized. This
issue can be circumvented, either by using the runtime safe service creation feature of Abassi, or
by using a global flag indicating the services descriptors are valid (when the service descriptor are
global resources).

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 10

3.3.2 Interrupts
Same as Abassi, see [R1].

NOTE: Starting with version 1.50.52, the lockup condition described below was eliminated with special
code in mAbassi to deal with the issue. The constraint about Adam & Eve running on core #0
remains.

NOTE: By its nature, a multi-core RTOS has to rely on inter-core interrupts for the load balancing. This
implies a lot of care must be taken to enable the interrupts at the appropriate time. There are no
real issues on the slave cores (non-#0 cores) but there could be problems with core #0 at start-up.
Core #0 is where the Adam & Eve task runs on. It is also the core where OSstart() must be
called. When it is time for Adam & Eve to create tasks and open services upon start, the interrupts
must by then have been enabled with OSeint(). If the interrupts are disabled when a task is
created or a service is opened and one or more tasks (including the Idle Task which is created and
made ready to run in OSstart()), also create tasks and/or open services, it is possible to
encounter a lock-up condition. All task creations and service openings are protected by a mutex.
If another task locks the mutex when Adam & Eve is creating a task or opening a service, Adam &
Eve will block on the mutex. As Adam & Eve becomes blocked, when the mutex is released, if
the interrupts are disabled on Core #0, it becomes impossible to unblock Adam & Eve.

 Another issue to take care is Adam & Eve is guaranteed to run on Core #0 only as long as the
interrupts are disabled. Therefore, if peripherals local to Core #0 must be configured, the
configuration must be applied before enabling the interrupts.

3.3.3 Task Suspension
Same as Abassi, see [R1].

3.3.4 Single Task per Priority
Not available in mAbassi.

3.4 Distribution Contents
The mAbassi RTOS source code distribution always has a minimum of 3 files:

mAbassi.h The mAbassi RTOS definition file

mAbassi.c The mAbassi RTOS code

mAbassi_???_???.? The processor / compiler specific assembly file

Most of the distributions are supplied with code examples for specific hardware platforms, and some
processor/compiler ports may also include device drivers. Consult the processor/compiler port document
that applies to your target application.

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 11

4 Configuration
Every build option that is needed in the single core Abassi is also needed in mAbassi [R1]. But, as
mAbassi is a superset of Abassi, a few new extra build options are required.

4.1 Build Options
The following sub-sections describe each of the extra build options that must be defined for mAbassi, and
the meaning of their value. Another set of sub-sections explains the constraints on some of the single core
Abassi build options.

4.1.1 mAbassi Specific Build Options

4.1.1.1 OS_MP_TYPE
The build option OS_MP_TYPE is used to configure the way mAbassi handles the multi-processor. This is
a bit field, where the type of load balancing is specified (True or Packed; see Section 9), and if SMP or
BMP is required. The following table lists the valid numerical values for OS_MP_TYPE. Note that to keep
mAbassi MISRA compliant, the numerical value used in the definition must be of type unsigned.

Table 4-1: OS_MP_TYPE setting

OS_MP_TYPE value Description

0U or 1U Single core, same as Abassi

2U SMP with true load balancing

3U SMP with packed load balancing

4U BMP with true load balancing

5U BMP with packed load balancing

If the build option OS_N_CORE (see Section 4.1.1.4) is set to a value of one (1), the build option
OS_MP_TYPE is internally overloaded to a value of zero (0), meaning mAbassi operates in single core
mode, functionally identical to Abassi.

4.1.1.2 OS_SPINLOCK_BASE
Some devices possess a spinlock hardware module. When mAbassi is targeted for such a device, it is
possible for mAbassi to use the hardware spinlock peripheral instead of its own software spinlock. The
utilization of a hardware spinlock module implies associating individual hardware spinlocks to the
software spinlocks used by mAbassi and the application. The build option OS_SPINLOCK_BASE is used to
define the base index mAbassi and its optional add-ons use. If the option OS_SPINLOCK_BASE is not
specified, it is assumed to have a value of zero (0). The hardware spinlock indexes from
OS_SPINLOCK_BASE to OS_SPINLOCK_BASE+4 inclusively are reserved for mAbassi internal operations.

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 12

Table 4-2 Spinlock Hardware Register Index Usage

Spinlock index Description

OS_SPINLOCK_BASE+0 Internally used by mAbassi

OS_SPINLOCK_BASE+1 Internally used by mAbassi

OS_SPINLOCK_BASE+2 Internally used by mAbassi

OS_SPINLOCK_BASE+3 Internally used by mAbassi

OS_SPINLOCK_BASE+4 Internally used by mAbassi

OS_SPINLOCK_BASE+5 Used by the optional open-source lwIP IP stack

4.1.1.3 OS_START_STACK
Each core is assigned a start-up code, mainly useful for hardware initialization. That same initialization
code defines the minimalist task that runs on any free cores, when there are less tasks running than the
number of cores on the device. The stack size of these start-up / do-nothing tasks is defined by the build
option OS_START_STACK.

When mAbassi is configured in SMP mode, there is a total of (OS_N_CORE – 1) of these tasks. When
mAbassi is configured in BMP mode, there is a total of OS_N_CORE of these tasks, but one of these cannot
be used for start-up configuration, as it is kept hidden from the application.

4.1.1.4 OS_N_CORE
The build option OS_N_CORE defines how many cores the target device has. It can be set to a smaller
value than the total number of cores on the device, but not greater than. The value of OS_N_CORE must be
positive. If OS_N_CORE is set to 1, it makes mAbassi behave identically to the single core version of
Abassi. The code used in mAbassi is very close to that of the single core Abassi code.

If the build option OS_MP_TYPE (see Section 4.1.1.1) is set to a value of 0 or 1, indicating to configure
mAbassi in single core mode, the build option OS_N_CORE is internally overloaded to a value of 1.

NOTE: mAbassi numbers the cores from 0 to OS_N_CORE-1. The numbering matches the device core
physical numbering, so the mAbassi number is a physical numbering (with possibly an offset if
the first core on the device is not 0). When mAbassi is configured to operate as the single core
version of Abassi, the mAbassi core number is always 0, no matter on which physical core Abassi
executes.

4.1.1.5 OS_TIM_TICK_MULTI
(New in version 1.85.85) In most typical applications, the RTOS timer interrupt is assigned to one of the
core. An atypical application may have needs to disable the interrupts for longer than the time duration
between timer ticks. For such an application, if the task with the long interrupt disabling is running on the
core that handles the RTOS timer tick interrupt it will most likely provoke time slipping of the RTOS time
base (there will be timer tick interrupt requests that are not handle). As mAbassi operates on multiple core,
it is possible to attach the timer tick interrupt handler to two or more cores as long as the build option
OS_TIM_TICK_MULTI is defined and set to a non-zero value. The build option OS_TIM_TICK_VALUE
adds dedicated processing in the timer tick interrupt handler to make sure the increment G_OStimCnt
happen only once per tick.

When enabling the multiple timer tick interrupt handling, one must make sure the interrupt source is the
same for all the cores; e.g. on an A9 MPcore it makes sense to use a private timer on a core as the time
reference for the RTOS timer tick. If multiple core are to handle the timer tick interrupt, then the private
timer should not be used as the time reference because each core uses its own timer; instead the A9 global
timer should be used to interrupt all the targeted cores. There are no bad side effects, other than adding a
bit of un-necessary code, validating OS_TIM_TICK_MULTI when a single core handles the timer interrupts.

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 13

4.1.2 Constraints on Abassi Build Options

4.1.2.1 OS_COOPERATIVE
The build option OS_COOPERATIVE that makes the Abassi RTOS kernel operate (truly, emulate) in a
cooperative mode instead of preemptive is not available on mAbassi. The reason is quite simple: a
cooperative RTOS is intrinsically a single core RTOS. Therefore, the build option OS_COOPERATIVE
must always be set to a value of 0 with mAbassi. If it is set to a non-zero value, a compile-time error is
generated.

If mAbassi is configured to operate in single core mode, this option is available.

4.1.2.2 OS_PRIO_SAME
The build option OS_PRIO_SAME, which controls if the RTOS supports multiple tasks at the same priority
or a single task per priority, must be set to true (a non-zero) value in mAbassi. When mAbassi is
configured for multi-core, this build option is internally overloaded and set to a non-zero value. It makes
sense to have this constrain in mAbassi, as restricting the RTOS to a single task per priority defeats the
multi-core purpose, i.e. with true load balancing, a single task would be running at any time.

If mAbassi is configured to operate in single core mode, this option is available.

4.2 Build Option Selection
Same as Abassi, see [R1].

mAbassi version 1.57.57 and up no longer require at least one task to always be running. Therefore, it is
not necessary to include an Idle task, so the build option OS_IDLE_STACK can always be set to 0.

When the build option OS_IDLE_STACK is set to 0 (No Idle Task), the restriction on starvation protection
for tasks running at the lowest priority (OS_PRIO_MIN) is removed: tasks running at the lowest priority can
now be under starvation protection.

4.3 Build Examples
Same as Abassi, see [R1].

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 14

5 Quick Start
Same as Abassi, see [R1].

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 15

6 Components
This section describes the new components the mAbassi RTOS offers. These components are in
supplement to the single core Abassi components. From a designer or from an application point of view,
mAbassi is functionally identical to the single core Abassi. All components of Abassi, described in [R1]
are available in mAbassi with exactly the same functionality and constrains.

6.1 Core Components
The only components that are mAbassi specific are related to the fact that applications operate on multiple
cores. The core components are listed in the following table:

Table 6-1 Core Component list

Section Name Description

6.1.1 COREgetID Get the core the current task is executing on

6.1.2 CORElock Lock a spinlock

6.1.3 COREunlock Unlock a spinlock

 SPINlock Lock the internal spinlock

 SPINtrylock Try once locking the internal spinlock

 SPINunlock Unlock the internal SPINlock

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 16

6.1.1 COREgetID

Synopsis
#include “mAbassi.h”

int COREgetID(void);

Description

The component COREgetID()reports the core number the current task is executing on.

Availability

Always

Arguments
void

Returns

int Core number, the value ranges from 0 to OS_N_CORE-1

Component type

Function

Options

Notes

The component COREgetID() allows an application to apply or avoid any core specific
functionality. As a task (if not assigned to a core with BMP) can be preempted at any time
and switch cores, the peripheral accesses of core specific operations must be performed with
the interrupts disabled. The use of the COREgetID() component must be part of that
interrupt disabled region.

See also

OS_MP_TYPE (Section 4.1.1.1)
OS_N_CORE (Section 4.1.1.4)

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 17

6.1.2 CORElock

Synopsis
#include “mAbassi.h”

void CORElock(int LockNmb, volatile void *Address, int WaitFor,
 int WrtVal);

Description

The component CORElock() is used to lock a spinlock [R2]. The component interface
supports both hardware and software spinlocks. CORElock() does not return until the lock
has been obtained.
When locking a spinlock, the operation basically consist of writing a core specific value to a
variable indicating that the variable is locked. This implies there is a pre-determined value
that indicates there are no locks on the spinlock. All this information is passed through the
arguments. The address of the variable is specified with the argument Address, the unlock
value is specified with the argument WaitFor, and the core-specific value is indicated with
the argument WrtVal.
When using a hardware spinlock, the spinlock number is specified with the argument
LockNmb. If the spinlock is a pure software spinlock, the argument LockNmb is ignored.

Availability

Always

Arguments

LockNmb Hardware spinlock number, when hardware spinlock are used
 Ignored if the spinlock is implemented in software
Address Address of the spinlock variable
WaitFor Value of the variable when a spinlock is unlocked
WrtVal Core-specific value to write into Address to indicate the spinlock is locked

Returns
void

Component type

Function

Options

Notes

The selection of the argument WrtVal is critical. This is due to the fact that the purpose of a
spinlock is to give exclusive access to a resource to only one core at a time. Due to some
hardware spinlock implementations, some of types of hardware spinlock are not re-entrant.
This means a core can lock once, but if a second lock is tried on the same spinlock by the
same core, the spinlock will not be re-lockable. This will stall the task forever, as it is
waiting to obtain the lock.

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 18

A spinlock is a form of very lightweight mutex, and mAbassi’s mutexes are re-entrant, but
the component CORElock() was not designed to be re-entrant (see Section 10 on how to
make CORElock() re-entrant). To skip extraneous locks, the variable value to write when
locking a spinlock must remain unique across cores, but the same on a per core basis. That
way, when trying to lock the spinlock, if the variable value is already the value to write, it is
known that the lock of the spinlock has already been achieved.
As a task (if not assigned to a core with BMP) can be preempted at any time and switch
cores, the locking and unlocking of a spinlock should be performed with the interrupts
disabled. The use of the CORElock() and COREunlock() components must be part of that
interrupt disabled region.
mAbassi uses / reserves the hardware spinlocks number 0, 1, 2, 3 and 4 The application must
not use any of these numbers for the argument LockNmb, otherwise there will be conflict with
the internal operation of mAbassi.

See also

COREunlock (Section 6.1.3)
SPINlock (Section 6.1.4)

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 19

6.1.3 COREunlock

Synopsis
#include “mAbassi.h”

void COREunlock(int LockNmb, volatile void *Address, int WrtVal);

Description

The component COREunlock() is used to unlock a spinlock [R2]. The component interface
supports both hardware and software spinlocks.
When unlocking a spinlock, the operation simply involves writing the value indicating the
spinlock if free. The address of the variable is specified with the argument Address, and the
unlock variable value is specified with the argument WrtVal.
When using a hardware spinlock, the spinlock number is specified with the argument
LockNmb. If the spinlock is a pure software spinlock, the argument LockNmb is ignored.

Availability

Always

Arguments

LockNmb Hardware spinlock number, when hardware spinlock are used
 Ignored if the spinlock are implemented in software
Address Address of the spinlock variable
WrtVal Value to write into Address to indicate the spinlock is free

Returns
void

Component type

Macro (Safe)

Options

Notes

There are no checks performed to verify if the spinlock is locked by the core unlocking the
spinlock, or that the spinlock is locked.
See the Notes section in the CORElock() component description (see Section 6.1.2) for
protection against a task switching core.
mAbassi uses / reserves the hardware spinlocks number 0, 1, 2, 3 and 4. The application
must not use any of these numbers for the argument LockNmb, otherwise there will be
conflict with the internal operation of mAbassi.

See also

CORElock (Section 6.1.2)

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 20

6.1.4 SPINlock

Synopsis
#include “mAbassi.h”

void SPINlock(void);

Description

The component SPINlock()lock an internal spinlock.

Availability

Added in mAbassi version 1.109.109

Arguments
void

Returns
void

Component type

Function

Options

Notes

The component SPINlock() is alike CORElock() but simpler to use at it uses an internal
spinlock variable and there are no function arguments to specify. There are also no needs to
wrap the lock-unlock pair of operation with a disable / re-enable of the interrupts because
SPINlock() deals with it. Also, contrary to CORElock(), SPINlock() is re-entrant.
Do not use COREunlock() to unlock the internal spinlock, you must use SPINunlock().

See also

SPINtrylock (Section 6.1.5)
SPINunlock (Section 6.1.6)

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 21

6.1.5 SPINtrylock

Synopsis
#include “mAbassi.h”

int SPINtrylock(void);

Description

The component SPINtrylock()is used to try to lock an internal spinlock. If the lock is
obtained, the value 0 is returned; if the lock cannot be obtained, it returns a non-zero value

Availability

Added in mAbassi version 1.109.109

Arguments
void

Returns

int == 0 : the lock has been obtained
 != 0 : the lock was not obtained

Component type

Function

Options

Notes

The component SPINtrylock() operations is identical to the operations of SPINlock().
The difference is contrary to SPINlock(), which wait forever to obtained the lock,
SPINtrylock() only tries once. The main reason to use SPINtrylock() instead of
SPINlock() is to not have the interrupts disabled for too long. Spinlock are typically used
for very simple, short operations, alike writing to a variable. If the operations encapsulated
between the locking and unlock consume a fair amount of CPU then obtaining the lock could
take as long as processing time.
Do not use COREunlock() to unlock the internal spinlock, you must use SPINunlock().

Table 6-2 SPINtrylock example

 while (0 != SPINtrylock());
 …
 SPINunlock();

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 22

See also

SPINlock (Section 6.1.4)
SPINunlock (Section 6.1.6)

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 23

6.1.6 SPINunlock

Synopsis
#include “mAbassi.h”

void SPINunlock(void);

Description

The component SPINunlock()unlock an internal spinlock that ws locked by either
SPINlock() or SPINtrylock().

Availability

Added in mAbassi version 1.109.109

Arguments
void

Returns
void

Component type

Function

Options

Notes

Do not pair CORElock() with SPINunlock().

See also

SPINlock (Section 6.1.4)
SPINtrylock (Section 6.1.5)

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 24

6.2 Task Components
The only task components that are mAbassi specific are related to the fact the application executes on
multiple cores. The new task components are listed in the following table:

Table 6-3 Core Component list

Section Name Description

 TSKsetCore Assign a task to a core, or set a task as core agnostic

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 25

6.2.1 TSKsetCore

Synopsis
#include “mAbassi.h”

void TSKsetCore(TSK_t *Task, int CoreID);

Description

The component TSKsetCore()is used to either force a task to always execute on a specific
core, or to specify that a task can execute on any core. The association of tasks to core
numbers is what is called BMP (Bounded Multi-Processing) in real-time kernel literature.
The task to associate or release from an association is specified by the argument Task. When
the argument CoreID is negative, the task indicated by the argument Task is released from
core association. When the argument CoreID is non-negative, the task specified by the
argumernt Task becomes associated with the core number CoreID; it will then only execute
on that core.

Availability

Only when the build option OS_MP_TYPE is set to a value of 4 or 5 and the value of the build
option OS_N_CORE is greater than 1

Arguments

Task Descriptor of the task to associate to a core or release from an association
NewArg >= 0 : Core number to associate the task
 < 0 : Release the task from a core association

Returns
void

Component type

Macro (Safe)

Options

Notes

If the argument CoreID has a value greater or equal to OS_N_CORE, the task will never run.
As the cores are numbered from 0 to OS_N_CORE-1, specifying a value of OS_N_CORE or
greater associates the task with a non-existing core will most likely makes the application
misbehave.
When the component TSKsetCore() is applied on a the task already executing on a core
other than the one specified by CoreID, the task will remain on ist current core until a load
balancing happens on any of the cores in the system. Then, the task will be migrated to the
targeted core.

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 26

This means the proper way to make sure a task will execute on the target core right upon
creation is to first create the task in the suspended mode, then use TSKsetCore(), followed
by a resuming of the newly created task. If the task is created in the ready to run mode, then
it is possible that it will execute on a different core right upon its creation as, by default, all
newly created tasks are not associated with a core.

See also

OS_MP_TYPE (Section 4.1.1.1)
OS_N_CORE (Section 4.1.1.4)

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 27

7 Appendix A: mAbassi Start-up
mAbassi, like Abassi, starts with the function main(), which becomes the first task in the application upon
using the component OSstart(). As for the single core Abassi, the OSstart() component must be
called in order to get the RTOS up and running. In the case of multi-core, there is a restriction, as
OSstart() must be called from Core #0. Calling OSstart() on a core other core #0 does nothing.
Making OStart() do nothing on cores other than core #0 is a protection against initializing the RTOS
environment more than once.

A key operation performed within OSstart() is to control when the other cores (aside from core #0) can
start executing within the RTOS environment, and what they are executing at start-up. Each non-zero core
is assigned a start-up task, attached to the function named COREstartN(), where N is the core number
(numbered from 1 to OS_N_CORE-1). That function serves a dual purpose: it is the start-up code for the
core, and, equally important, it is also the task executed when a core is unused. Unused core situations
happen when the load balancing cannot pack all cores. Very few things need to be done in the
COREstartN() function1:

 1) Hardware initialization for the core, if needed

 2) Configuring / enabling the interrupts

 3) Set the global variable G_CoreIdleDone[MyCoreID] to a non-zero value

 4) Infinite loop, ideally putting the core in power down mode

The hardware initialization step may not always be required. It would typically be needed to configure the
interrupt controller if each core was assigned a dedicated interrupt controller. The second step is required,
as mAbassi uses inter-core interrupts as part of its scheduler. For example, when a service used on one
core triggers a task switch of the task running on another core, an interrupt is issued to inform the other
core that a task switch must be performed.

The third step, setting the global variable G_CoreIdleDone[MyCoreID] to a non-zero value is used to
inform Adam & Eve the initialization on the non-zero core is done and the interrupts are now enabled.
Finally, an infinite loop is required as the Idle Core task can never return, nor get suspended or blocked.
When available, the core should be put into a power down mode (capable of responding to interrupts) as it
is not used for anything.

The assembly support file supplied with the distribution holds all the COREstartN() functions normally
needed; these functions can be overloaded with new ones. There should be no need for the application to
create and use its own. The only case when custom COREstartN() functions would be needed is if the
device has peripherals only accessible by a restricted set of cores.

As an example, the COREstartN() functions used for the ARM9 are shown in the following table. This
code is exactly what is implemented in the distribution.

1 Starting at version 1.45.46, the non-core #0 start-up mechanism was modified to not need a change of
priority.

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 28

Table 7-1 COREstartN example for the ARM9

#include “mAbassi.h”

void COREstartN(void)
{
 GICinit(); /* Needed to enable ISR from other cores */
 OSeint(1); /* Enable the interrupt */
 G_CoreIdleDone[COREgetID()] = 1; /* Report to Adam & Eve I am ready */
for (;;) { /* Infinite loop */
 asm(" wfi"); /* Power down: wait for interrupts */
 }
}

NOTE: The task using the functions COREstartN()are guaranteed to operate on the selected core until
the global variable G_CoreIdleDone[MyCoreID] is set to a non-zero value. So there is no need
to protect against core switches, as explained in Section 6.1.1.

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 29

8 Appendix B: BMP
BMP (Bounded Multi-Processing) is alike SMP, with the added capability of assigning a task to run on a
specific core number. The interest of forcing tasks to execute on specific cores arises from the possibility
of using a dedicated core to handle all the application interrupts, leaving the other cores interrupt free
(excluding inter-core interrupts). Having interrupt free cores delivers the maximum CPU utilization on
these cores, as they are not constantly interrupted.

The load balancing algorithm for BMP is more complex than for SMP, therefore if task assignments are not
used in an application, mAbassi should be configured for SMP, to maximize the kernel CPU efficiency and
code size. Not only is BMP load balancing more complex, it is also prone to having running tasks switch
cores without getting pre-empted, blocked or suspended. Here’s an example of such a task switch:

On a dual core, let’s consider 2 running tasks of the same priority, and both tasks are free to execute on any
core. Task #0 executes on core #0 and task #1 executes on core #1. If task #0 gets pre-empted or blocked,
and the next running task (task #2) is one that has been assigned to execute on core #1, then a core switch
must happen. In sequence, the kernel running on core #0 will interrupt core #1 to force a load balancing to
be performed on core #1. The load balancing determines that task #2 must run on core #1, and the current
task executing on core #1, task #1, can then only execute on core #0. So, a task switch occurs on core #1.
After the task switch on core #1, core #0 immediately regains access to the kernel and makes task #1
execute on core #0. The higher the number of cores on a device, the more complex is the handling of the
task core switching. Therefore, a lot of care must be taken during the design phase of a BMP application to
minimize the CPU expenditure of having task core switching.

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 30

9 Appendix C: Load Balancing
The automatic load balancing operation is an intrinsic part of the mAbassi scheduler, as when any task
becomes ready to run, or becomes blocked or suspended, a possible task switch could occur. As mAbassi
operates on multi-core devices, the availability of multiple cores allows multiple tasks to execute in
parallel. mAbassi offers the selection between four different types of load balancing algorithms:

Ø True load balancing for SMP

Ø True load balancing for BMP

Ø Packed load balancing for SMP

Ø Packed load balancing for BMP

The initial two (true load balancing for SMP and BMP) allows up to OS_N_CORE tasks at the same priority
to execute in parallel. If there are less than OS_N_CORE tasks ready to run at the highest priority, the extra
cores are not utilized. If there are more tasks at the highest priority than OS_N_CORE, then all cores are
executing tasks. Tasks that are in the ready to run mode will become running in a first come first serve
manner. Or, if round-robin is enabled, a round robin scheme will allow all tasks to get their share of the
available total CPU.

The two other types of load balancing, the packed load balancing for SMP and BMP, populate all cores
with the highest priority ready to run tasks. This type of load balancing breaks the priority rules where a
lower priority task should not be executing when a higher priority task is. There is an important gain if the
application is architected based on a loose priority scheme. When this is the case, then packed load
balancing maximizes the CPU usage. The true load balancing does not offer such CPU maximization.

The allocation of a task to a core is performed automatically, and there is no need for the involvement of
the application or the designer to do anything extra.

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 31

10 Appendix D: Re-entrant spinlock
The component pair of CORElock() (Sections 6.1.2) and COREunlock (Section 6.1.3) are not re-entrant.
It is very easy to add a bit of code to make them re-entrant. The following table shows two functions, one
to lock a re-entrant spinlock and the other to unlock a re-entrant spinlock. As for CORElock() and
COREunlock(), a spinlock variable is needed. In extra, a counter associated to the spinlock is required
for re-entrance. The way to use these two functions is shown in the next table. There is no need
conditional around CORElock(), conditional to verify if the lock is already owned by the task as
CORElock() simply returns when the lock is already owned.

Table 10-1 Spinlock re-entrance example

#include “mAbassi.h”

int Reent_SpinLock(int *Spinlock, int *SpinCnt)
{
 IsrState = OSintOff() /* Spinlocks must be interrupt protected */
 CORElock(OX_SPINLOCK_BASE+15, SpinLock, 0, 1+COREgetID());
 SpinCnt++; / Counter used to make CORElock() trully */
 /* re-entrant */
 return(IsrState); /* Return previous ISR enable/disable state */
}

/* --- */

void Reent_SpinUnlock(int *Spinlock, int *SpinCnt, int IsrState)
{
 if (--*SpinCnt == 0) { /* One less re-entrance nesting */
 COREunlock(OX_SPINLOCK_BASE+15, SpinLock, 0); /* Count is 0, time to unlock */
 }
 OSintBack(IsrState); /* Bring ISR enable/disable back */
 return;
}

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 32

Table 10-2 Spinlock re-entrance use

#include “mAbassi.h”

int MySpinLock = 0;
int MySpinCnt = 0;

 …
/* --- */

void MyModule1(void)
{
int OldISR;
 …
 OldISR = Reent_SpinLock(&MySpinLock, &MySpinCnt);
 MyModule2();
 Reent_SpinUnlock((&MySpinLock, &MySpinCnt, OldISR);
 …
 return;
}

/* --- */

void MyModule2(void)
{
int OldISR;
 …
 OldISR = Reent_SpinLock(&MySpinLock, &MySpinCnt);
 …
 Reent_SpinUnlock((&MySpinLock, &MySpinCnt, OldISR);
 …

 return;
}

mAbassi RTOS mAbassi User’s Guide 2018.02.23

Rev 1.15 Page 33

11 References
[R1] Abassi RTOS – User’s Guide, available at http://www.code-time.com
[R2] http://en.wikipedia.org/wiki/Spinlock, Spinlock description

