
Copyright Information
This document is copyright Code Time Technologies Inc. ©2017. All rights reserved. No part of this document may be reproduced
or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of Code Time
Technologies Inc.
Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

mAbassi RTOS
Porting Document

SMP / ARM Cortex-A53 – GCC

Disclaimer
Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the
document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in
the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

ARM and Cortex are registered trademarks of ARM Limited. Xilinx and Zynq is a registered trademark of Xilinx Inc. Sourcery
CodeBench is a registered trademark of Mentor Graphics. All other trademarks are the property of their respective owners.

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 3

Table of Contents
1 INTRODUCTION .. 6

1.1 LIMITATIONS .. 6
1.2 FEATURES ... 6

2 TARGET SET-UP .. 7
3 BUILD OPTIONS ... 8

3.1 OPTION SETTING ... 8
3.2 OS_PLATFORM - TARGET DEVICE .. 9
3.3 OS_N_CORE - NUMBER OF CORES .. 9
3.4 L1 & L2 CACHE SET-UP ... 9
3.5 OS_HANDLE_PSR_Q - SATURATION BIT SET-UP ... 9
3.6 OS_CPU_CLK – PROCESSOR CLOCKING FREQUENCY ... 10
3.7 OS_NEWLIB_RENT - MULTITHREADING .. 10
3.8 OS_SPINLOCK_DELAY - SPINLOCK IMPLEMENTATION ... 10
3.9 PERFORMANCE MONITORING ... 10
3.10 OS_CODE_SOURCERY - CODE SOURCERY / LINARO .. 11

4 INTERRUPTS ... 12
4.1 INTERRUPT HANDLING ... 12

4.1.1 Interrupt Table Size ... 12
4.1.2 Interrupt Installer .. 12

4.2 FAST INTERRUPTS ... 13
4.3 NESTED INTERRUPTS .. 13

5 STACK USAGE .. 14
6 MEMORY CONFIGURATION .. 15
7 SEARCH SET-UP ... 16
8 API .. 18

8.1 FIQ_HANDLER ... 19
8.2 SERROR_HANDLER .. 20
8.3 SYNC_HANDLER ... 21
8.4 GICENABLE .. 22
8.5 GICINIT .. 24

9 MEASUREMENTS .. 25
9.1 MEMORY .. 25
9.2 LATENCY .. 27

10 APPENDIX A: BUILD OPTIONS FOR CODE SIZE .. 31
10.1 CASE 0: MINIMUM BUILD ... 31
10.2 CASE 1: + RUNTIME SERVICE CREATION / STATIC MEMORY + MULTIPLE TASKS AT SAME PRIORITY 32
10.3 CASE 2: + PRIORITY CHANGE / PRIORITY INHERITANCE / FCFS / TASK SUSPEND 33
10.4 CASE 3: + TIMER & TIMEOUT / TIMER CALL BACK / ROUND ROBIN .. 34
10.5 CASE 4: + EVENTS / MAILBOXES .. 35
10.6 CASE 5: FULL FEATURE BUILD (NO NAMES) ... 36
10.7 CASE 6: FULL FEATURE BUILD (NO NAMES / NO RUNTIME CREATION) .. 37
10.8 CASE 7: FULL BUILD ADDING THE OPTIONAL TIMER SERVICES ... 38

11 REFERENCES .. 39
12 REVISION HISTORY ... 40

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 4

List of Figures

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 5

List of Tables
TABLE 1-1 DISTRIBUTION ... 6
TABLE 3-1 COMPILER BUILD OPTIONS SETTING .. 8
TABLE 3-2 ASSEMBLY BUILD OPTIONS PASSED THROUGH THE COMPILER .. 8
TABLE 3-3 ASSEMBLY BUILD OPTIONS PASSED THROUGH THE ASSEMBLER ... 8
TABLE 3-4 ASSEMBLY FILE DEFAULT BUILD OPTION SETTING .. 8
TABLE 3-5 BUILD OPTIONS .. 8
TABLE 3-6 OS_PLATFORM VALID SETTINGS .. 9
TABLE 4-1 COMMAND LINE SET THE INTERRUPT TABLE SIZE ... 12
TABLE 4-2 ATTACHING A FUNCTION TO AN INTERRUPT ... 12
TABLE 4-3 INVALIDATING AN ISR HANDLER ... 13
TABLE 5-1 CONTEXT SAVE STACK REQUIREMENTS ... 14
TABLE 7-1 SEARCH ALGORITHM CYCLE COUNT .. 17
TABLE 10-1 “C” CODE MEMORY USAGE ... 26
TABLE 10-2 ASSEMBLY CODE MEMORY USAGE .. 27
TABLE 10-3 MEASUREMENT WITHOUT TASK SWITCH .. 28
TABLE 10-4 MEASUREMENT WITHOUT BLOCKING ... 28
TABLE 10-5 MEASUREMENT WITH TASK SWITCH .. 29
TABLE 10-6 MEASUREMENT WITH TASK UNBLOCKING .. 29
TABLE 10-7 LATENCY MEASUREMENTS ... 30
TABLE 11-1: CASE 0 BUILD OPTIONS .. 31
TABLE 11-2: CASE 1 BUILD OPTIONS .. 32
TABLE 11-3: CASE 2 BUILD OPTIONS .. 33
TABLE 11-4: CASE 3 BUILD OPTIONS .. 34
TABLE 11-5: CASE 4 BUILD OPTIONS .. 35
TABLE 11-6: CASE 5 BUILD OPTIONS .. 36
TABLE 11-7: CASE 6 BUILD OPTIONS .. 37
TABLE 11-8: CASE 7 BUILD OPTIONS .. 38

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 6

1 Introduction
This document is a complement to the mAbassi [R1] and Abassi User Guides [R2] and it details the port for
the GCC tool chain of the SMP / BMP multi-core mAbassi RTOS to the ARM Cortex-A53 multi-core
processor, commonly known as the A53 MPcore.

The key files supplied with this distribution are listed in Table 1-1 below:

Table 1-1 Distribution

File Name Description

mAbassi.h RTOS include file

mAbassi.c RTOS “C” source file

ARMv8_SMP_L1_L2_GCC.s L1 and L2 caches, MMU, and SCU set-up
module for the MPcore A53 / GCC

mAbassi_SMP_CORTEXA53_GCC.s RTOS assembly file for the SMP ARM Cortex-
A53 to use with the GCC tool chain

1.1 Limitations
Using mAbassi, the A53 always operates (RTOS and application) in the “Secure Monitor” exception level
(EL3), which is the highest. Other exception levels should not be used and are not supported. The port
currently only operates using the 64 bit instruction set (A64) in the AArch64 mode and the ABI does not
support LP32 mode; it is compatible with both LP64 and LLP64. In LP64, int are 32 bit, pointers and
long int are 64 bits. For LLP64, int and long int are 32 bits, pointers and long long int are 64
bits.

1.2 Features
- Fast Interrupts (FIQ) are not handled by the RTOS, and are left untouched by the RTOS to fulfill their
intended purpose of interrupts not requiring kernel access. Only the interrupts mapped to the IRQ interrupt
are handled by the RTOS.

- The hybrid stack is not available in this port, as ARM’s GIC (Generic Interrupt Controller) does not
support nesting of the interrupts (except FIQ nesting the IRQ).

- The assembly file never uses BL addr instructions when calling a function; it uses instead BLR rn with rn
holding the full 64 bit address. This was chosen to make the assembly file able to access the whole address
space without the need of a trampoline.

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 7

2 Target Set-up
Very little is needed use the mAbassi RTOS with an application. All there is to do is to add the files
mAbassi.c, mAbassi_SMP_CORTEXA53_GCC.s and ARMv8_SMP_L1_L2_GCC.s to the application build
(either through a makefile or with the tool-suite GUI), and make sure the configuration settings in the file
mAbassi_SMP_CORTEXA53_GCC.s (described in the following sub-sections) match to the needs of the
application. As well, update the include file path in the C/C++ compiler preprocessor options with the
location of mAbassi.h. There is no need to include a start-up file, as the file
mAbassi_SMP_CORTEXA53_GCC.s takes care of all the start-up operations required for an application to
operate on the A53 multi-core processor.

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 8

3 Build Options

3.1 Option setting
mAbassi is configured through many build options [R1][R2]. The way to set a build option for the
compiler is either by defining the symbol & value through the tool-suite GUI or using the compiler
command line option –D build_option=value in a makefile.

Table 3-1 Compiler build options setting

aarch64-none-eabi-gcc … -DOS_N_CORE=2 …

For the assembly files, again, being through the GUI or in the make file with the assembler command line
option –defsym build_option=value. For example, if the compiler is used for the assembly phase:

Table 3-2 Assembly build options passed through the compiler

aarch64-none-eabi-gcc … -Wa,--defsym -Wa,OS_N_CORE=2 …

Alternatively, if the assembler is used directly:

Table 3-3 Assembly build options passed through the assembler

aarch64-none-eabi-as … --defsym OS_N_CORE=2 …

NOTE: most tool-suite A53 GUIs don’t offer a “symbol definition” interface or box to fill, therefore the -
-symdef command line option has to be used in the miscellaneous or extra section. For the
correct setting, double check if the compiler or the assembler is used as to assemble code. It is
preferable to use the assembler as the miscellaneous / extra section is simpler to fill.

Another way to set the build options for the assembly file is to change the default value directly in the file
mAbassi_SMP_CORTEXA53_GCC.s. All build options are declared at the top of the file and the individual
declarations all look like this:

Table 3-4 Assembly file default build option setting

 #ifndef OS_N_CORE
 .ifndef OS_N_CORE // Number of cores the device has (2: min for multicore)
 .equ OS_N_CORE, 4 // ==1: code almost identical to Abassi single core
 .endif
 #endif

There build options that allow the assembly file to be configured to the specific target device and needs of
the application are listed in the following table:

Table 3-5 Build Options

File Name Default Description
OS_PLATFORM 0x00007753 Number indicating the target platform.
OS_N_CORE 4 Number of cores

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 9

OS_HANDLE_PSR_Q 0 Handling of the overflow sticky bit
OS_FPCR_LOCAL 1 Local or global FPU configuration
OS_CPU_CLK Target Dependent Core clock frequency
OS_NEWLIB_REENT 0 Newlib reentrance protection set-up
OS_SPINLOCK_DELAY 1 Random delay for spinlocks
OS_PERF_TIMER_BASE 1 Base address of the performance timer
OS_PERF_TIMER_DIV 0 Clock divider of the performance timer
OS_PERF_TIMER_ISR 0 Interrupt number of the performance timer
OS_CODE_SOURCERY 1 Variant of GCC tool-chain used

3.2 OS_PLATFORM - Target Device
Each manufacturer uses a different method to release from reset the cores other than core #0. As such, the
start-up code must to be tailored for each target device. This information is specified in the assembly file
by the value assigned to the token OS_PLATFORM. At the time of writing this document, the following
platforms are supported:

Table 3-6 OS_PLATFORM valid settings

Target Platform OS_PLATFORM value

Xilinx / UltrasScale+ 0x00007753

If in the future if there are platforms that are not listed in the above table, the numerical values assigned to
the platform are specified in comments in the file mAbassi_SMP_CORTEXA53_GCC.s., right beside the
internal definition of OS_PLATFORM (around line 35). Only the lower 24 bits of value assigned to
OS_PLATFORM are taken into account as the upper 8 bits define the target platform. The platform
numbering is the one described in the file Platform.txt.

3.3 OS_N_CORE - Number of cores
When operating the mAbassi RTOS on a platform, the RTOS needs to be configured for the number of
cores it has access to, or will use. This number is most of the time the same as the number of cores the
device has, but it also can be set to a value less than the total number of cores on the device, but not larger
obviously. This must be done for both the mAbassi.c file and the mAbassi_SMP_CORTEXA53_GCC.s
file, through the setting of the build option OS_N_CORE (the build option is the same for the “C file and the
assembly file). In the case of the file mAbassi.c, OS_N_CORE is one of the standard build options. In the
case of the file mAbassi_SMP_CORTEXA53_GCC.s, to modify the number of cores, all there is to do is to
change the numerical value associated to the token definition of OS_N_CORE. By default, the number of
cores is set to 4.

NOTE: mAbassi can be configured to operate as the single core Abassi by setting OS_N_CORE to 1, or
setting OS_MP_TYPE to 0 or 1. When configured for single core on the Cortex-A53 MPCore, the
single core application always executes on core #0.

3.4 L1 & L2 Cache Set-up
Contrary to some other ports, the cache & MMU cannot be disabled and are always used in this port. For
more information on how to configure the property of memory regions, refer to the ARMv8 cache
document [R3].

3.5 OS_HANDLE_PSR_Q - Saturation Bit Set-up

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 10

In the ARM Cortex-A53 floating-point status register (FPSR), there are a few a sticky (cumulative) bits to
indicate if overflow, saturation, exception, etc. have occurred. They are the IOC (bit #0), DZC (bit #1),
OFC (bit #2), UFC (bit #3), IXC (bit #4), IDC (bit #7) and QC (bit #27). By default, these bit are not kept
localized at the task level, as extra processing is required during the task context switch to do so; instead,
their values is shared across all tasks. This choice was made because most applications do not care about
the value of this bit.

If these bits are relevant for an application, even for a single task, then they must be kept local to each task.
To keep the value of these bits localized, the token OS_HANDLE_PSR_Q must be set to a non-zero value; to
disable the localization as it is by default it must be set to a zero value.

The token name, OS_HANDLE_PSR_Q, is a misnomer but is retained because it’s the name of the token used
in other ports.

3.6 OS_CPU_CLK – Processor clocking frequency
The A53 generic timer needs to be informed of the processor clocking frequency. The build option
OS_CPU_CLK is used to set-up the generic timer frequency register. The default value is determined by the
build option OS_PLATFORM, but can be overloaded by externally defining the built option OS_CPU_CLK.

3.7 OS_NEWLIB_RENT - Multithreading
This build option is required when the Newlib has to be multi-thread safe. Refer to the library protection
document [R4].

3.8 OS_SPINLOCK_DELAY - Spinlock implementation
There is a possible race condition when using spinlocks on a target processor with 3 cores or more. That
race condition occurs when the tasks running on 3+ cores are all trying non-stop to lock and unlock the
same spinlock. When this situation arises, it is possible the same 2 cores always get the spinlock, starving
the other one(s). This is not an issue with mAbassi itself but it is due to the fact that it looks like the snoop
control unit (SCU) of the cache, when 2 or more core are trying to obtain a lock at exactly the same time,
does not assign the lock in a random order nor in round-robin but instead, it looks like it assigns the lock to
the core with the lowest index. To randomize which core is given the spinlock, a random delay can be
added when the number of cores (OS_N_CORES) is greater than 2. The delay is added when the build
option OS_SPINLOCK_DELAY is set to a non-zero value and OS_N_CORE is greater than 2; by default, the
token OS_SPINLOCK_DELAY is set to a non-zero value, enabling the random delay on spinlock when the
number of cores, indicated by OS_N_CORE, is greater than 2.

3.9 Performance Monitoring
The performance monitoring facility relies on a fine resolution timer / counter and this timer / counter is
set-up and handled in the file mAbassi_SMP_CORTEXA53_GCC.s. There are 3 build options related to the
performance monitoring timer / counter:

Ø OS_PERF_TIMER_BASE

Ø OS_PERF_TIMER_DIV

Ø OS_PERF_TIMER_ISR

All Cortex-A53 MPCores have a global timer / counter and it is a natural candidate to be used by the
performance monitoring add-on. To use the global timer / counter, set the build option
OS_PERF_TIMER_BASE to a value of 1. The two other options are ignored when the global timer is
selected.

For other counter / timer options, please look directly into the file mAbassi_SMP_CORTEXA53_GCC.s,
searching for the OS_PERF_TIMER_BASE token. There is a very detailed table explaining all the offerings
and specifying the values to set the 3 related build options to for each the timer / counter supported.

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 11

3.10 OS_CODE_SOURCERY - Code Sourcery / Linaro
There are two main trunks of the GCC for ARM; one is maintained by Mentor Graphics and is named Code
Sourcery, the other is named Linaro, with Atollic, for example, using this variant; Also know as the later
are Yagarto and the GCC tool chain maintained by KEIL/ARM.

There are small differences between the two related to the start-up code and the “C” library. Both variants
are supported as indicated through the token OS_CODE_SOURCERY. By default, this token is set to a
non-zero value to fulfill the start-up and library requirements of the Code Sourcery variant. If the Linaro
variant is used instead, the token OS_CODE_SOURCERY must be set to a value of zero.

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 12

4 Interrupts
The mAbassi RTOS needs to be aware when kernel requests are performed inside or outside an interrupt
context. For all IRQ sources the mAbassi RTOS provides an interrupt dispatcher, which allows it to be
interrupt-aware. This dispatcher achieves two goals. First, the kernel uses it to know if a request occurs
within an interrupt context or not. Second, using this dispatcher reduces the code size, as all interrupts
share the same code for the decision making of entering the kernel or not at the end of the interrupt.

The distribution makes provision for 1024 sources of interrupts, as specified by the token
OX_N_INTERRUPTS in the file mAbassi.h1, and the value of OX_N_INTERRUPTS is the internal default
value used by mAbassi.c. The Generic Interrupt Controller (GIC) peripheral supports a maximum of 1024
interrupts and setting OX_N_INTERRUPTs to a smaller value reduces the size of the interrupt table.

4.1 Interrupt Handling

4.1.1 Interrupt Table Size
Most devices do not require all 1024 interrupt, as they may only handle between 256 and 512 sources of
interrupts; or some very large device may require more than 512. The interrupt table can be easily reduced
to recover data space if needed. All there is to do is to define the build option OS_N_INTERRUPTS
(OS_N_INTERRUPTS is used to overload mAbassi internal value of OX_N_INTERRUPTS) to the desired
value. This can be done by using the compiler command line option -D and specifying the desired setting
with the following:

Table 4-1 Command line set the interrupt table size

arm-xilinx-eabi-gcc … -D=OS_N_INTERRUPTS=49 …

4.1.2 Interrupt Installer
Attaching a function to a regular interrupt is quite straightforward. All there is to do is use the RTOS
component OSisrInstall() to specify the interrupt number and the function to be attached to that
interrupt number. For example, Table 4-2 shows the code required to attach the interrupt number fedined
by the token OS_TICK_INT to the RTOS timer tick handler (TIMtick):

Table 4-2 Attaching a Function to an Interrupt

#include “mAbassi.h”

 …
 OSstart();
 …
 GICenable(OS_TICK_INT, 128, 1); /* Timer set mid prioirty edge triggered */
 OSisrInstall(OS_TICK_INT, &TIMtick);

 /* Set-up the count reload and enable private timer interrupt and start the timer */

 … /* More ISR setup */

 OSintOn(); /* Global enable of all interrupts */

1 This is located in the port-specific definition area.

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 13

At start-up, once OSstart() has been called, all OS_N_INTERRUPTS (truly OX_N_INTERRUPTS if not
overloaded) interrupt handler functions are set to a “do nothing” function, named OSinvalidISR(). If an
interrupt function is attached to an interrupt number using the OSisrInstall() component before calling
OSstart(), this attachment will be removed by OSstart(), so OSisrInstall() should never be used
before OSstart() has executed. When an interrupt handler is removed, it is very important and necessary
to first disable the interrupt source, then the handling function can be set back to OSinvalidISR(). This
is shown in Table 4-3:

Table 4-3 Invalidating an ISR handler

#include “mAbassi.h”

 …
 /* Disable the interrupt source */
 OSisrInstall(Number, &OSinvalidISR);
 …

When an application needs to disable/enable the interrupts, the RTOS supplied functions OSintOff() and
OSintBack() should be used.

The interrupt number as reported by Generic Interrupt Controller (GIC) is acknowledged by the ISR
dispatcher, but the dispatcher does not remove the request by a peripheral if the peripheral generate a level
interrupt. The removal of the interrupt request must be performed within the interrupt handler function.

One has to remember the mAbassi interrupt table is shared across all the cores. Therefore, if the same
interrupt number is used on multiple cores, but the processing is different amongst the cores, a single
function to handle the interrupt must be used in which the core ID controls the processing flow. The core
ID is obtained through the COREgetID() component of mAbassi

At the application level, when the core ID is used to select specific processing, a critical region exists that
must be protected by having the interrupts disabled (see mAbassi User’s Guide [R1]). But within an
interrupt handler, as nested interrupts are not supported for the Cortex-A53, there is no need to add a
critical region protection, as interrupts are disabled when processing an interrupt.

4.2 Fast Interrupts
Fast interrupts are supported on this port as the FIQ interrupts. The ISR dispatcher is designed to only
handle the IRQ interrupts. A default do-nothing FIQ handler is supplied with the distribution; the
application can overload the default handler (Section 8.1).

4.3 Nested Interrupts
Interrupt nesting, other than a FIQ nesting an IRQ, is not supported on this port. The reason is simply
based on the fact the Generic Interrupt Controller is not a nested controller.

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 14

5 Stack Usage
The RTOS uses the tasks’ stack for two purposes. When a task is blocked or ready to run but not running,
the stack holds the register context that was preserved when the task got blocked or preempted; this
includes the integer registers and the FPU registers). Also, when an interrupt occurs, the register context of
the running task must be preserved in order for the operations performed during the interrupt to not corrupt
the contents of the registers used by the task when it got interrupted. For the Cortex-A53, the context save
contents of a blocked or pre-empted task is different from the one used in an interrupt. The following table
lists the number of bytes required by each type of context save operation:

Table 5-1 Context Save Stack Requirements

Description Context save

Blocked/Preempted task context save 240 bytes

Blocked/Preempted task context save (FPCR local: OS_FPCR_LOCAL != 0) +16 bytes

Interrupt dispatcher context save 624 bytes

When sizing the stack to allocate to a task, there are three factors to take in account. The first factor is
simply that every task in the application needs at least the area to preserve the task context when it is
preempted or blocked. Second, add to all this the stack required by the code implementing the task
operation, or the interrupt operation.

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 15

6 Memory Configuration
The mAbassi kernel is not a kernel entered though a service request, such as the SVC / HVC / SMC on the
Cortex-A53. The kernel is a regular function, protected against re-entrance / multiple core entrance. The
kernel code executes as part of the application code, with the same processor mode and access privileges.

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 16

7 Search Set-up
The mAbassi RTOS build option OS_SEARCH_ALGO offers three different algorithms to quickly determine
the next running task upon task blocking. The following table shows the measurements obtained for the
number of CPU cycles required when a task at priority 0 is blocked, and the next running task is at the
specified priority. The number of cycles includes everything, not just the search cycle count. The number
of cycles was measured using the performance monitoring cycle counter, which increments the counter
once every CPU cycle. The second column is when OS_SEARCH_ALGO is set to zero, meaning a simple
array traversing. The third column, labeled Look-up, is when OS_SEARCH_ALGO is set to 1, which uses an
8 bit look-up table. Finally, the last column is when OS_SEARCH_ALGO is set to 5 (GCC/Cortex-A53 int
are 32 bits, so 2^5), meaning a 32 bit look-up table, further searched through successive approximation.
The compiler optimization for this measurement was set to -O3, meaning maximum optimization for speed.
The RTOS build options were set to the minimum feature set, except for option OS_PRIO_CHANGE set to
non-zero. The presence of this extra feature provokes a small mismatch between the result for a difference
of priority of 1, with OS_SEARCH_FAST set to zero, and the latency results in Section 9.2.

When the build option OS_SEARCH_ALGO is set to a negative value, indicating to use a 2-dimensional
linked list search technique instead of the search array, the number of CPU cycles is constant at 202 cycles.

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 17

Table 7-1 Search Algorithm Cycle Count

Priority Linear search Look-up Approximation

1 211 237 240

2 213 237 240

3 234 244 240

4 226 251 240

5 233 258 240

6 240 265 240

7 247 272 240

8 269 236 240

9 261 233 240

10 261 240 240

11 283 247 240

12 295 254 240

13 302 261 240

14 313 268 240

15 320 375 240

16 327 232 240

17 337 237 240

18 344 244 240

19 351 251 240

20 358 258 240

21 365 265 240

22 372 272 240

23 379 279 240

24 386 236 240

When OS_SEARCH_FAST is set to 0, each extra priority level to traverse requires about 7 CPU cycles.
When OS_SEARCH_FAST is set to 1, each extra priority level to traverse requires 7 CPU cycles, except
when the priority level is an exact multiple of 8; then there is a sharp reduction of CPU usage. Overall,
setting OS_SEARCH_FAST to 1 adds around 20 cycles of CPU for the search, compared to setting
OS_SEARCH_FAST to zero. But when the next ready to run priority is less than 8, 16, 24, … then there are
no extra cycles needed, but without the 8 times 6 cycle accumulation. Finally, the third option, when
OS_SEARCH_FAST is set to 5, delivers a constant CPU usage, as the algorithm utilizes a successive
approximation search technique (when the delta is 32 or more, the CPU cycle count is 244±1, for 64 or
more, it is 252±1, …).

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 18

8 API
The ARM Cortex-A53 supports a few types of exceptions. Defaults exception handlers are supplied with
the distribution code, but each one of them can be overloaded by an application specific function. The
default handlers are simply an infinite loop preceded by an “hlt” instruction to help during debugging
(except FIQ, which is a do-nothing with return from exception). The “hlt” instruction is followd by an
infinite loop on the “wfi” instruction. All handlers (including the default) are called after all callee
modifiable integer registers (X0 to X19, and X30) have been preserved on the stack. The following sub-
sections describe each one of the default exception handlers.

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 19

8.1 FIQ_Handler

Synopsis
#include “mAbassi.h”

void FIQ_Handler(void);

Description

FIQ_Handler() is the handler for a fast interrupt request. In the distribution code, this is
implemented as a return only. If the application needs to handle fast interrupts, all there is to
do is to include a function with the above function prototype and it will overload the supplied
fast interrupt handler. Although this is an exception handler, it is called through a trampoline
that saves all registers (integer and FPU) a callee can modify, therefore the return must be
performed with a “ret”, and not an “eret”.

Availability

Always.

Arguments
void

Returns
void

Component type

Function

Options

Notes

See also

SError_Handler() (Section Error! Reference source not found.)
Sync_Handler() (Section 8.2) Sync_Handler() (Section 8.2)

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 20

8.2 SError_Handler

Synopsis
#include “mAbassi.h”

void SError_Handler(uint32_t Syndrome, void *Ret, uint32_t PSstate,

int Level);

Description

SError_Handler() is the exception handler for a system error. In the distribution code,
this is implemented as an infinite loop, preceded with an “hlt” instruction. If the application
needs to perform special processing when a system error fault occurs, all there is to do is to
include a function with the above function prototype and it will overload the supplied data
abort handler. Although this is an exception handler, it is called through a trampoline that
saves all registers (integer and FPU) a callee can modify, therefore the return must be
performed with a “ret”, and not an “eret”.

Availability

Always.

Arguments

Syndrome Syndrome of the exception (ESR_ELn register).
Ret Return address, which is the address of the instruction right after the one that

triggered the exception (ELR_ELn register).
PState PState register when the exception occurred (SPSR_ELn register).
Level Exception level at which this exception occurred. This is normally 3

Returns
void

Component type

Function

Options

Notes

See also

FIQ_Handler() (Section 8.1)
Sync_Handler() (Section 8.3)

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 21

8.3 Sync_Handler

Synopsis
#include “mAbassi.h”

void Sync_Handler(uint32_t Syndrome, void *Ret, uint32_t PSstate,

int Level);

Description

Sync_Handler() is the exception handler for synchronous abort. In the distribution code,
this is implemented as an infinite loop, preceded with an “hlt” instruction. If the application
needs to perform special processing when a system error fault occurs, all there is to do is to
include a function with the above function prototype and it will overload the supplied data
abort handler. Although this is an exception handler, it is called through a trampoline that
saves all registers (integer and FPU) a callee can modify, therefore the return must be
performed with a “ret”, and not an “eret”.

Availability

Always.

Arguments

Syndrome Syndrome of the exception (ESR_ELn register).
Ret Return address, which is the address of the instruction right after the one that

triggered the exception (ELR_ELn register).
PState PState register when the exception occurred (SPSR_ELn register).
Level Exception level at which this exception occurred. This is normally 3

Returns
void

Component type

Function

Options

Notes

See also

FIQ_Handler() (Section 8.1)
SError_Handler() (Section 8.2)

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 22

8.4 GICenable

Synopsis
#include “mAbassi.h”

void GICenable(int IntNmb, int Prio, int Edge);

Description

GICenable() is the component used to enable an interrupt number (called IDnn in the
literature) on the Generic Interrupt Controller (GIC). The interrupt configuration is always
applied to the core on which GICenable() is executing.

Availability

Always.

Arguments

IntNmb Interrupt number to enable (0 to 1019)
Prio Priority of the interrupt
 0 : highest priority
 255 : lowest priority
Edge Edge or level detection
 == 0 : level detection
 != 0 : edge detection

Returns
void

Component type

Function

Options

Notes

On the Cortex-A53 MPCore, some GIC registers are local to the core, while others are global
across all cores. Care must be taken when using GICenable().
When the interrupt number (argument IntNmb) is non-negative, then the GIC is programmed
to target the interrupt to the core it’s currently operating on. If the interrupt number is
negative, then the interrupt number –IntNmb is targeted to all cores.
The function GICenable() is implemented in assembly language, in the file
mAbassi_SMP_CORTEXA53_GCC.s as it avoids supplying 2 port files in the distribution. If
the supplied functionality does not fulfill the application needs, GICenable() can be
overloaded by adding a new GICenable() function in the application. As the supplied
assembly function is declared weak, it will not be included during the link process. The
equivalent “C” code of the distribution implementation is supplied in comments in the
assembly file.

See also

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 23

GICinit() (Section 0)

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 24

8.5 GICinit

Synopsis
#include “mAbassi.h”

void GICinit(void);

Description

GICinit() is the component used to initialize the Generic Interrupt Controller (GIC) for the
needs of mAbassi. It must be used after using the OSstart() component and before
GICenable() and / or OSeint() components. Also, it must be used in every
COREstartN() function.
Consult the mAbassi User guide for more information on this topic [R1].

Availability

Always.

Arguments
void

Returns
void

Component type

Function

Options

Notes

The function GICinit() is implemented in assembly language, in the file
mAbassi_SMP_CORTEXA53_GCC.s as it avoids supplying 2 port files in the distribution. If
the supplied functionality does not fulfill the application needs, GICinit() can be
overloaded by adding a new GICinit() function in the application. As the supplied
assembly function is declared weak, it will not be included during the link process. The
equivalent “C” code of the distribution implementation is supplied in comments in the
assembly file.

See also

GICenable() (Section 8.4)

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 25

9 Measurements
This section provides an overview of the memory requirements encountered when the RTOS is used on the
Arm9 and compiled with Mentor’s Code Sourcery tool chain. Latency measurements are provided, but one
should remember CPU latency latencies are highly dependent on 3 factors. It first depends on how many
cores are used; it also depends on the type of load balancing, i.e. if mAbassi is configured in SMP or BMP,
and if the load balancing algorithm is the True or the Packed one. All these possible configurations are one
part of the complexity. A second part of the complexity is where the task switch was detected and on
which core(s) the task switch will occur due to that change of state. Finally, the third factor is if a core is
already executing in the kernel when another needs to enter the kernel. Any combination of these dynamic
factors affects differently the CPU latency of mAbassi. The specific configuration and run-time conditions
are described in the latency subsection (Section 9.2)

9.1 Memory
The memory numbers are supplied for the two limit cases of build options (and some in-between): the
smallest footprint is the RTOS built with only the minimal feature set, and the other with almost all the
features. For both cases, names are not part of the build. This feature was removed from the metrics
because it is highly probable that shipping products utilizing this RTOS will not include the naming of
descriptors, as its usefulness is mainly limited to debugging and making the opening/creation of
components runtime safe.

The code size numbers are expressed with “less than” as they have been rounded up to multiples of 25 for
the “C” code. These numbers were obtained using the release version 1.99.100 of the RTOS and may
change in other versions. One should interpret these numbers as the “very likely” numbers for other
released versions of the RTOS.

The code memory required by the RTOS includes the “C” code and assembly language code used by the
RTOS. The code optimization settings of the compiler that were used for the memory measurements are:

1. Debugging model: Off2 (option –g not specified)

2. Optimization level: -Os

3. Target –mcpu=cortex-A53

2 Debugging is turned off as it restricts the optimizer.

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 26

Table 9-1 “C” Code Memory Usage

Description AArch64

Minimal Build < 2550 bytes

+ Runtime service creation / static memory < 3075 bytes

+ Runtime priority change

+ Mutex priority inheritance

+ FCFS

+ Task suspension

< 3750 bytes

+ Timer & timeout

+ Timer call back

+ Round robin

< 4850 bytes

+ Events

+ Mailbox

< 6450 bytes

Full Feature Build (no names) < 7525 bytes

Full Feature Build (no name / no runtime creation) < 6775 bytes

Full Feature Build (no names / no runtime creation)

+ Timer services module

< 7325 bytes

OS_NEWLIB_REENT > 0 +TBD bytes

OS_NEWLIB_REENT < 0 +TBD bytes

True SMP (OS_MP_TYPE == 2) +0 bytes

Packed SMP (OS_MP_TYPE == 3) ~ +50 bytes

True BMP (OS_MP_TYPE == 4) ~ +300 bytes

Packed BMP (OS_MP_TYPE == 5) ~ +350 bytes

The selection of load balancing type affects the “C” code size. The added memory requirements are
indicated as approximate because depending on the build option combination, the kernel code is different.
As such, the optimizer does not deliver the same code size.

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 27

Table 9-2 Assembly Code Memory Usage

Description Size

Vector table & error handlers 1972 bytes

Assembly code size (>1 core) 2116 bytes

Assembly code size (==1 core) 1512 bytes

Saturation Bit Enabled (OS_HANDLE_PSR_Q != 0) +24 bytes

GICinit() (>1 core) +196 bytes

GICinit() (=1 core) +120 bytes

GICenable() (>1 core) +400 bytes

GICenable() (=1 core) +276 bytes

OS_NEWLIB_REENT > 0 +TBD bytes

OS_NEWLIB_REENT < 0 +TBD bytes

Xilinx UltraScale+ Support +92 bytes

Cache Driver 1604 bytes

There are two aspects when describing the data memory usage by the RTOS. First, the RTOS needs its
own data memory to operate, and second, most of the services offered by the RTOS require data memory
for each instance of the service. As the build options affect either the kernel memory needs or the service
descriptors (or both), an interactive calculator has been made available on the Code Time Technologies
website.

9.2 Latency
Latency of operations has been measured on a Xilinx ZCU-102 Evaluation board populated with a 1.2GHz
quad-core Cortex-A53. All measurements have been performed on the real platform. This means the
interrupt latency measurements had to be instrumented to read the performance monitor cycle counter
value. This instrumentation adds a few cycles to the measurements but is measured and removed from the
final cycle count. The code optimization setting used for the latency measurements is -O3, which
optimizes the code generated for the best speed. The debugging option was turned off as the debugging
sometimes restricts the optimizer. All operations are performed on core #0, the type of multi-processing
was set to true SMP (OS_MP_TYPE set to 2). The cache is enabled. All measurements shown are the
resulting average of the last 128 runs out of 256. This averaging is done, as the presence of the cache does
not guarantee a deterministic operation of the test suite. One must remember the latencies measured apply
to the test suite; any other application specific latencies depend if the mAbassi code and data are or are not
in the cache.

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 28

There are 5 types of latencies that are measured, and these 5 measurements are expected to give a very
good overview of the real-time performance of the Abassi RTOS for this port. For all measurements, three
tasks were involved:

1. Adam & Eve set to a priority value of 0;

2. A low priority task set to a priority value of 1;

3. The Idle task set to a priority value of 20.

The sets of 5 measurements are performed on a semaphore, on the event flags of a task, and finally on a
mailbox. The first 2 latency measurements use the component in a manner where there is no task
switching. The third measurements involve a high priority task getting blocked by the component. The
fourth measurements are about the opposite: a low priority task getting pre-empted because the component
unblocks a high priority task. Finally, the reaction to unblocking a task, which becomes the running task,
through an interrupt is provided.

The first set of measurements counts the number of CPU cycles elapsed starting right before the component
is used until it is back from the component. For these measurement there is no task switching. This means:

Table 9-3 Measurement without Task Switch

 Start CPU cycle count
 SEMpost(…); or EVTset(…); or MBXput();
 Stop CPU cycle count

The second set of measurements, as for the first set, counts the number of CPU cycles elapsed starting right
before the component is used until it is back from the component. For these measurement there is no task
switching. This means:

Table 9-4 Measurement without Blocking

 Start CPU cycle count
 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);
 Stop CPU cycle count

The third set of measurements counts the number of CPU cycles elapsed starting right before the
component triggers the unblocking of a higher priority task until the latter is back from the component used
that blocked the task. This means:

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 29

Table 9-5 Measurement with Task Switch

 main()
 {
 …
 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);
 Stop CPU cycle count
 …
 }

 TaskPrio1()
 {
 …
 Start CPU cycle count
 SEMpost(…); or EVTset(…); or MBXput(…);
 …
 }

The measurements for task switching include the context switch cycle count.

The forth set of measurements counts the number of CPU cycles elapsed starting right before the
component blocks of a high priority task until the next ready to run task is back from the component it was
blocked on; the blocking was provoked by the unblocking of a higher priority task. This means:

Table 9-6 Measurement with Task unblocking

 main()
 {
 …
 Start CPU cycle count
 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);
 …
 }

 TaskPrio1()
 {
 …
 SEMpost(…); or EVTset(…); or MBXput(…);
 Stop CPU cycle count
 …
 }

The measurements for task unblocking include the context switch cycle count.

The fifth set of measurements counts the number of CPU cycles elapsed from the beginning of an interrupt
using the component, until the task that was blocked becomes the running task and is back from the
component used that blocked the task. The interrupt latency measurement includes everything involved in
the interrupt operation, even the cycles the processor needs to push the interrupt context before entering the
interrupt code. The interrupt function, attached with OSisrInstall(), is simply a two line function that
uses the appropriate RTOS component followed by a return.

Table 9-7 lists the results obtained, where the cycle count is measured using the performance monitoring
cycle counter.

The interrupt latency is the number of cycles elapsed when the interrupt trigger occurred and the ISR
function handler is entered. This includes the number of cycles used by the processor save registers,
retrieve the address of the handler from the interrupt vector table and call the handler.

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 30

In the following table, the latency numbers between parentheses are the measurements when the build
option OS_SEARCH_ALGO is set to a negative value (linked list search). The regular number is the latency
measurements when the build option OS_SEARCH_ALGO is set to 0.

Table 9-7 Latency Measurements

Description Minimal Features Full Features

Semaphore posting no task switch 76 (68) 107 (107)

Semaphore waiting no blocking 87 (79) 117 (121)

Semaphore posting with task switch 173 (195) 252 (252)

Semaphore waiting with blocking 205 (194) 260 (261)

Semaphore posting in ISR with task switch --- (---) --- (---)

Event setting no task switch n/a 88 (88)

Event getting no blocking n/a 117 (117)

Event setting with task switch n/a 260 (260)

Event getting with blocking n/a 269 (270)

Event setting in ISR with task switch n/a --- (---)

Mailbox writing no task switch n/a 122 (122)

Mailbox reading no blocking n/a 143 (144)

Mailbox writing with task switch n/a 286 (291)

Mailbox reading with blocking n/a 270 (270)

Mailbox writing in ISR with task switch n/a --- (---)

Interrupt Latency --- ---

Context switch 81 81

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 31

10 Appendix A: Build Options for Code Size

10.1 Case 0: Minimum build
Table 10-1: Case 0 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */
#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING_TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX_PEND_RQST 2U /* Maximum number of requests in ISRs */
#define OS_MP_TYPE 2U /* SMP vs BMP and load balancing selection */
#define OS_MTX_DEADLOCK 0 /* This test validates this */
#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */
#define OS_N_CORE 2 /* Number of cores to handle */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED_INTS 0 /* If operating with nested interrupts */
#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */
#define OS_PRIO_MIN 2 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */
#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */
#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */
#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */
#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */
#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */
#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */
#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */
#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */
#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */
#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 32

10.2 Case 1: + Runtime service creation / static memory + Multiple tasks at
same priority

Table 10-2: Case 1 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */
#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING_TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX_PEND_RQST 32U /* Maximum number of requests in ISRs */
#define OS_MP_TYPE 2U /* SMP vs BMP and load balancing selection */
#define OS_MTX_DEADLOCK 0 /* This test validates this */
#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */
#define OS_N_CORE 2 /* Number of cores to handle */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED_INTS 0 /* If operating with nested interrupts */
#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */
#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */
#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */
#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */
#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */
#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */
#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */
#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */
#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */
#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */
#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 33

10.3 Case 2: + Priority change / Priority inheritance / FCFS / Task suspend
Table 10-3: Case 2 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */
#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING_TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */
#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */
#define OS_MTX_DEADLOCK 0 /* This test validates this */
#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */
#define OS_N_CORE 2 /* Number of cores to handle */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED_INTS 0 /* If operating with nested interrupts */
#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */
#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */
#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */
#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */
#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */
#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */
#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */
#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */
#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */
#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 34

10.4 Case 3: + Timer & timeout / Timer call back / Round robin
Table 10-4: Case 3 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */
#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING_TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */
#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */
#define OS_MTX_DEADLOCK 0 /* This test validates this */
#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */
#define OS_N_CORE 2 /* Number of cores to handle */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED_INTS 0 /* If operating with nested interrupts */
#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */
#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */
#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */
#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */
#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */
#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */
#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 35

10.5 Case 4: + Events / Mailboxes
Table 10-5: Case 4 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */
#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING_TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */
#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */
#define OS_MTX_DEADLOCK 0 /* This test validates this */
#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */
#define OS_N_CORE 2 /* Number of cores to handle */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED_INTS 0 /* If operating with nested interrupts */
#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */
#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */
#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */
#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */
#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */
#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */
#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 36

10.6 Case 5: Full feature Build (no names)
Table 10-6: Case 5 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 1 /* If event flags are supported */
#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */
#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING_TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 1 /* If mailboxes are used */
#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */
#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */
#define OS_MTX_DEADLOCK 0 /* This test validates this */
#define OS_N_CORE 2 /* Number of cores to handle */
#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED_INTS 0 /* If operating with nested interrupts */
#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */
#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */
#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */
#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */
#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */
#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */
#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */
#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 37

10.7 Case 6: Full feature Build (no names / no runtime creation)
Table 10-7: Case 6 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 1 /* If event flags are supported */
#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */
#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING_TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 1 /* If mailboxes are used */
#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */
#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */
#define OS_MTX_DEADLOCK 0 /* This test validates this */
#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */
#define OS_N_CORE 2 /* Number of cores to handle */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED_INTS 0 /* If operating with nested interrupts */
#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */
#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */
#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */
#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */
#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */
#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */
#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */
#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */
#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 38

10.8 Case 7: Full build adding the optional timer services
Table 10-8: Case 7 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 1 /* If event flags are supported */
#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */
#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING_TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 1 /* If mailboxes are used */
#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */
#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */
#define OS_MTX_DEADLOCK 0 /* This test validates this */
#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */
#define OS_N_CORE 2 /* Number of cores to handle */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED_INTS 0 /* If operating with nested interrupts */
#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */
#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */
#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */
#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */
#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */
#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */
#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */
#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER_SRV 1 /* !=0 includes the timer services module */
#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-A53 – GCC 2017.06.04

Rev 1.1 Page 39

11 References
[R1] mAbassi RTOS – User Guide, available at http://www.code-time.com
[R2] Abassi RTOS – User Guide, available at http://www.code-time.com
[R3] mAbassi – ARMv8 Caches (GCC), available at http://www.code-time.com
[R4] Abasi RTOS – Library Reentrance Protection, available at http://www.code-time.com

