
Copyright Information
This document is copyright Code Time Technologies Inc. ©2014-2015. All rights reserved. No part of this document may be
reproduced or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of
Code Time Technologies Inc.
Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

mAbassi RTOS
Porting Document

SMP / ARM Cortex-A9 – DS5 (ARMCC)

Disclaimer
Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the
document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in
the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

ARM and Cortex are registered trademarks of ARM Limited. ARM Development Studio (DS-5) is a registered trademark of ARM
Ltd. Sourcery CodeBench is a registered trademark of Mentor Graphics. All other trademarks are the property of their respective
owners.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 3

Table of Contents
1 INTRODUCTION .. 8

1.1 DISTRIBUTION CONTENTS .. 8
1.2 LIMITATIONS .. 8
1.3 FEATURES ... 9

2 TARGET SET-UP .. 10
2.1 TARGET DEVICE .. 10
2.2 STACKS AND HEAP SET-UP ... 11
2.3 NUMBER OF CORES ... 12
2.4 PRIVILEGED MODE .. 13
2.5 L1 & L2 CACHE SET-UP ... 14
2.6 SATURATION BIT SET-UP .. 14
2.7 SPINLOCK IMPLEMENTATION .. 15
2.8 SPURIOUS INTERRUPT ... 17
2.9 THUMB2 ... 18
2.10 VFP / NEON SET-UP .. 18
2.11 LINKER DATA COMPRESSION .. 19
2.12 MULTITHREADING .. 19

2.12.1 Standard Library Multithreading Protection .. 20
2.12.1.1 Full Protection ... 20
2.12.1.2 Partial Protection ... 22

2.12.2 Thread-unsafe functions / variables .. 23
2.12.3 MicroLIB Multithreading Protection .. 23

2.13 PERFORMANCE MONITORING ... 24
INTERRUPTS .. 25

2.14 INTERRUPT HANDLING ... 25
2.14.1 Interrupt Table Size ... 25
2.14.2 Interrupt Installer .. 25

2.15 FAST INTERRUPTS ... 26
2.16 NESTED INTERRUPTS .. 26

3 STACK USAGE .. 27
4 MEMORY CONFIGURATION .. 28
5 SEARCH SET-UP ... 29
6 API .. 30

6.1 DATAABORT_HANDLER .. 31
6.2 FIQ_HANDLER ... 32
6.3 PFABORT_HANDLER .. 33
6.4 SWI_HANDLER .. 34
6.5 UNDEF_HANDLER .. 35

7 CHIP SUPPORT ... 36
7.1 GICENABLE .. 37
7.2 GICINIT .. 38

8 MEASUREMENTS .. 39
8.1 MEMORY .. 39
8.2 LATENCY .. 41

9 APPENDIX A: BUILD OPTIONS FOR CODE SIZE .. 45

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 4

9.1 CASE 0: MINIMUM BUILD ... 45
9.2 CASE 1: + RUNTIME SERVICE CREATION / STATIC MEMORY + MULTIPLE TASKS AT SAME PRIORITY 46
9.3 CASE 2: + PRIORITY CHANGE / PRIORITY INHERITANCE / FCFS / TASK SUSPEND 47
9.4 CASE 3: + TIMER & TIMEOUT / TIMER CALL BACK / ROUND ROBIN .. 48
9.5 CASE 4: + EVENTS / MAILBOXES .. 49
9.6 CASE 5: FULL FEATURE BUILD (NO NAMES) ... 50
9.7 CASE 6: FULL FEATURE BUILD (NO NAMES / NO RUNTIME CREATION) .. 51
9.8 CASE 7: FULL BUILD ADDING THE OPTIONAL TIMER SERVICES ... 52

10 REFERENCES .. 53
11 REVISION HISTORY ... 54

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 5

List of Figures
FIGURE 2-1 GUI SET OF OS_KEIL_REENT (ASM) ... 21
FIGURE 2-2 GUI SET OF OS_KEIL_REENT (C) ... 22

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 6

List of Tables
TABLE 1-1 DISTRIBUTION (MAIN FILES) ... 8
TABLE 1-2 DISABLING DATA COMPRESSION ... 9
TABLE 2-1 OS_PLATFORM VALID SETTINGS .. 10
TABLE 2-2 OS_PLATFORM MODIFICATION .. 10
TABLE 2-3 COMMAND LINE SET OF OS_PLATFORM ... 10
TABLE 2-4 STACK SIZE TOKENS ... 11
TABLE 2-5 LINKER COMMAND FILE STACK TOKENS .. 11
TABLE 2-6 OS_IRQ_STACK_SIZE MODIFICATION ... 12
TABLE 2-7 COMMAND LINE SET OF OS_IRQ_STACK_SIZE ... 12
TABLE 2-8 VARIABLES STACK NAMES ... 12
TABLE 2-9 OS_N_CORE MODIFICATION ... 13
TABLE 2-10 COMMAND LINE SET OF OS_N_CORE (ASM) ... 13
TABLE 2-11 COMMAND LINE SET OF OS_N_CORE (C) ... 13
TABLE 2-12 OS_RUN_PRIVILEGE MODIFICATION .. 14
TABLE 2-13 COMMAND LINE SET OF OS_RUN_PRIVILEGE ... 14
TABLE 2-14 OS_USE_CACHE SET-UP .. 14
TABLE 2-15 COMMAND LINE SET OF OS_USE_CACHE ... 14
TABLE 2-16 SATURATION BIT CONFIGURATION ... 15
TABLE 2-17 COMMAND LINE SET OF SATURATION BIT CONFIGURATION ... 15
TABLE 2-18 OS_SPINLOCK SPECIFICATION .. 16
TABLE 2-19 COMMAND LINE SET OF OS_SPINLOCK ... 16
TABLE 2-20 OS_SPINLOCK_BASE MODIFICATION .. 16
TABLE 2-21 COMMAND LINE SET OF OS_SPINLOCK_BASE (ASM) .. 16
TABLE 2-22 COMMAND LINE SET OF OS_SPINLOCK_BASE (C) .. 16
TABLE 2-23 OS_SPINLOCK_DELAY MODIFICATION ... 17
TABLE 2-24 COMMAND LINE SET OF OS_SPINLOCK_DELAY (ASM) .. 17
TABLE 2-25 OS_SPURIOUS_INT MODIFICATION .. 17
TABLE 2-26 COMMAND LINE SET OF OS_SPURIOUS_INT (ASM) .. 17
TABLE 2-27 OS_ASM_THUMB MODIFICATION ... 18
TABLE 2-28 COMMAND LINE SET OF OS_ASM_THUMB (ASM) .. 18
TABLE 2-29 COMMAND LINE SELECTION OF THE VFP .. 18
TABLE 2-30 DISABLING DATA COMPRESSION ... 19
TABLE 2-31 OS_DATACOMPRESSOR MODIFICATION ... 19
TABLE 2-32 COMMAND LINE SET OF OS_DATACOMPRESSOR (ASM) .. 19
TABLE 2-33 COMMAND LINE SET OF INTERWORKING (ASM) .. 19
TABLE 2-34 OS_KEIL_REENT MODIFICATION ... 20
TABLE 2-35 COMMAND LINE SET OF OS_KEIL_REENT (ASM) ... 21
TABLE 2-36 COMMAND LINE SET OF OS_KEIL_REENT (C) ... 21
TABLE 2-37 SETTING A TASK TO USE RE-ENTRANT LIBRARY .. 23
TABLE 0-1 COMMAND LINE SET THE INTERRUPT TABLE SIZE ... 25
TABLE 0-2 ATTACHING A FUNCTION TO AN INTERRUPT ... 25
TABLE 0-3 INVALIDATING AN ISR HANDLER ... 26
TABLE 3-1 CONTEXT SAVE STACK REQUIREMENTS ... 27
TABLE 8-1 “C” CODE MEMORY USAGE ... 40
TABLE 8-2 ASSEMBLY CODE MEMORY USAGE .. 41
TABLE 8-3 MEASUREMENT WITHOUT TASK SWITCH .. 42
TABLE 8-4 MEASUREMENT WITHOUT BLOCKING ... 42
TABLE 8-5 MEASUREMENT WITH TASK SWITCH .. 42
TABLE 8-6 MEASUREMENT WITH TASK UNBLOCKING .. 43
TABLE 8-7 LATENCY MEASUREMENTS ... 44
TABLE 9-1: CASE 0 BUILD OPTIONS .. 45
TABLE 9-2: CASE 1 BUILD OPTIONS .. 46
TABLE 9-3: CASE 2 BUILD OPTIONS .. 47

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 7

TABLE 9-4: CASE 3 BUILD OPTIONS .. 48
TABLE 9-5: CASE 4 BUILD OPTIONS .. 49
TABLE 9-6: CASE 5 BUILD OPTIONS .. 50
TABLE 9-7: CASE 6 BUILD OPTIONS .. 51
TABLE 9-8: CASE 7 BUILD OPTIONS .. 52

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 8

1 Introduction
This document is a complement to the user guide and it details the port of the SMP / BMP multi-core
mAbassi RTOS to the ARM Cortex-A9 multi-core processor, commonly known as the Arm9 MPcore. The
software suite used for this specific port is the ARM Development Studio (DS-5) from ARM Ltd; the
versions used for the port and all tests are Version 5.14 and 5.22.

1.1 Distribution Contents
The main set of files supplied with this distribution are listed in Table 1-1 below (the ones that are not
listed are support files needed for the different demos):

Table 1-1 Distribution (main files)

File Name Description

mAbassi.h RTOS include file

mAbassi.c RTOS “C” source file

ARMv7_SMP_L1_L2_ARMCC.s L1 and L2 caches, MMU, and SCU set-up
module for the MPcore A9 / ARMCC

cmsis_os.h Optional CMSIS V 3.0 RTOS API include file

cmsis_os.c Optional CMSIS V 3.0 RTOS API source file

mAbassi_SMP_CORTEXA9_ARMCC.s RTOS assembly file for the SMP ARM Cortex-
A9 to use with the ARMCC tool chain

Demo_3_SMP_AR5_CY5_A9_ARMCC.c Demo code that runs on the Arria V and the
Cyclone V SoC FPGA development kit

Demo_8_SMP_AR5_CY5_A9_ARMCC.c Demo code that runs on the Arria V and the
Cyclone V SoC FPGA development kit

Demo_9_SMP_AR5_CY5_A9_ARMCC.c Demo code that runs on the Arria V and the
Cyclone V SoC FPGA development kit

Demo_10-13_SMP_AR5_CY5_A9_ARMCC.c Demo code that runs on the Arria V and the
Cyclone V SoC FPGA development kit

Demo_110-113_SMP_AR5_CY5_A9_ARMCC.c Demo code that runs on the Arria V and the
Cyclone V SoC FPGA development kit (CMSIS
only)

AbassiDemo.h Build option settings for the demo code

1.2 Limitations
The RTOS reserves the SWI (software interrupts) numbers 0 to 6 when mAbassi is configured to operate in
user mode. A hook is made available for the application to use the SWI, as long as the numbers used are
above 6. This keeps mAbassi compatible with the ARM semi-hosting protocol.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 9

IMPORTANT: The linker data compression must be turned off using the command-line option
--datacompressor. As specified in the ARM linker manual, data decompression (done
in the standard library start-up code) should be performed before the enabling of the
caches; but mAbassi, in order to minimize the boot time, sets and enables the caches
before running the standard library start-up code. Due to this, data compression cannot be
used. If the linker data compression is needed because the image ROM size is restricted,
refer to Section 2.11 to set mAbassi to enable the cache after the library start-up code has
executed.

Table 1-2 Disabling data compression

armlink … --datacompressor off …

1.3 Features
Depending on the selected build configuration, the application can operate either in privileged or user
mode. Operating in privileged mode eliminates almost all the code areas that disable interrupts, as SWIs
are not required to access privileged registers or peripherals (when the processor processes a SWI, the
interrupts are disabled). Selecting to run in privileged mode also generates more real-time optimal code.

Fast Interrupts (FIQ) are not handled by the RTOS, and are left untouched by the RTOS to fulfill their
intended purpose of interrupts not requiring kernel access. Only the interrupts mapped to the IRQ interrupt
are handled by the RTOS.

The hybrid stack is not available in this port, as ARM’s GIC (Generic Interrupt Controller) does not
support nesting of the interrupts (except FIQ nesting the IRQ). The ARM Cortex-A9 intrinsically supports
exactly the same functionality delivered by mAbassi’s hybrid stack. This is because the interrupts (IRQ)
use a dedicated stack when in this processor mode.

The assembly file does not use the BL addr instruction when calling a function. This was chosen to allow
the assembly file to access the whole 4 GB address space.

The VFPv3 or VPFv3D16, and NEON floating-point peripherals are supported by this port, and their
registers are saved as part of the task context save and the interrupt context save.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 10

2 Target Set-up
Very little is needed to configure the ARM Development Studio environment to use the mAbassi RTOS in
an application. All there is to do is to add the files mAbassi.c and mAbassi_SMP_CORTEXA9_ARMCC.s
in the application project, and make sure the configuration settings in the file
mAbassi_SMP_CORTEXA9_ARMCC.s (described in the following sub-sections) match to the needs of the
application. As well, update the include file path in the C/C++ compiler preprocessor options with the
location of mAbassi.h. There is no need to include a start-up file, as the file
mAbassi_SMP_CORTEXA9_ARMCC.s takes care of all the start-up operations required for an application to
operate on a multi-core processor.

2.1 Target device
Each manufacturer uses a different method to release from reset the cores other than core #0. As such, the
start-up code must to be tailored for each target device. This information is specified in the assembly file
with the value assigned to the token OS_PLATFORM. At the time of writing this document, the following
platforms are supported:

Table 2-1 OS_PLATFORM valid settings

Target Platform OS_PLATFORM value

Altera / Arria V Soc FPGA 0xAAC5 (Same as Cyclone V)

Altera / Cyclone V Soc FPGA 0xAAC5 (Same as Arria V)

Texas Instruments / OMAP 4460 0x4460

Xilinx / Zynq XC7Z020 0x7020

Freescale i.MX6 0xFEE6

If in the future there are platforms that are not listed in the above table, the numerical values assigned to the
platform are specified in comments in the file mAbassi_SMP_CORTEXA9_ARMCC.s., right beside the
internal definition of OS_PLATFORM (around line 75).

To select the target platform, all there is to do is to change the numerical value associated with the token
OS_PLATFORM located around line 75 in the file mAbassi_SMP_CORTEXA9_ARMCC.s. By default, the
target platform is the Altera Cyclone V / Arria V, therefore OS_PLATFORM is assigned the numerical value
0xAAC5. The following table shows how to set the target platform to the Freescale i.MX6, which is
assigned the numerical value 0xFEE6:

Table 2-2 OS_PLATFORM modification

 IF :LNOT:(:DEF: OS_PLATFORM)
OS_PLATFORM EQU 0xFEE6
 ENDIF

Alternatively, it is possible to overload the OS_PLATFORM value set in
mAbassi_SMP_CORTEXA9_ARMCC.s by using the assembler command line option --define and
specifying the target platform numerical value:

Table 2-3 Command line set of OS_PLATFORM

armasm … --define “OS_PLATFORM SETA 0xFEE6” …

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 11

2.2 Stacks and Heap Set-up
The Cortex-A9 processor uses 6 individual stacks, which are selected according to the processor mode.
The following table describes each stack and the build token used to define the size of the associated stack:

Table 2-4 Stack Size Tokens

Description Token Name

User / System mode (main() / A&E) OS_STACK_SIZE

Supervisor mode OS_SUPER_STACK_SIZE

Abort mode OS_ABORT_STACK_SIZE

Undefined mode OS_UNDEF_STACK_SIZE

Interrupt mode OS_IRQ_STACK_SIZE

Fast Interrupt mode OS_FIQ_STACK_SIZE

The stack sizes are individuality controlled by the values set by the OS_?????_STACK_SIZE definitions,
located between lines 45 and 75 in the file mAbassi_SMP_CORTEXA9_ARMCC.s. To not reserve a stack for
a processor mode, all there is to do is to set the definition of OS_?????_STACK_SIZE to a value of zero
(0). To specify the stack size, the definition of OS_?????_STACK_SIZE is set to the desired size in bytes
(see Section 3 for more information on stack sizing). Note that each core on the device (up to the number
specified by the build option OS_N_CORE) will use the same stack sizes for a processor mode: this is the
value assigned to the token OS_?????_STACK_SIZE. This equal distribution of stack size may not be
optimal; if a non-equal distribution is required, contact Code Time Technologies for additional information
on the code modifications involved.

Alternatively, it is possible to use definitions of the stack extracted from the linker command file. When
the value assigned to a stack definition token OS_?????_STACK_SIZE is set to -1, the stack uses the size
and the data section reserved in the linker command file; then no memory is reserved for this stack by the
file Abassi_SMP_CORTEXA9_ARMCC.s. Contrary to setting the definition token to a positive value, the
stack size defined in the linker is the total stack size shared by all cores (except for ARM_LIB_STACK).
This means for 2 cores, each core will be allocated half the stack size defined in the linker command file;
for 4 cores, each core will be allocated a quarter of the stack size defined in the linker command file. The
names of the base of the stack (which is at the highest memory address of data section) and the names of
their sizes are listed in Table 2-5.

Table 2-5 Linker Command file Stack Tokens

Description Stack Name

User / System mode ARM_LIB_STACK

Supervisor mode SUPER_STACKS

Abort mode ABORT_STACKS

Undefined mode UNDEF_STACKS

Interrupt mode IRQ_STACKS

Fast Interrupt mode FIQ_STACKS

Heap ARM_LIB_HEAP

As supplied in the distribution, all stack size tokens are assigned the value of -1 meaning all stack
information is supplied by the linker command file.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 12

To modify the size of a stack, taking the IRQ stack for example and reserving a stack size of 256 bytes for
the IRQ processor mode, all there is to do is to change the numerical value associated with the token; this is
shown in the following table:

Table 2-6 OS_IRQ_STACK_SIZE modification

 IF :LNOT:(:DEF: OS_IRQ_STACK_SIZE)
OS_IRQ_STACK_SIZE EQU 256
 ENDIF

Alternatively, it is possible to overload the OS_?????_STACK_SIZE value set in
mAbassi_SMP_CORTEXA9_ARMCC.s by using the assembler command line option –-define and
specifying the desired stack size as shown in the following example, where the IRQ stack size is set to 512
bytes:

Table 2-7 Command line set of OS_IRQ_STACK_SIZE

armasm … --define “OS_IRQ_STACK_SIZE SETA 512” …

A third way to allocate the different stacks and specify their sizes is by setting to a value of -2 the token
OS_?????_STACK_SIZE (does not apply to OS_STACK_SIZE). When this is done, the stacks memory and
their sizes are supplied through external arrays and variables. The stack arrays must be dimensioned to:
#Core * stacksize bytes; the run-time set-up of the stacks makes sure the stacks are aligned according to the
Cortex-A9 requirements. The variable specifying the stack sizes indicates the number of bytes per core and
not the number of bytes in the stack array.

 Table 2-8 Variables Stack Names

Description Stack Name Stack Size Name

User / System mode n/a n/a

Supervisor mode G_SUPER_stack G_SUPER_stackSize

Abort mode G_ABORT_stack G_ABORT_stackSize

Undefined mode G_UNDEF_stack G_UNDEF_stackSize

Interrupt mode G_IRQ_stack G_IRQ_stackSize

Fast Interrupt mode G_FIQ_stack G_FIQ_stackSize

2.3 Number of cores
When operating the mAbassi RTOS on a platform, the RTOS needs to be configured for the number of
cores it has access to, or will use. This number is most of the time the same as the number of cores the
device has, but it also can be set to a value less than the total number of cores on the device, but not larger
obviously. This must be done for both the mAbassi.c file and the mAbassi_SMP_CORTEXA9_ARMCC.s
file, through the setting of the build option OS_N_CORE. In the case of the file mAbassi.c, OS_N_CORE is
one of the standard build options. In the case of the file mAbassi_SMP_CORTEXA9_ARMCC.s, to modify
the number of cores, all there is to do is to change the numerical value associated to the token definition of
OS_N_CORE, located around line 35; this is shown in the following table. By default, the number of cores is
set to 2.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 13

Table 2-9 OS_N_CORE modification

 IF :LNOT:(:DEF: OS_N_CORE)
OS_N_CORE EQU 4
 ENDIF

Alternatively, it is possible to overload the OS_N_CORE value set in mAbassi_SMP_CORTEXA9_ARMCC.s
by using the assembler command line option --define and specifying the required number of cores as
shown in the following example, where the number of cores is set to 4:

Table 2-10 Command line set of OS_N_CORE (ASM)

armasm … --define “OS_N_CORE SETA 4” …

Exactly the same value of OS_N_CORE as specified for the assembler must be specified for the compiler; a
mismatch between the assembly and “C” definition either generates a link error if the assembly file value is
less than the “C” value or will freeze the application if the assembly file value is larger than the “C” value.
In the following example, the number of cores is set to 4 for the “C” files:

Table 2-11 Command line set of OS_N_CORE (C)

armcc … -D OS_N_CORE=4 …

NOTE: mAbassi can be configured to operate as the single core Abassi by setting OS_N_CORE to 1, or
setting OS_MP_TYPE to 0 or 1. When configured for single core on the Cortex-A9 MPCore, the
single core application always executes on core #0.

2.4 Privileged mode
It is possible to configure mAbassi for the Cortex-A9 MPCore to make the application execute in either the
USER processor mode (un-privileged) or in the SYS processor mode (privileged). Having the application
executing in the SYS processor mode (privileged) delivers two main advantages over having it executing in
the USER mode (un-privileged). The first one is, when in the USER mode, Software interrupts (SWI) are
needed to read or write the registers and peripherals are only accessible in privileged mode. Having to use
SWI disables the interrupts during the time a SWI is processed. The second advantage of executing the
application in SYS mode is again related to the SWI, but this time it is one of CPU efficiency: the code
required to replace the functionality of the SWI is much smaller, therefore less CPU is needed to execute
the same operation.

There is no fundamental reason why an application should be executing in the un-privileged mode with
mAbassi. First, even though the mAbassi kernel is a single function, it always executes within the
application context. There are no service requests, alike the Arm9 SWI, involved to access the kernel. And
second, mAbassi was architected to be optimal for embedded application, where the need to control
accesses to peripherals or other resources, as in the case of a server level OS, is not applicable.

Only the file mAbassi_SMP_CORTEXA9_ARMCC.s (ARM_SMP_L1_L2_ARMCC.s, release version 1.69.69
and upward, also needs this information) requires the information if the application executes in the
privileged mode or not. By default, the distribution file sets the processor to operate in privileged mode.
To select if the application executes in privileged mode or not, all there is to do is to change the value
associated to the definition of the token OS_RUN_PRIVILEGE, located around line 40. Associating a
numerical value of zero to the build option configures mAbassi to let the application execute in the USER
processor mode, which is un-privileged:

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 14

Table 2-12 OS_RUN_PRIVILEGE modification

 IF :LNOT:(:DEF: OS_RUN_PRIVILEGE)
OS_RUN_PRIVILEGE EQU 0
 ENDIF

Alternatively, it is possible to overload the OS_RUN_PRIVILEGE value set in
mAbassi_SMP_CORTEXA9_ARMCC.s by using the assembler command line option --define and
specifying the desired mode of execution as shown in the following example, where the selected mode is
non-privilege:

Table 2-13 Command line set of OS_RUN_PRIVILEGE

armasm … --define “OS_RUN_PRIVILEGE SETA 0” …

2.5 L1 & L2 Cache Set-up
The build option OS_USE_CACHE controls if the MPcore L1 and L2 caches, the memory management unit
(MMU) and the snoop control unit (SCU) are configured and enabled. Setting the token OS_USE_CACHE to
a non-zero value configures and enables the caches, MMU and SCU; setting it to a value of zero (0)
disables the caches, MMU and SCU. The OS_USE_CACHE token is defined around line 100 in the file
mAbassi_SMP_CORTEXA9_ARMCC.s and is set to enable (non-zero) by default. This is shown in the
following table:

Table 2-14 OS_USE_CACHE set-up

 IF :LNOT:(:DEF: OS_USE_CACHE)
OS_USE_CACHE EQU 0
 ENDIF

Alternatively, it is possible to overload the OS_USE_CACHE value set in
mAbassi_SMP_CORTEXA9_ARMCC.s by using the assembler command line option --define and
specifying the desired mode of execution as shown in the following example, where the selected mode is
non-privileged:

Table 2-15 Command line set of OS_USE_CACHE

armasm … --define “OS_USE_CACHE SETA 0” …

NOTE: When the caches are used, there is a dependency on the external function COREcacheON(). This

function is located in the file ARMv7_SMP_L1_L2_ARMCC.s file, which is optional.

2.6 Saturation Bit Set-up
In the ARM Cortex-A9 status register, there is a sticky bit to indicate if an arithmetic saturation or overflow
has occurred during a DSP instruction; this is the Q flag in the status register (bit #27). By default, this bit
is not kept localized at the task level, as extra processing is required during the task context switch to do so;
instead, it is propagated across all tasks. This choice was made because most applications do not care
about the value of this bit.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 15

If this bit is relevant for an application, even for a single task, then it must be kept local to each task. To
keep the value of the saturation bit localized, the token OS_HANDLE_PSR_Q must be set to a non-zero
value; to disable the localization, it must be set to a zero value. This is located at around line 45 in the file
mAbassi_SMP_CORTEXA9_ARMCC.s. The distribution code disables the localization of the Q bit, setting
the token HANDLE_PSR_Q to zero, as shown in the following table:

Table 2-16 Saturation Bit configuration

 IF :LNOT:(:DEF: OS_HANDLE_PSR_Q)
OS_HANDLE_PSR_Q EQU 1
 ENDIF

Alternatively, it is possible to overload the OS_HANDLE_PSR_Q value set in
mAbassi_SMP_CORTEXA9_ARMCC.s by using the assembler command line option --define and
specifying the desired setting (here is to keep localized) with the following:

Table 2-17 Command line set of Saturation Bit configuration

armasm … --define OS_HANDLE_PSR_Q=1 …

2.7 Spinlock implementation
All multi-core SMP RTOSes require the use of spinlocks to provide a short time exclusive access to shared
resources. mAbassi internally uses two functions to lock and unlock the spinlocks, CORElock() and
COREunlock() (refer to mAbassi User’s Guide [R1]), and these functions are implemented in the
mAbassi_SMP_CORTEXA9_ARMCC.s file. The spinlocks can be implemented using 3 different techniques:

Ø Pure software spinlock

Ø Using the LDREX and STREX instructions

Ø Using a hardware spinlock register

The difference between the 3 types of spinlocks can be resumed as follows:

Ø A pure software spinlock disables the interrupts for a short time but does not depend on any
hardware resources nor peripherals

Ø The LDREX/STREX based spinlock does not disable the interrupts but the ARM Snoop Control
Unit (SCU) must be enabled, which implies the D-Cache must be configured and enabled which
in turn requires the Memory Management Unit (MMU) to be configured and enabled

Ø The hardware register spinlock does not disable the interrupts, uses less code than the pure
software spinlock, but it uses more code than the LDREX/STREX based spinlock. This type of
spinlock can only be used if the device has custom spinlock registers

The type of spinlock to use is specified with the token the token OS_SPINLOCK. It must be set to zero (0)
for a pure software spinlock, one (1) for the LDREX/STREX based spinlock, or, for a hardware register base
spinlock, to the same value as the token OS_PLATFORM (Section 2.1) when the target device supports
hardware spinlocks.

NOTE: If the token OS_SPINLOCK is set to one (1) for the LDREX / STREX based spinlock and the cache is
not enabled (Section 2.5), an assembly time error message is issued.

The distribution code uses the pure software spinlock, meaning the OS_PLATFORM token is set to zero, as
shown in the following table. This is located around line 80 in the file
mAbassi_SMP_CORTEXA9_ARMCC.s:

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 16

Table 2-18 OS_SPINLOCK specification

 IF :LNOT:(:DEF: OS_SPINLOCK)
OS_SPINLOCK EQU 1
 ENDIF

It is possible to overload the OS_SPINLOCK value set in mAbassi_SMP_CORTEXA9_ARMCC.s by using the
assembler command line option --define and specifying the type of spinlock as shown in the following
example, where the spinlock is set to use the LDREX/STREX pair of instructions:

Table 2-19 Command line set of OS_SPINLOCK

armasm … --define “OS_SPINLOCK SETA 1” …

Some target platforms have sets of hardware spinlock registers, e.g. Texas Instruments OMAP 4460. When
the selected spinlock implementation is based on the hardware spinlock registers, mAbassi reserves a total
of 4 spinlock registers. By default, the spinlock register indexes #0 to #5 are used by mAbassi and as such
must not be used by anything else. If mAbassi needs to co-exist with other applications that are already
using one or more registers in this set of 6, it is possible to make mAbassi use a different set of indexes.
The base index of the set of 6 registers is specified with the value assigned to the token
OS_SPINLOCK_BASE. The assembly file and the “C” file use same token and they must be set to the same
value. As an example to make mAbassi use the hardware registers #22 to #27, all there is to do is to
change the numerical value associated to the OS_SPINLOCK_BASE token, located around line 85; this is
shown in the following table:

Table 2-20 OS_SPINLOCK_BASE modification

 IF :LNOT:(:DEF: OS_SPINLOCK_BASE)
OS_SPINLOCK_BASE EQU 22
 ENDIF

It is also possible to overload the OS_SPINLOCK_BASE value set in mAbassi_SMP_CORTEXA9_ARMCC.s
by using the assembler command line option --define and specifying the required base register index as
shown in the following example:

Table 2-21 Command line set of OS_SPINLOCK_BASE (ASM)

armasm … --define “OS_SPINLOCK_BASE SETA 22” …

The same numerical value must also be provided to the “C” file. This is show in the following table:

Table 2-22 Command line set of OS_SPINLOCK_BASE (C)

armcc … -D OS_SPINLOCK_BASE=22 …

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 17

There is a possible race condition when using spinlocks on a target processor with 3 or more cores. This is
the corner case when the tasks running on 3 cores or more are all trying non-stop to lock and unlock the
same spinlock. When this condition arises, it is possible that the same 2 cores always get the spinlock,
starving the other one(s). This is not an issue with mAbassi but it is due to the fact the memory accesses
(S/W spinlock or H/W spinlock) and the cache give access based on the core numbering and not in a round
robin or random fashion. To randomize the core given the spinlock, a random delay can be added when the
number of cores (OS_N_CORES) is greater than 2. The delay is added when the build option
OS_SPINLOCK_DELAY is set to a non-zero value and OS_N_CORE is greater than 2; by default, the token
OS_SPINLOCK_DELAY is set to a non-zero value. As for other tokens, the numerical value associated to the
OS_SPINLOCK_DELAY token, located around line 90, can be changed as shown in the following table:

Table 2-23 OS_SPINLOCK_DELAY modification

 IF :LNOT:(:DEF: OS_SPINLOCK_DELAY)
OS_SPINLOCK_DELAY EQU 0
 ENDIF

It is also possible to overload the OS_SPINLOCK_DELAY value set in mAbassi_SMP_CORTEXA9_ARMCC.s
by using the assembler command line option --define and specifying the required base register index as
shown in the following example:

Table 2-24 Command line set of OS_SPINLOCK_DELAY (ASM)

armasm … --define “OS_SPINLOCK_DELAY SETA 0” …

2.8 Spurious Interrupt
The Cortex-A9 interrupt controller (GIC) generates an interrupt when a spurious interrupt is detected. The
interrupt number for a spurious interrupt is 1023 and it cannot be disabled. When mAbassi is configured to
handle less than 1024 interrupt sources (set by the build option OS_N_INTERRUPTS), then if a spurious
interrupt occurs, the function pointer of the handler read from the interrupt table is invalid, as the interrupt
table is not large enough to hold an entry for it. The build option OS_SPURIOUS_INT (new in version
1.66.65) can be set to inform the interrupt dispatcher to ignore interrupt #1023. The special handling of the
spurious interrupt is enabled when the build option OS_SPURIOUS_INT is set to a non-zero value; by
default, the token OS_SPURIOUS_INT is set to a non-zero value, enabling the special handling. As for
other tokens, the numerical value associated to the OS_SPURIOUS_INT token, located around line 105, can
be changed as shown in the following table:

Table 2-25 OS_SPURIOUS_INT modification

 IF :LNOT:(:DEF: OS_SPURIOUS_INT)
OS_SPURIOUS_INT EQU 0
 ENDIF

It is also possible to overload the OS_SPURIOUS_INT value set in mAbassi_SMP_CORTEXA9_ARMCC.s by
using the assembler command line option --defsym and specifying the required base register index as
shown in the following example:

Table 2-26 Command line set of OS_SPURIOUS_INT (ASM)

armasm … --define OS_SPURIOUS_INT=0 …

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 18

Unless the build option OS_N_INTERRUPTS is set to 1024, the build option OS_SPURIOUS_INT should
never be set to a value of zero. The real-time and code size impact of including the spurious interrupt
special handling is very minimal: it adds 1 instruction when using 32-bit ARM instructions and 2
instructions with Thumb2.

2.9 Thumb2
The assembly support file (mAbassi_SMP_CORTEXA9_ARMCC.s) is by default using 32-bit ARM
instructions. The build option OS_ASM_THUMB (new in version 1.66.66) can be set to use Thumb2
instructions instead. The use of Thumb2 instructions is enabled when the build option OS_ASM_THUMB is
set to a non-zero value; by default, the token OS_ASM_THUMB is set to a non-zero value, enabling the special
handling. As for other tokens, the numerical value associated to the OS_ASM_THUMB token, located around
line 110, can be changed as shown in the following table:

Table 2-27 OS_ASM_THUMB modification

 IF :LNOT:(:DEF: OS_ ASM_THUMB)
OS_ ASM_THUMB EQU 1
 ENDIF

It is also possible to overload the OS_ASM_THUMB value set in mAbassi_SMP_CORTEXA9_ARMCC.s by
using the assembler command line option --defsym and specifying the required base register index as
shown in the following example:

Table 2-28 Command line set of OS_ASM_THUMB (ASM)

armasm … --define OS_ASM_THUMB=1 …

NOTE: Never use the --thumb command line option with the mAbassi_SMP_CORTEXA9_ARMCC.s file.

2.10 VFP / NEON set-up
When a processor is coupled with a floating-point peripheral and this VFP is used by the application code,
then mAbassi must be informed it must preserve the VFP register during the task context switch and the
interrupt context save. mAbassi supports these three classes of VFP:

Ø No VFP coprocessor

Ø VFPv2 / VFPv3D16 / Neon with 16 registers

Ø VFPv3 / Neon with 32 registers

The type of FPU to support is obtained from the assembler command line option –fpu (and also from the
command line option --cpu: e.g. --cpu=Cortex-A9.no_neon.no_vfp versus --cpu=Cortex-A9),
and mAbassi determines from the value specified how many and the size of the floating point registers to
save / restore during a context switch.

Table 2-29 Command line selection of the VFP

armasm … --fpu=vfpv3 …

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 19

2.11 Linker data compression
By default, mAbassi enables the caches as soon as possible in order to minimize the boot-up time. The
cache enabling is done before the library start-up code is executed, and it creates a conflict with the linker
data decompression, as stated in the ARM linker documentation. When an application uses mAbassi in its
normal configuration, the linker data compression must be disabled with the use of the
--datacompressor command-line option:

Table 2-30 Disabling data compression

armlink … --datacompressor off …

If it is necessary to use the linker data compression, then mAbassi can be set-up to configure and enable the
caches right before entering main(). This is achieved through the use of the $Super$$main and
$Sub$$main patterns to patch the function main(). To make mAbassi configure and enable the caches
right before entering main(), do not set the linker --datacompressor command-line option to off (it
still can be set to 0, 1, or 2) and set the token OS_DATACOMPRESSOR to a non-zero value in
mAbassi_SMP_CORTEXA9_ARMCC.s. The token OS_DATACOMPRESSOR is located around line 100:

Table 2-31 OS_DATACOMPRESSOR modification

 IF :LNOT:(:DEF: OS_DATACOMPRESSOR) ; If the linker data compressor is used
OS_DATACOMPRESSOR EQU 1 ; ==0: linker compressor not used
 ENDIF ; !=0: linker compressor in use

It is also possible to overload the OS_DATACOMPRESSOR value set in mAbassi_SMP_CORTEXA9_ARMCC.s
by using the assembler command line option --define and specifying the required base register index as
shown in the following example:

Table 2-32 Command line set of OS_DATACOMPRESSOR (ASM)

armasm … --define “OS_DATACOMPRESSOR SETA 1” …

When the linker data compressor is used, it is also necessary to enable interworking (mixed Thumb and
32-bit instruction calls/branches) when assembling mAbassi_SMP_CORTEXA9_ARMCC.s; this is done
through the apcs command line option (or the check box in the GUI):

Table 2-33 Command line set of interworking (ASM)

armasm … --apcs=/interwork …

2.12 Multithreading
By default, the ARMCC “C” runtime library is not multithread safe. There are two aspects to take into
account when protecting the library for multithread. The first one involves reentrance; a few library
functions are not reentrant, therefore two tasks accessing the same non-reentrant function at the same time
can create major issues. A good example of non-reentrant functions are the dynamic memory allocation
functions, malloc() and free(). As they internally use a static buffer, a few pointers, and some linked
lists, if two tasks access the internals of the dynamic memory allocation at the same time, corruption could
occur. Protecting the non-reentrant functions is straightforward: all there is to do is to make sure there is
only a single task that can access the non-reentrant functions at any time. This is done with a mutex, as it is
the perfect mechanism to guarantee exclusive access to a resource.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 20

The second type of function and variables that are not multithread safe are so due to internal data used by
the library, data that is truly a global resource. Such examples of these are: the errno variable or the
locale information. The only efficient way to protected these functions and variables against
multithreading is to have the library setup to use unique variables for each task. There are multiple ways to
implement the data swapping, but fundamentally, if the library does not provided such a swapping
mechanism, it becomes cumbersome to solve the issue, as it would require a manually swapping the
contents, copying each individual internal static variables of the library at every task switch.

ARMCC’s standard library fully supports all mechanisms to make the library multithread safe. The
MicroLib does not have such mechanisms. The following sub-sections describe how to make each of the
two libraries multithread safe.

2.12.1 Standard Library Multithreading Protection
The ARMCC standard library (not the MicroLib, see Section 2.12.3 for the MicroLib) can be set to be
completely protected against reentrance and also be multithread-safe. The type of multithreading
protection is selected according to the definition of the build option OS_KEIL_REENT; this is not a standard
build option as it only is used with the DS5 development suite on ARM processors. If this build option is
not defined, or if it is defined with a value of zero, the library is neither protected against reentrance nor
against multithreading. If the build option is positive, the library is fully multithread-safe and protected
against reentrance for every tasks in the application. If the build option value is negative, only
user-selected tasks that are configured access the library in a multithread-safe fashion; the library still
remains protected against reentrance for all tasks.

NOTE: When the MicroLib is selected, the option OS_KEIL_REENT is ignored.

2.12.1.1 Full Protection
For full multithreading protection of the standard library, all there is to do is to define the build option
OS_KEIL_REENT with a positive value. The build option OS_KEIL_REENT for the multithreading
protection must be given to the compiler and the assembler. By default, the token OS_KEIL_REENT is set
to a zero value in the file mAbassi_SMP_CORTEXA9_ARMCC.s. As for other tokens, the numerical value
associated to the OS_KEIL_REENT token, located around line 95, can be changed as shown in the following
table:

Table 2-34 OS_KEIL_REENT modification

 IF :LNOT:(:DEF: OS_KEIL_REENT)
OS_KEIL_REENT EQU 1
 ENDIF

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 21

It is also possible to overload the OS_KEIL_REENT value set in mAbassi_SMP_CORTEXA9_ARMCC.s by
using the assembler command line option --define and specifying the required base register index as
shown in the following example:

Table 2-35 Command line set of OS_KEIL_REENT (ASM)

armasm … --define “OS_KEIL_REENT SETA 1” …

The same numerical value must also be provided to the “C” file. This is show in the following table:

Table 2-36 Command line set of OS_KEIL_REENT (C)

armcc … -D OS_KEIL_REENT=1 …

 Figure 2-1 GUI set of OS_KEIL_REENT (ASM)

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 22

 Figure 2-2 GUI set of OS_KEIL_REENT (C)

Exactly 96 bytes per task are needed to support full re-entrance. This extra memory is not an integral part
of the task descriptor; instead a pointer in the task descriptor holds the location of this per task extra
memory. The 96 bytes are allocated using the component OSalloc(), which means either enough
memory must be reserved with OS_ALLOC_SIZE or, if OS_ALLOC_SIZE is set to zero, then enough heap
area must be allocated for malloc().

2.12.1.2 Partial Protection
The use of full multithread protection for the library requires 96 bytes of extra data memory for each task in
the application. The extra memory required is not due to Abassi, but it is the amount of memory the library
requires to hold all its internal static data. It may not be desirable to use multithread protection for all tasks,
or on data memory restricted applications it may be impossible to use full multithreading protection.
Setting the build option OS_KEIL_REENT to a negative value allows the designer to select the tasks where
multithreading protection is used. The library modules that are non-reentrant are still protected by a mutex,
only the static area of the library becomes under control. The build option OS_KEIL_REENT is set the same
way as described in Section 2.12.1.1, only it must be set to a negative value for the partial protection.

Partial multithreading means that only the tasks that are set up to use the library in a multithread safe
manner will require the 96 bytes block of extra data memory. Not only is memory needed for the library
internal data, but if file I/O is used in the task, more memory is also needed for the buffering of the file or
stream. It is good practice to use the standard library function setbuf(), or setvbuf() to tailor each
stream buffer size.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 23

If a task uses none of the library multithread unsafe static data, then the task does not need to access the
library internal data in an exclusive manner, so there is no need to reserve and assign the memory block of
96 bytes of data memory. If a task uses one or more of the library multithread unsafe static data, but it is
the only task using that data, there is still no need to make the library multithread safe for that task. Only
when two or more tasks use the same internal data of the library do these tasks need to access the library in
a multithread safe manner.

For more information on which library functions and/or variables are non-reentrant and/or multithread
unsafe, refer to Section 2.12.3.

A task is set to use the library in a multithread safe manner with the following:

Table 2-37 Setting a task to use re-entrant library

#include “Abassi.h”

TSK_t *TskReent
int ReentData[96/sizeof(int);

…
 /* First the task must be created */
 /* in the suspended state */
TskReent = TSKcreate(“TaskName”, TskPrio, StackSize, TaskFct, 0);

memset(&ReentData[0], 0, sizeof(ReentData)); /* Buffer must be set to zero */

TskReent->XtraData[0] = (intptr_t)&ReentData; /* Attach the libspace to the task */

TSKresume(TskReent); /* The task may now be resumed */

The declaration “int Reent[96/sizeof(int)];” can be replaced by a dynamic memory allocation of
(size_t)96. If a task does not require access to the library in a multithread safe way the above code is
not required.

2.12.2 Thread-unsafe functions / variables
The list of thread-unsafe library functions that can be made thread-safe with mAbassi multi-threading
protection is obtained by performing a search in the help using the keyword Thread-safe, looking into
the C user guide section titled “Thread-safe C library functions”.

For the multithread unsafe functions and/or variables, there is no simple way to make these functions or
variables multi-thread safe. The ARMCC library supports a non-standard implementation of these
functions/variables. The list can be obtained by performing a search in the help using the keyword
Thread-safe, looking into the C user guide section titled “C library functions that are not thread-safe”.

2.12.3 MicroLIB Multithreading Protection
Contrary to the standard library, the MicroLIB does not offer internal support for multi-threading
protection. Some functions in the ARMCC C MicroLIB runtime library are not reentrant. If these
functions are only used in one task, then there will be no problems. But if they are used by more than one
task, they need to be protected by an Abassi mutex. The preferred way is to re-use the G_OSmutex for all
non-multithread-safe functions, as this will avoid deadlocks. Therefore, non-reentrant functions must be
manually protected with a mutex.

For the multithread unsafe function and/or variables, there is no simple way to make these functions or
variables multi-thread safe. The ARMCC library supports a non-standard implementation of these
functions/variables. The list can be obtained by performing a search in the help using the keyword
Thread-safe, looking into the C user guide section titled “C library functions that are not thread-safe”.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 24

2.13 Performance Monitoring
New in version 1.69.69, is the performance monitoring add-on. This facility relies on a fine resolution
timer / counter and this timer / counter is set-up and handled in the file
mAbassi_SMP_CORTEXA9_ARMCC.s. There are 3 build options related to the performance monitoring
timer / counter:

Ø OS_PERF_TIMER_BASE

Ø OS_PERF_TIMER_DIV

Ø OS_PERF_TIMER_ISR

All Cortex-A9 MPCores have a global timer / counter and it is a natural candidate to be used by the
performance monitoring add-on. To use the global timer / counter, set the build option
OS_PERF_TIMER_BASE to a value of 0. If the pre-scaling value of the global timer / counter is set in the
application, then set the build option OS_PERF_TIMER_DIV to a value of 0. If the prescaler is not set by
the application, then set build option OS_PERF_TIMER_DIV to the desired prescaler value. For the global
timer / counter, the build option OS_PERF_TIMER_ISR is ignored as it does not requires interrupts as it is
a 64-bit timer (64 bits is the size of the counters used by the performance monitoring add-on).

For other counter / timer options, please look directly into the file mAbassi_SMP_CORTEXA9_ARMCC.s,
searching for the OS_PERF_TIMER_BASE token. There is a very detailed table explaining all the offerings
and specifying the values to set the 3 related build options to for each the timer / counter supported.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 25

Interrupts
The mAbassi RTOS needs to be aware when kernel requests are performed inside or outside an interrupt
context. For all IRQ sources the mAbassi RTOS provides an interrupt dispatcher, which allows it to be
interrupt-aware. This dispatcher achieves two goals. First, the kernel uses it to know if a request occurs
within an interrupt context or not. Second, using this dispatcher reduces the code size, as all interrupts
share the same code for the decision making of entering the kernel or not at the end of the interrupt.

The distribution makes provision for 256 sources of interrupts, as specified by the token
OX_N_INTERRUPTS in the file mAbassi.h1, and the value of OX_N_INTERRUPTS is the internal default
value used by mAbassi.c. Even though the Generic Interrupt Controller (GIC) peripheral supports a
maximum of 1020 interrupts, it was decided to set the distribution value to 256, as this seems to be a
typical maximum supported by the different devices on the market.

2.14 Interrupt Handling

2.14.1 Interrupt Table Size
Most devices do not require all 256 interrupts, as they may only handle between 64 and 128 sources of
interrupts; or some very large device may require more than 256. The interrupt table can be easily reduced
to recover data space. All there is to do is to define the build option OS_N_INTERRUPTS
(OS_N_INTERRUPTS is used to overload mAbassi internal value of OX_N_INTERRUPTS) to the desired
value. This can be done by using the compiler command line option -D and specifying the desired setting
with the following:

Table 0-1 Command line set the interrupt table size

armcc … -D OS_N_INTERRUPTS=49 …

2.14.2 Interrupt Installer
Attaching a function to a regular interrupt is quite straightforward. All there is to do is use the RTOS
component OSisrInstall() to specify the interrupt number and the function to be attached to that
interrupt number. For example, Table 0-2 shows the code required to attach the private timer interrupt on
an ARM MPcore processor (Interrupt ID #29) to the RTOS timer tick handler (TIMtick):

Table 0-2 Attaching a Function to an Interrupt

#include “mAbassi.h”

 …
 OSstart();
 …
 GICenable(29, 128, 1); /* Timer set mid prioirty edge triggered */
 OSisrInstall(29, &TIMtick);

 /* Set-up the count reload and enable private timer interrupt and start the timer */

 … /* More ISR setup */

 OSeint(1); /* Global enable of all interrupts */

1 This is located in the port-specific definition area.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 26

At start-up, once OSstart() has been called, all OS_N_INTERRUPTS (truly OX_N_INTERRUPTS if not
overloaded) interrupt handler functions are set to a “do nothing” function, named OSinvalidISR(). If an
interrupt function is attached to an interrupt number using the OSisrInstall() component before calling
OSstart(), this attachment will be removed by OSstart(), so OSisrInstall() should never be used
before OSstart() has executed. When an interrupt handler is removed, it is very important and necessary
to first disable the interrupt source, then the handling function can be set back to OSinvalidISR(). This
is shown in Table 0-3:

Table 0-3 Invalidating an ISR handler

#include “mAbassi.h”

 …
 /* Disable the interrupt source */
 OSisrInstall(Number, &OSinvalidISR);
 …

When an application needs to disable/enable the interrupts, the RTOS supplied functions OSdint() and
OSeint() should be used.

The interrupt number, as reported by Generic Interrupt Controller (GIC), is acknowledged by the ISR
dispatcher, but the dispatcher does not remove the request by a peripheral if the peripheral generate a level
interrupt. The removal of the interrupt request must be performed within the interrupt handler function.

One has to remember the mAbassi interrupt table is shared across all the cores. Therefore, if the same
interrupt number is used on multiple cores, but the processing is different amongst the cores, a single
function to handle the interrupt must be used in which the core ID controls the processing flow. The core
ID is obtained through the COREgetID() component of mAbassi. One example of such situation is if the
private timer is used on each of two cores, but each core private timer has a different purpose, e.g.:

 1- on one core, it is the RTOS timer base

 2- on the other core, it is the real-time clock tick.

At the application level, when the core ID is used to select specific processing, a critical region exists that
must be protected by having the interrupts disabled (see mAbassi User’s Guide [R1]). But within an
interrupt handler, as nested interrupts are not supported for the Cortex-A9, there is no need to add a critical
region protection, as interrupts are disabled when processing an interrupt.

2.15 Fast Interrupts
Fast interrupts are supported on this port as the FIQ interrupts. The ISR dispatcher is designed to only
handle the IRQ interrupts. A default do-nothing FIQ handler is supplied with the distribution; the
application can overload the default handler (Section 6.2).

2.16 Nested Interrupts
Interrupt nesting, other than a FIQ nesting an IRQ, is not supported on this port. The reason is simply
based on the fact the Generic Interrupt Controller is not a nested controller. Also, supporting nesting on
this processor architecture becomes real-time inefficient as the processor interrupt context save is not stack
based, but register bank based.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 27

3 Stack Usage
The RTOS uses the tasks’ stack for two purposes. When a task is blocked or ready to run but not running,
the stack holds the register context that was preserved when the task got blocked or preempted. Also, when
an interrupt occurs, the register context of the running task must be preserved in order for the operations
performed during the interrupt to not corrupt the contents of the registers used by the task when it got
interrupted. For the Cortex-A9, the context save contents of a blocked or pre-empted task is different from
the one used in an interrupt. The following table lists the number of bytes required by each type of context
save operation:

Table 3-1 Context Save Stack Requirements

Description Context save

Blocked/Preempted task context save 48 bytes

Blocked/Preempted task context save / VFP enable (OS_FPU_TYPE != 0) +112 bytes

Interrupt dispatcher context save (User Stack) 64 bytes

Interrupt dispatcher context save (User Stack) / 16 - VFP (OS_FPU_TYPE == 16) +136 bytes

Interrupt dispatcher context save (User Stack) / 32 - VFP (OS_FPU_TYPE == 32) +264 bytes

When sizing the stack to allocate to a task, there are three factors to take in account. The first factor is
simply that every task in the application needs at least the area to preserve the task context when it is
preempted or blocked. Second, add to all this the stack required by the code implementing the task
operation, or the interrupt operation.

NOTE: The ARM Cortex-A9 processor needs alignment on 8 bytes for some instructions accessing
memory. When stack memory is allocated, mAbassi guarantees the alignment. This said, when
sizing OS_STATIC_STACK or OS_ALLOC_SIZE, make sure to take in account that all allocation
performed through these memory pools are by block size multiple of 8 bytes.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 28

4 Memory Configuration
The mAbassi kernel is not a kernel entered though a service request, such as the SWI on the Cortex-A9.
The kernel is a regular function, protected against re-entrance or multiple core entrance. The kernel code
executes as part of the application code, with the same processor mode and access privileges.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 29

5 Search Set-up
The search results are identical to the single core Cortex-A9 port as Abassi and mAbassi use the same code
for the search algorithm. Please refer to the single core Cortex-A9 port document [R2] for the
measurements.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 30

6 API
The ARM Cortex-A9 supports multiple types of exceptions. Defaults exception handlers are supplied with
the distribution code, but each one of them can be overloaded by an application specific function. The
default handlers are simply an infinite loop (except FIQ, which is a do-nothing with return from exception).
The choice of an infinite loop was made as this allows full debugging, as all registers are left untouched by
the defaults handlers. The following sub-sections describe each one of the default exception handlers.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 31

6.1 DATAabort_Handler

Synopsis
#include “mAbassi.h”

void DATAabort_Handler(void);

Description

DATAabort_Handler() is the exception handler for a data abort fault. In the distribution
code, this is implemented as an infinite loop. If the application needs to perform special
processing when a data fault occurs, all there is to do is to include a function with the above
function prototype, and it will overload the supplied data abort handler. As this is an
exception, the return must be performed with a “subs pc, lr, #8”.

Availability

Always.

Arguments
void

Returns
void

Component type

Function

Options

Notes

This is an exception function, executing in the abort processor mode. This means the abort
stack is in use instead of the user stack, and the IRQ interrupts are disabled.

See also

FIQ_Handler() (Section 6.2)
PFabort_Handler() (Section 6.3)
SWI_Handler() (Section 6.4)
Undef_Handler() (Section 6.5)

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 32

6.2 FIQ_Handler

Synopsis
#include “mAbassi.h”

void FIQ_Handler(void);

Description

FIQ_Handler() is the handler for a fast interrupt request. In the distribution code, this is
implemented as a return only. If the application needs to handle fast interrupts, all there is to
do is to include a function with the above function prototype and it will overload the supplied
fast interrupt handler. As this is an exception, the return must be performed with a
“subs pc, lr, #4”.

Availability

Always.

Arguments
void

Returns
void

Component type

Function

Options

Notes

This is an exception function, executing in the FIQ processor mode. This means the FIQ
stack is in use instead of the user stack, and the FIQ are now disabled and IRQ interrupts are
also disabled.

See also

DATAabort_Handler() (Section 6.1)
PFabort_Handler() (Section 6.3)
SWI_Handler() (Section 6.4)
Undef_Handler() (Section 6.5)

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 33

6.3 PFabort_Handler

Synopsis
#include “mAbassi.h”

void PFabort_Handler(void);

Description

PFabort_Handler() is the exception handler for a pre-fetch abort fault. In the distribution
code, this is implemented as an infinite loop. If the application needs to perform special
processing when a pre-fetch fault occurs, all there is to do is to include a function with the
above function prototype and it will overload the supplied data abort handler. As this is an
exception, the return must be performed with a “subs pc, lr, #4”.

Availability

Always.

Arguments
void

Returns
void

Component type

Function

Options

Notes

This is an exception function, executing in the abort processor mode. This means the abort
stack is in use instead of the user stack, and the IRQ interrupts are disabled.

See also

DATAabort_Handler() (Section 6.1)
FIQ_Handler() (Section 6.2)
SWI_Handler() (Section 6.4)
Undef_Handler() (Section 6.5)

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 34

6.4 SWI_Handler

Synopsis
#include “mAbassi.h”

void SWI_Handler(int SWInmb);

Description

SWI_Handler() is the exception handler for software interrupts that are not handled or
reserved by mAbassi. The number of the software interrupt is passed through the function
argument SWInmb. This is a regular function; do not use the exception instruction
“movs pc, lr”.

Availability

Always.

Arguments

SWInmb Number of the software interrupt. The interrupt numbers 0 to 7 must not be
used by the application as they are used / reserved by the RTOS.

Returns
void

Component type

Function

Options

Notes

This is a regular function, but executing in the supervisor processor mode. This means the
supervisor stack is in use instead of the user stack, and the IRQ interrupts are disabled.

See also

DATAabort_Handler() (Section 6.1)
FIQ_Handler() (Section 6.2)
FPabort_Handler() (Section 6.3)
Undef_Handler() (Section 6.5)

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 35

6.5 Undef_Handler

Synopsis
#include “mAbassi.h”

void Undef_Handler(void);

Description

Undef_Handler() is the exception handler for a undefined instruction fault. In the
distribution code, this is implemented as an infinite loop. If the application needs to perform
special processing when an undefined instruction fault occurs, all there is to do is to include a
function with the above function prototype, and it will overload the supplied undefined
instruction abort handler. As this is an exception, the return must be performed with a “movs
pc, lr”.

Availability

Always.

Arguments
void

Returns
void

Component type

Function

Options

Notes

This is an exception function, executing in the abort processor mode. This means the abort
stack is in use instead of the user stack, and the IRQ interrupts are disabled.

See also

DATAabort_Handler() (Section 6.1)
FIQ_Handler() (Section 6.2)
PFabort_Handler() (Section 6.3)
SWI_Handler() (Section 6.4)

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 36

7 Chip Support
No custom chip support is provided with the distribution because most device manufacturers provide a
BSP, i.e. code to configure the peripherals on their devices. The distribution code contains some of the
manufacturer’s open source libraries, e.g. Altera.

Basic support for the Generic Interrupt Controller (GIC) is provided in this port as SMP/BMP multi-core
on the Cortex-A9 MPCore device requires the use of interrupts. The following sub-sections describe the
two support components.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 37

7.1 GICenable

Synopsis
#include “mAbassi.h”

void GICenable(int IntNmb, int Prio, int Edge);

Description

GICenable() is the component used to enable an interrupt number (called IDnn in the
literature) on the Generic Interrupt Controller (GIC). The interrupt configuration is always
applied to the core on which GICenable() is executing.

Availability

Always.

Arguments

IntNmb Interrupt number to enable
Prio Priority of the interrupt
 0 : highest priority
 255 : lowest priority
Edge Edge or level detection
 == 0 : level detection
 != 0 : edge detection

Returns
void

Component type

Function

Options

Notes

On the Cortex-A9 MPCore, some GIC registers are local to the core, while others are global
across all cores. Care must be taken when using GICenable().
When the interrupt number (argument IntNmb) is non-negative, then the GIC is programmed
to target the interrupt to the core it’s currently operating on. If the interrupt number is
negative, then the interrupt number –IntNmb is targeted to all cores.
The function GICenable() is implemented in assembly language, in the file
mAbassi_SMP_CORTEXA9_ARMCC.s as it avoids supplying 2 port files in the distribution.
If the supplied functionality does not fulfill the application needs, GICenable() can be
overloaded by adding a new GICenable() function in the application. As the supplied
assembly function is declared weak, it will not be included during the link process. The
equivalent “C” code of the distribution implementation is supplied in comments in the
assembly file.

See also

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 38

GICinit() (Section 7.2)

7.2 GICinit

Synopsis
#include “mAbassi.h”

void GICinit(void);

Description

GICinit() is the component used to initialize the Generic Interrupt Controller (GIC) for the
needs of mAbassi. It must be used after using the OSstart() component and before
GICenable() and / or OSeint() components. Also, it must be used in every
COREstartN() function.
Consult the mAbassi User guide for more information on this topic [R1].

Availability

Always.

Arguments
void

Returns
void

Component type

Function

Options

Notes

The function GICinit() is implemented in assembly language, in the file
mAbassi_SMP_CORTEXA9_ARMCC.s as it avoids supplying 2 port files in the distribution.
If the supplied functionality does not fulfill the application needs, GICinit() can be
overloaded by adding a new GICinit() function in the application. As the supplied
assembly function is declared weak, it will not be included during the link process. The
equivalent “C” code of the distribution implementation is supplied in comments in the
assembly file.

See also

GICenable() (Section 7.1)

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 39

8 Measurements
This section provides an overview of the memory requirements encountered when the RTOS is used on the
Arm9 and compiled with the DS5 tool chain. Latency measurements are provided, but one should
remember CPU latency latencies are highly dependent on 3 factors. It first depends on how many cores are
used; it also depends on the type of load balancing, i.e. if mAbassi is configured in SMP or BMP, and if the
load balancing algorithm is the True or the Packed one. All these possible configurations are one part of
the complexity. A second part of the complexity is where the task switch was detected and on which
core(s) the task switch will occur due to that change of state. Finally, the third factor is if a core is already
executing in the kernel when another needs to enter the kernel. Any combination of these dynamic factors
affects differently the CPU latency of mAbassi. The specific configuration and run-time conditions are
described in the latency subsection (Section 8.2)

8.1 Memory
The memory numbers are supplied for the two limit cases of build options (and some in-between): the
smallest footprint is the RTOS built with only the minimal feature set, and the other with almost all the
features. For both cases, names are not part of the build. This feature was removed from the metrics
because it is highly probable that shipping products utilizing this RTOS will not include the naming of
descriptors, as its usefulness is mainly limited to debugging and making the opening/creation of
components runtime safe.

The code size numbers are expressed with “less than” as they have been rounded up to multiples of 25 for
the “C” code. These numbers were obtained using the release version 1.64.63 of the RTOS and may
change in other versions. One should interpret these numbers as the “very likely” numbers for other
released versions of the RTOS.

The code memory required by the RTOS includes the “C” code and assembly language code used by the
RTOS. The code optimization settings of the compiler that were used for the memory measurements are:

1. Debugging model: Off2 (option –g not specified)

2. Optimization level: Maximum / Size (-O3 -Ospace)

3. Target --cpu=Cortex-A9

4. FPU --fpu=VFPv3

2 Debugging is turned off as it can restrict the optimizer.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 40

Table 8-1 “C” Code Memory Usage

Description Thumb Size 32-Bit Size

Minimal Build < 1425 bytes < 2175 bytes

+ Runtime service creation / static memory < 1675 bytes < 2475 bytes

+ Runtime priority change

+ Mutex priority inheritance

+ FCFS

+ Task suspension

< 1675 bytes < 2475 bytes

+ Timer & timeout

+ Timer call back

+ Round robin

< 2125 bytes < 3225 bytes

+ Events

+ Mailbox

< 2675 bytes < 4125 bytes

Full Feature Build (no names) < 3275 bytes < 5125 bytes

Full Feature Build (no name / no runtime creation) < 3950 bytes < 6275 bytes

Full Feature Build (no names / no runtime creation)

+ Timer services module

< 3625 bytes < 5775 bytes

OS_KEIL_REENT > 0 ~ +200 bytes ~ +300 bytes

OS_KEIL_REENT < 0 ~ +125 bytes ~ +175 bytes

True SMP (OS_MP_TYPE == 2) +0 bytes +0 bytes

Packed SMP (OS_MP_TYPE == 3) ~ +25 bytes ~ +25 bytes

True BMP (OS_MP_TYPE == 4) ~ +200 bytes ~ +350 bytes

Packed BMP (OS_MP_TYPE == 5) ~ +200 bytes ~ +350 bytes

The selection of load balancing type affects the “C” code size. The added memory requirements are
indicated as approximate because depending on the build option combination, the kernel code is different.
As such, the optimizer does not deliver the same code size.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 41

Table 8-2 Assembly Code Memory Usage

Description Size

Assembly code size (non-privilege / >1 core) 2032 bytes

Assembly code size (non-privilege / ==1 core) 1168 bytes

Assembly code size (privilege / >1 core) 1712 bytes

Assembly code size (privilege / ==1 core) 928 bytes

VFPv3 +120 bytes

VFPv3D16 +112 bytes

Saturation Bit Enabled +36 bytes

Altera Cyclone V Support +256 bytes

Freescale i.MX6 Support +48 bytes

TI OMAP 4460 Support +16 bytes

Xilinx Zynq Support +84 bytes

There are two aspects when describing the data memory usage by the RTOS. First, the RTOS needs its
own data memory to operate, and second, most of the services offered by the RTOS require data memory
for each instance of the service. As the build options affect either the kernel memory needs or the service
descriptors (or both), an interactive calculator has been made available on the Code Time Technologies
website.

8.2 Latency
Latency of operations has been measured on an Altera Cyclone V Evaluation board populated with a
800MHz dual-core Cortex-A9. All measurements have been performed on the real platform. This means
the interrupt latency measurements had to be instrumented to read the SysTick counter value. This
instrumentation can add up to 5 or 6 cycles to the measurements. The code optimization setting that was
used for the latency measurements is -O3 -Otime, which optimizes the code generated for the best speed.
The debugging option was turned off as the debugging sometimes restricts the optimizer. All operations
are performed on core #0; the FPU was enabled (VFPv3 / Neon) and the type of multi-processing was set to
true SMP (OS_MP_TYPE set to 2). The cache is enabled and the spinlock type is the one using
LDREX/STREX. All measurements shown are the resulting average of the last 128 runs out of 256. This
averaging is done as the presence of the cache does not guarantee a deterministic operation of the test suite.
One must remember the latencies measured apply to the test suite; any other application specific latencies
depend if the mAbassi code and data are or are not in the cache.

There are 5 types of latencies that are measured, and these 5 measurements are expected to give a very
good overview of the real-time performance of the Abassi RTOS for this port. For all measurements, three
tasks were involved:

1. Adam & Eve set to a priority value of 0;

2. A low priority task set to a priority value of 1;

3. The Idle task set to a priority value of 20.

The sets of 5 measurements are performed on a semaphore, on the event flags of a task, and finally on a
mailbox. The first 2 latency measurements use the component in a manner where there is no task
switching. The third measurements involve a high priority task getting blocked by the component. The
fourth measurements are about the opposite: a low priority task getting pre-empted because the component
unblocks a high priority task. Finally, the reaction to unblocking a task, which becomes the running task,
through an interrupt is provided.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 42

The first set of measurements counts the number of CPU cycles elapsed starting right before the component
is used until it is back from the component. For these measurement there is no task switching. This means:

Table 8-3 Measurement without Task Switch

 Start CPU cycle count
 SEMpost(…); or EVTset(…); or MBXput();
 Stop CPU cycle count

The second set of measurements, as for the first set, counts the number of CPU cycles elapsed starting right
before the component is used until it is back from the component. For these measurement there is no task
switching. This means:

Table 8-4 Measurement without Blocking

 Start CPU cycle count
 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);
 Stop CPU cycle count

The third set of measurements counts the number of CPU cycles elapsed starting right before the
component triggers the unblocking of a higher priority task until the latter is back from the component used
that blocked the task. This means:

Table 8-5 Measurement with Task Switch

 main()
 {
 …
 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);
 Stop CPU cycle count
 …
 }

 TaskPrio1()
 {
 …
 Start CPU cycle count
 SEMpost(…); or EVTset(…); or MBXput(…);
 …
 }

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 43

The forth set of measurements counts the number of CPU cycles elapsed starting right before the
component blocks of a high priority task until the next ready to run task is back from the component it was
blocked on; the blocking was provoked by the unblocking of a higher priority task. This means:

Table 8-6 Measurement with Task unblocking

 main()
 {
 …
 Start CPU cycle count
 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);
 …
 }

 TaskPrio1()
 {
 …
 SEMpost(…); or EVTset(…); or MBXput(…);
 Stop CPU cycle count
 …
 }

The fifth set of measurements counts the number of CPU cycles elapsed from the beginning of an interrupt
using the component, until the task that was blocked becomes the running task and is back from the
component used that blocked the task. The interrupt latency measurement includes everything involved in
the interrupt operation, even the cycles the processor needs to push the interrupt context before entering the
interrupt code. The interrupt function, attached with OSisrInstall(), is simply a two line function that
uses the appropriate RTOS component followed by a return.

Table 8-7 lists the results obtained, where the cycle count is measured using core #0 private timer. This
timer decrements its counter by 1 at every 4 CPU cycle

The interrupt latency is the number of cycles elapsed when the interrupt trigger occurred and the ISR
function handler is entered. This includes the number of cycles used by the processor to set-up the interrupt
stack and branch to the address specified in the interrupt vector table

In the following table, the latency numbers between parentheses are the measurements when the build
option OS_SEARCH_ALGO is set to a negative value. The regular number is the latency measurements when
the build option OS_SEARCH_ALGO is set to 0.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 44

Table 8-7 Latency Measurements

Description Minimal Features Full Features

Semaphore posting no task switch 212 (232) 252 (254)

Semaphore waiting no blocking 212 (246) 256 (258)

Semaphore posting with task switch 212 (224) 528 (526)

Semaphore waiting with blocking 364 (400) 480 (480)

Semaphore posting in ISR with task switch 364 (380) 620 (628)

Event setting no task switch n/a 256 (254)

Event getting no blocking n/a 390 (390)

Event setting with task switch n/a 532 (536)

Event getting with blocking n/a 664 (664)

Event setting in ISR with task switch n/a 604 (604)

Mailbox writing no task switch n/a 320 (318)

Mailbox reading no blocking n/a 306 (308)

Mailbox writing with task switch n/a 596 (596)

Mailbox reading with blocking n/a 500 (500)

Mailbox writing in ISR with task switch n/a 660 (676)

Interrupt Latency 140 140

Context switch 48 48

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 45

9 Appendix A: Build Options for Code Size

9.1 Case 0: Minimum build
Table 9-1: Case 0 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */
#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING_TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX_PEND_RQST 2 /* Maximum number of requests in ISRs */
#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */
#define OS_MTX_DEADLOCK 0 /* This test validates this */
#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */
#define OS_N_CORE 2 /* Number of cores to handle */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED_INTS 0 /* If operating with nested interrupts */
#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */
#define OS_PRIO_MIN 2 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */
#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */
#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */
#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */
#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */
#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */
#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */
#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */
#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */
#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */
#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 46

9.2 Case 1: + Runtime service creation / static memory + Multiple tasks at
same priority

Table 9-2: Case 1 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */
#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING_TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */
#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */
#define OS_MTX_DEADLOCK 0 /* This test validates this */
#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */
#define OS_N_CORE 2 /* Number of cores to handle */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED_INTS 0 /* If operating with nested interrupts */
#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */
#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */
#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */
#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */
#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */
#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */
#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */
#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */
#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */
#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */
#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 47

9.3 Case 2: + Priority change / Priority inheritance / FCFS / Task suspend
Table 9-3: Case 2 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */
#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING_TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */
#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */
#define OS_MTX_DEADLOCK 0 /* This test validates this */
#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */
#define OS_N_CORE 2 /* Number of cores to handle */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED_INTS 0 /* If operating with nested interrupts */
#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */
#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */
#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */
#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */
#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */
#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */
#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */
#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */
#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */
#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 48

9.4 Case 3: + Timer & timeout / Timer call back / Round robin
Table 9-4: Case 3 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */
#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING_TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */
#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */
#define OS_MTX_DEADLOCK 0 /* This test validates this */
#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */
#define OS_N_CORE 2 /* Number of cores to handle */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED_INTS 0 /* If operating with nested interrupts */
#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */
#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */
#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */
#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */
#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */
#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */
#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 49

9.5 Case 4: + Events / Mailboxes
Table 9-5: Case 4 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */
#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING_TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */
#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */
#define OS_MTX_DEADLOCK 0 /* This test validates this */
#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */
#define OS_N_CORE 2 /* Number of cores to handle */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED_INTS 0 /* If operating with nested interrupts */
#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */
#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */
#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */
#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */
#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */
#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */
#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 50

9.6 Case 5: Full feature Build (no names)
Table 9-6: Case 5 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 1 /* If event flags are supported */
#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */
#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING_TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 1 /* If mailboxes are used */
#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */
#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */
#define OS_MTX_DEADLOCK 0 /* This test validates this */
#define OS_N_CORE 2 /* Number of cores to handle */
#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED_INTS 0 /* If operating with nested interrupts */
#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */
#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */
#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */
#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */
#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */
#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */
#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */
#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 51

9.7 Case 6: Full feature Build (no names / no runtime creation)
Table 9-7: Case 6 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 1 /* If event flags are supported */
#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */
#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING_TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 1 /* If mailboxes are used */
#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */
#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */
#define OS_MTX_DEADLOCK 0 /* This test validates this */
#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */
#define OS_N_CORE 2 /* Number of cores to handle */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED_INTS 0 /* If operating with nested interrupts */
#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */
#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */
#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */
#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */
#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */
#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */
#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */
#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */
#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 52

9.8 Case 7: Full build adding the optional timer services
Table 9-8: Case 7 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 1 /* If event flags are supported */
#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */
#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING_TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 1 /* If mailboxes are used */
#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */
#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */
#define OS_MTX_DEADLOCK 0 /* This test validates this */
#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */
#define OS_N_CORE 2 /* Number of cores to handle */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED_INTS 0 /* If operating with nested interrupts */
#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */
#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */
#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */
#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */
#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */
#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */
#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */
#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER_SRV 1 /* !=0 includes the timer services module */
#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-A9 – DS5 (ARMCC) 2016.06.20

Rev 1.11 Page 53

10 References
[R1] mAbassi RTOS – User Guide, available at http://www.code-time.com
[R2] Abassi Port – Cortex-A9, available at http://www.code-time.com

