
Copyright Information
This document is copyright Code Time Technologies Inc. ©2018 All rights reserved. No part of this document may be reproduced or
distributed in any form by any means, or stored in a database or retrieval system, without the written permission of Code Time
Technologies Inc.
Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

Abassi RTOS
Introduction

Disclaimer
Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the
document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in
the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

Abassi RTOS Introduction 2018.09.02

Rev 1.2 Page 3

Table of Contents
1 INTRODUCTION .. 6

1.1 DISTRIBUTION CONTENTS .. 6
1.1.1 RTOS files ... 7
1.1.2 RTOS + Drivers .. 7
1.1.3 Demo Code .. 7
1.1.4 Open Source SW ... 7
1.1.5 Upgrade .. 8

1.2 PLATFORM.H & HWINFO.H ... 8
1.3 BUILD OPTIONS .. 8
1.4 NEW APPLICATION ... 9
1.5 DEBUGGING .. 9

1.5.1 Shell ... 10
1.5.2 ARM processors .. 10
1.5.3 More info to be added in the futre .. 10

2 REFERENCES .. 11
3 REVISION HISTORY ... 12

Abassi RTOS Introduction 2018.09.02

Rev 1.2 Page 4

List of Figures

Abassi RTOS Introduction 2018.09.02

Rev 1.2 Page 5

List of Tables
TABLE 1-1 PACKAGE CONTENTS .. 6

Abassi RTOS Introduction 2018.09.02

Rev 1.2 Page 6

1 Introduction
This document is both a quick start guide and an “how to” reference guide for using Abassi1 [R1]
(including mAbassi [R2] and µAbassi [R3]).

1.1 Distribution Contents
All Abassi releases typically contain the following directories in the package. There could be extra
directories or missing dome of the directory listed here. The directories in bold are the RTOS and the
RTOS drivers directories:

Table 1-1 Package contents

. --- / --- readme.txt
 |
 / --- Abassi RTOS file + support software
 |
 / --- Drivers RTOS drivers
 |
 / --- FatFS-#### FAT32 stack : open source FatFS
 |
 / --- FullFAT-#### FAT32 stack : open source Full-FAT
 |
 / --- lwip-1.4.1 IP stack : open source lwIP V 1.4.1
 |
 / --- lwip-2.### IP stack : open source lwIP Version 2.n.n
 |
 / --- lwip-if IP stack : I/F between lwIP & Drivers
 |
 / --- Abassi_proc_tool Demo extra code, Abassi libraries, workspace
 |
 / --- Platform Target specific code shared amongst toolchains
 |
 / --- Share Demo code shared amongst target / toolchains
 |
 / --- ueFAT-#### FAT32 stack : open source Ultra-Embedded-FAT

The most important thing to take onto account with the directory structure is this:

**** Never modify files directly in the released package ****

The proper way to create a new application(s) based on Abassi is to add an application directory with at
least these 3 sub-directories:

- inc

- src

- Workspace or Project

In the build process or makefile, always put the application inc sub-directory as the first one in the include
path to search. Same with the sub-directory src; if the make VPATH feature is used then put the as the first
directory in the VPATH list the application src sub-directory. Having such an include path and VPATH
set-up will always use the files in the application directories instead of the files with the same name from
the released directories. So if any of the package files need to be modified, first copy the file in the
application inc or src sub-directory and then modify the file in there, nor the one in the release package.

1 When Abassi is mentioned in this document, unless explicitly stated, it always means Abassi, mAbassi
and µAbassi.

Abassi RTOS Introduction 2018.09.02

Rev 1.2 Page 7

1.1.1 RTOS files
The Abassi RTOS is composed if a few files only.

For the source package

 Abassi.h / mAbassi.h (located in ./Abassi)

 Abassi.c / mAbassi.c (located in ./Abassi)

 The cache set-up code for target processor with caches (located in ./Abassi)

 A target platform / tool chain specific assembly file (located in ./Platform/src)

For the library package or uAbassi:

 Abassi.h / mAbassi.h / uAbassi.h (located in ./Abassi)

 A target platform / tool chain specific library (located in ./Platform/lib)

Creating an application based on the Abassi RTOS is simple. For the source package, add all the RTOS
source files in the build and select the method to define the build options (section 1.3). For the library
package, link with the library file located in ./Platform/lib and make sure to use method #2 (Section
1.3) to define the build options. For µAbassi, include the library file located in ./Platform/lib and
make sure to use method #6 (Section 1.3) to define the build options. In the application, always include
Abassi.h, mAbassi.h or uAbassi.h whenever a RTOS service is used.

1.1.2 RTOS + Drivers
The 3 directories in bold, namely Abassi, Drivers and Platform, are the directory holding the RTOS
and BSP code. The RTOS files are described in the previous section and are located in the directories
./Abassi and ./Platform. The drivers or BSP files are all in the Drivers directory.

The files in these 3 directories (./Abassi, ./Platform and ./Drivers) are typically guaranteed to be
backward compatible when an update is provided. In the rare case when one or more files are not, the
information is clearly stated when the updated package is provided.

These RTOS files should never be modified, nor copied in the application directory: all RTOS files are
very tightly coupled and mixing files from different release could make the RTOS fail to build or to crash
at run time.

1.1.3 Demo Code
Release packages are provided with demos. The project / workspace for the demos is located in the
directory Abassi_proc_tool and the source code for the demos is mainly located in the directory Share,
and possibly a few files in Abassi_proc_tool (platform and toolchain specific); for the Ethernet demo,
lwIP-IF too. Files from all other directories are either RTOS, or Drivers, or Open Source software, or
target platform manufacturer’s BSP.

The code distributed in Share, mAbassi_proc_tool and in lwIP-if is likely not backward compatible
between releases. One should never directly use files from these directories in an application. The safe way
to proceed is again, copying the desired file into the application’s inc, or src sub-directory and build the
application using the copies. Doing so, when an upgraded package is provided, the application will never
be affected by changes in the demo code.

1.1.4 Open Source SW
All open source software is provided as is with no modifications. The only possible change that may have
been done with the open source code is a redistribution of the files in different directories.

None of the open source software is modified or changed between releases. Change may occur when a new
version is included but a change of version is easy to notice as the root directory name has the version
number in its name.

Abassi RTOS Introduction 2018.09.02

Rev 1.2 Page 8

1.1.5 Upgrade
If an application has been built by using its local copy of the files from the distribution package, then when
an upgraded package is provided, everything from the previous package can be replaced by the contents of
the new package and there will be no impact to the application.

If new features were added in the RTOS + Driver files, the demos code likely supports the added feature.
Looking at the file differences will highlight the changes and if desirable, the application could be upgraded
by doing alike what is done in the demo code.

1.2 Platform.h & HWinfo.h
The file Platform.h, located in the Platform/inc directory, is essential as it hold the information about
the mapping of the interrupts on the controller, i.e. what is the interrupt number for an interrupt coming
from a specific peripheral and DMA trigger numbers. It also holds the information about which internal
module is connected to the devices on development boards. The definitions for the two type of information
are clearly grouped and separated when one looks into the file. The first grouping should never require
modifications. The second should not be modified either, but when an application runs on a custom
platform that is not compatible with any already supported platforms, a new entry must be added. The file
Platform.h must first be copied in the application directory. Read through the Platform.txt and it
becomes clear what value of OS_PLATFORM must be selected for a new platform. The selected value is
important as using the wrong value will likely render the drivers unusable.

The file HWinfo.h, located in the Platform/inc directory, describes the capabilities of the device on a
the support development boards, it is not used by the RTOS nor the drivers, only the demos rely on it. An
application shouldn’t require its use but if the application was partly built re-using the demo code it could
be needed. As for Platform.h, if the application runs on an custom platform and HWinfo.h is needed, it
must first be copied and modified by adding the required information in it. And as for Platform.h, the
new platform must have a properly selected value and how to select the value for OS_PLATFORM is
described in Platform.txt.

1.3 Build Options
There are 6 ways the RTOS build options can be specified and they are listed in order of precedence below:

 1 – Define OS_DEF_IN_INC:

The file AbassiDef.h (it is AbassiDef.h for both Abassi and mAbassi) is included in
Abassi.h / mAbassi.h. The file AbassiDef.h is not supplied in the package, it has to be
created.

 2 – Define OS_DEMO and set to a –ve value (< 0):

The file AbassiLib.h (it is AbassiLib.h for both Abassi and mAbassi) is included in
Abassi.h / mAbassi.h. The file AbassiLib.h is located in the Platform/inc
directory and contains the build option settings used for creating the library version of
Abassi / mAbassi. Copy AbassiLib.h into the application directory and modify as needed
(source code only).

This is how the library version must be used

 3 – Define OS_DEMO and set to a non –ve value (>= 0):

The file AbassiDemo.h (It is AbassiDemo.h for both Abassi and mAbassi) is included in
Abassi.h / mAbassi.h.

*** For internal use by Code Time, do not use

 4 – Define OS_TEST_HOOK

The file AbassiTestCfg.h (it is AbassiTestCfg.h for both Abassi and mAbassi) is
included in Abassi.h / mAbassi.h.

*** For internal use by Code Time, do not use

Abassi RTOS Introduction 2018.09.02

Rev 1.2 Page 9

 5 – Define OS_DEF_IN_MAKE:

 Define the “C” token OS_DEF_IN_MAKE and define all the RTOS build options in the
makefile or in the GUI

 6 – None of the above

 The build options must be set in Abassi.h / mAbassi.h. This is how µAbassi must be
used

*** Legacy, do not use with Abassi / mAbassi

Important: with the library version of Abassi and mAbassi, the only useable method is to define
OS_DEMO and set to to any negative value (method #3). Not doing so with the library
version will make the Abassi.h / mAbassi.h include file incompatible with the library
code. In the case of µAbassi, only method #6 can be used, i.e. do not define any of the
token listed in method 1 to 5.

For the drivers, support software, etc. their build options must be set in the makefile or in the GUI. The
reason is the RTOS definition file (Abassi.h) is not always included in the drivers and support software.

1.4 New Application
All packages are provided with a demo typically named Template. This demo is very basic and is
provided because it can easily be used to create a new application from scratch. All it does is to create a
few tasks that print “hello world” on stdout. The template shows how to start the RTOS, set-up the
RTOS timer tick, initialize the system call layer and set-up the UART driver. For other drivers, looking into
the appropriate demo in the directory Share/src is of great help to understand how to set-up and initialize
a specific driver as the demo code is tailored to show that.

The typical initial sequence of operations an application based on Abassi goes through is:

- Optional H/W set-up

- Start the RTOS

- Initialize the System call layer if used

- Enable the interrupts

- Set-up the RTOS timer

- Install the TIMtick() interrupt handler

- Initialize the timer to trigger an interrupt every OS_TIMER_US

- Enable the timer interrupt on the interrupt controller

- Install all drivers:

- Initialize the driver

- Install the interrupt handler

- Enable the driver interrupt on the interrupt controller

- Create & resume the application tasks

- Optionally create and resume the debug / monitoring shell

- Self suspend or keep on processing

1.5 Debugging
Here’s some information to ease the debugging of an application

Abassi RTOS Introduction 2018.09.02

Rev 1.2 Page 10

1.5.1 Shell
The first resource to ease the debugging is to include the Debug Monitoring shell in the application. This is
easily done adding in the application the files Shell.c and SubShell.c. Create a task that will run the
debug / monitoring shell; the shell task function name is OSshell. Look into the header of Shell.c for
explanations on how to set-up the Shell to fit the application requirements. There is a full help menu in the
shell, to see all commands available, type help and to get detailed information about a command, e.g. the
command cmd, type help cmd.

1.5.2 ARM processors
The ARM processors use error handlers and Abassi supplied error handlers are basically infinite loop in
low power mode. On Thumb / Thumb2 and 32 instruction processors it is possible to go back to the
instruction that has triggered the error by adding 2 or 4 to the PC register value and then single step. Thumb
instruction code needs +2 and +4 for the 32 bit instructions.

The AArch64 architecture is a bit different. When an error occurred, the following registers hold the key
information:

X0 : ESR_ELn (syndrome register)

X1 : ELR_ELn (return address)

X2 : SPSR_ELn (saved Pstate register)

 X3 : n (Current exception level)

All unassigned interrupts are using the OSinvalidISR() do-nothing handler. To find interrupts that
haven’t been mapped using the OSisrInstall() component, put a breakpoint on OSinvalidISR() and
the interrupt number can be found:.

On the M# processor line, right upon entry in OSinvalidISR(), the register R0 holds the interrupt
number.

On the A9, the first instruction in OSinvalidISR() is “lsr r0, r0, #(31-9)”, single step on
it and the register R0 will then hold the interrupt number.

On the A53, right upon entry in OSinvalidISR(), the register X0 holds the interrupt number.

1.5.3 More info to be added in the futre
…

Abassi RTOS Introduction 2018.09.02

Rev 1.2 Page 11

2 References
[R1] Abassi RTOS – User Guide, available at http://www.code-time.com
[R2] mAbassi RTOS – User Guide, available at http://www.code-time.com
[R3] µAbassi RTOS – User Guide, available at http://www.code-time.com

Abassi RTOS Introduction 2018.09.02

Rev 1.2 Page 12

3 Revision History
Date Version Author/Editor Description

2018.08.28 1.1 EV First draft

2018.09.02 1.2 EV Added debug info

