

Copyright Information
This document is copyright Code Time Technologies Inc. ©2015-2018 All rights reserved. No part of this document may be
reproduced or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of
Code Time Technologies Inc.
Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

Abassi RTOS
EMAC Support

Disclaimer
Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the
document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in
the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 3

Table of Contents
1 INTRODUCTION .. 7

1.1 DISTRIBUTION CONTENTS .. 7
1.2 LIMITATIONS .. 7
1.3 FEATURES ... 7

2 TARGET SET-UP .. 8
2.1 BUILD OPTIONS .. 8

2.1.1 OS_PLATFORM ... 9
2.1.2 ETH_MAX_DEVICES ... 9
2.1.3 ETH_LIST_DEVICE ... 10
2.1.4 ETH_BUFFER_TYPE ... 11
2.1.5 Buffer size and number of buffers ... 12
2.1.6 ETH_MULTI_PHY ... 12
2.1.7 ETH_ALT_PHY_IF ... 12
2.1.8 ETH_ALT_PHY_MTX .. 12
2.1.9 ETH_OFF_DIR_RX .. 12
2.1.10 ETH_OFF_DIR_TX .. 13
2.1.11 ETH_DEBUG ... 13
2.1.12 ETH_#_SKEW_???... 13

3 DETAILS ... 14
3.1 MULTIPLE PHY .. 14
3.2 ALTERNATE PHY I/F .. 14

3.2.1 ETH_ALT_PHY_IF_INIT ... 15
3.2.2 ETH_ALT_PHY_IF_CFG ... 15
3.2.3 ETH_ALT_PHY_IF_REG_RD .. 15
3.2.4 ETH_ALT_PHY_IF_REG_WRT ... 15
3.2.5 ETH_ALT_PHY_IF_GET_RATE .. 15

4 SKEWS .. 16
4.1 ETH_#_SKEW_RXCTL ... 16
4.2 ETH_#_SKEW_RXCLK ... 17
4.3 ETH_#_SKEW_RXN ... 17
4.4 ETH_#_SKEW_TXCTL .. 17
4.5 ETH_#_SKEW_TXCLK ... 18
4.6 ETH_#_SKEW_TXN ... 18

5 EMAC API .. 20
5.1.1 ETH_MACAddressConfig ... 21
5.1.2 ETH_MACAddressGet .. 22
5.1.3 ETH_DMARxDescChainInit ... 23
5.1.4 ETH_DMARxDescReceiveITConfig ... 24
5.1.5 ETH_DMATxDescChainInit ... 25
5.1.6 ETH_DMATxDescTransmitITConfig ... 26
5.1.7 ETH_DMATxDescChecksumInsertionConfig ... 27
5.1.8 ETH_Get_Received_Frame_Length ... 28
5.1.9 ETH_Get_Received_Multi .. 29
5.1.10 ETH_Get_Transmit_Buffer ... 30
5.1.11 ETH_MacConfigDMA .. 31
5.1.12 ETH_Prepare_Transmit_Descriptors .. 32
5.1.13 ETH_Prepare_Multi_Transmit ... 33
5.1.14 ETH_ReleaseMulti .. 35

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 4

5.1.15 ETH_ResetEMAC ... 36
5.1.16 ETH_ResetEMACs .. 37
5.1.17 ETH_Start ... 38
5.1.18 ETH_Stop .. 39

6 PHY API .. 40
6.1.1 AltPhyIF .. 41
6.1.2 PHY_init .. 42

7 EXAMPLES .. 43
7.1 INITIALIZATION ... 43

7.1.1 Initialization for regular buffers ... 43
7.1.2 Initialization for pbuf .. 44

7.2 PACKET TRANSMISSION .. 45
7.2.1 Sending Segmented Packets .. 45
7.2.2 Sending Non-Segmented Packets .. 47

7.3 RECEIVING A PACKET ... 47
7.3.1 Receiving a Packet (internal payload buffers) .. 47
7.3.2 Receiving a Packet (external payload buffers) ... 48

8 REFERENCES .. 49
9 REVISION HISTORY ... 50

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 5

List of Figures

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 6

List of Tables
TABLE 1-1 DISTRIBUTION ... 7
TABLE 2-1 BUILD OPTIONS .. 8
TABLE 2-2 BUILD OPTIONS .. 10
TABLE 2-3 BUILD OPTIONS .. 11
TABLE 4-1 ETH_#_SKEW_RXCTL VALUES .. 16
TABLE 4-2 ETH_#_SKEW_RXCLK VALUES ... 17
TABLE 4-3 ETH_#_SKEW_RXN VALUES ... 17
TABLE 4-4 ETH_#_SKEW_TXCTL VALUES .. 18
TABLE 4-5 ETH_#_SKEW_TXCLK VALUES .. 18
TABLE 4-6 ETH_#_SKEW_TXN VALUES ... 19
TABLE 7-1 GLOBAL INITIALIZATION .. 43
TABLE 7-2 REGULAR BUFFER INITIALIZATION ... 44
TABLE 7-3 REGULAR BUFFER INITIALIZATION ... 45
TABLE 7-4 SEGMENTED PACKET TRANSMISSION .. 46
TABLE 7-5 NON-SEGMENTED PACKET TRANSMISSION .. 47
TABLE 7-6 PACKET RECEPTION (INTERNAL BUFFERS) .. 47
TABLE 7-7 PACKET RECEPTION (EXTERNAL BUFFERS) ... 48

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 7

1 Introduction
This document describes the EMAC driver used by Abassi1 [R1] (including mAbassi [R2] and µAbassi
[R3]). The EMAC driver, although primarily targeted for use with Abassi, is a standalone driver as it does
not use any RTOS components.

1.1 Distribution Contents
The set of files supplied with this distribution are listed in Table 1-1 below:

Table 1-1 Distribution

File Name Description

???_ethernet.h Include file for the EMAC driver (??? is target dependent)

???_ethernet.c “C” file for the EMAC driver (??? is target dependent)

ethernet.c LwIP Ethernet interface supplied as a working example on
how to use the EMAC driver.

ethernet.h LwIP Ethernet interface supplied as a working example on
how to use the EMAC driver.

1.2 Limitations
LwIP’s pbuf direct support by the driver is not available on some target platform due to limitations on the
EMAC capabilities. The driver does not support virtual memory remapping by the MMU; i.e. when
processor memory areas are at different addresses than the physical memory is.

IMPORTANT: In the current implementation of the EMAC driver, the accesses to the EMAC registers
through the macro EMACreg() are not protected against concurrent accesses (no
mutexes, spinlocks, or interrupt disabling). This is by design because it is necessary to
read and / or write EMACs registers in the EMAC interrupt handler. Isolated single read
or write don’t present an issue but grouped operations or read-modify-write could be
problematic.

 PHY registers accesses are mutex are protected. Therefore operations performing
accesses to PHY registers cannot be used in an interrupt.

1.3 Features
The EMAC driver API is kept the same across all target platforms. Target specific extra functionality is
not described in this document; refer to the code itself (either in the ??_ethernet.h and / or
??_ethernet.c files). There may also be some do-nothing functions when a platform specific EMAC
does not need or does not support a feature.

1 When Abassi is mentioned in this document, unless explicitly stated, it always means Abassi, mAbassi
and µAbassi.

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 8

2 Target Set-up
All there is to do to configure and enable the use of the EMAC driver in an application based on Abassi is
to include the following file in the build:

Ø ???_ethernet.c

and set-up the include search directory order making sure the file ???_ethernet.h is found.

The EMAC driver may or may not, depending on the target platform, be independent from other include
files.

2.1 Build Options
There are a few build options that allow the EMAC driver to be configured for the needs of the target
application. The following table lists all of them:

Table 2-1 Build Options

File Name Default Description

OS_PLATFORM 0xAAC5 Number indicating the target platform. The
default value is Altera Arria V / Cyclone V.
Refer to ???_ethernet.h to see the list of
supported platforms

ETH_MAX_DEVICES Target dependent Maximum number of EMACs module(s)
supported by the platform. The default value is
dependent on the build option OS_PLATFORM

ETH_LIST_DEVICE Target dependent Bit field selecting the EMACs module(s) to
use. The default value is dependent on the
build option OS_PLATFORM

ETH_BUFFER_TYPE ETH_BUFFER_UNCACHED The type of memory the EMACs DMA
descriptors and buffers are located in

ETH_RX_BUFSIZE 1536 Size of the DMA payload buffers for reception

ETH_TX_BUFSIZE 1536 Size of the DMA payload buffers for
transmission

ETH_N_RXBUF 4: when uncached
64: when cached

Number of DMA buffers in the reception chain

ETH_N_TXBUF 4: when uncached
64: when cached

Number of DMA buffers in the transmission
chain

ETH_MULTI_PHY -1 Control the use of single or multiple PHYs.

ETH_ALT_PHY_IF 0 Boolean enabling the use of an alternate PHY
I/F in extra to the MDIO

ETH_ALT_PHY_MTX 0 Boolean selecting a global mutex to protect the
access to the alternate PHY I/F instead of a per
device mutex.

ETH_OFF_DIR_RX -1 When applicable, sets-up the DMA direct cache
accesses from the network to the cache

ETH_OFF_DIR_TX -1 When applicable, sets-up the DMA direct cache
accesses from the cache to the network

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 9

ETH_DEBUG 0 Boolean controlling the sending of progress /
debug messages to stdout.

ETH_DEBUG 0 Boolean controlling the sending of progress /
debug messages to stdout.

ETH_#_SKEW_??? See Section 4 Skews to apply on signals between the EMAC
and the PHY. Symbol # is the EMAC device
number and ??? specified the signal(s) to skew

2.1.1 OS_PLATFORM
The build option OS_PLATFROM informs the EMAC driver of which platform it is operating on. There are
two benefits ensuing from the presence of this build option:

Ø The EMAC driver is able to configure and reset the EMAC devices without application
intervention.

Ø Provides default setting for the ETH_LIST_DEVICE build option (see section 2.1.3).

2.1.2 ETH_MAX_DEVICES
The build option ETH_MAX_DEVICES informs the EMAC driver of how many EMAC devices are on the
target platform. If this build option is not set, then the EMAC driver will rely on the build option
ETH_LIST_DEVICE (Section 2.1.3). If the build option ETH_LIST_DEVICE is also not set, then the
EMACS driver will rely on the OS_PLATFORM value (Section 2.1.1). When ETH_MAX_DEVICES is defined,
ETH_LIST_DEVICE cannot be defined.

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 10

2.1.3 ETH_LIST_DEVICE
The build option ETH_LIST_DEVICE informs the EMAC driver of which EMAC modules are in use.
When the target platform has multiple EMAC modules, enabling only the modules used by the application
offers two benefits:

Ø Minimize the data memory used by the driver, as there is no need to reserve memory for the DMA
descriptors and buffers of unused modules.

Ø When a single EMAC module is used, the EMAC registers are accessed through direct memory
access, possibly making the driver more real-time efficient.

The build option is a bit field, where the bit position represents the EMAC module. When the
corresponding bit is cleared to 0 it specifies the module is not used, when the bit is set to 1 then the module
is used. The following table shows the combinations for a 3 module target platform:

Table 2-2 Build Options

ETH_LIST_DEVICE EMAC #0 EMAC #1 EMAC #2

1 In use Not used Not used

2 Not used In use Not used

3 In use In use Not used

4 Not used Not used In use

5 In use Not used In use

6 Not used In use In use

7 In use In use In use

If the build option ETH_LIST_DEVICE is not externally defined, the default value will be set according to
the build option OS_PLATFORM and will make all the EMAC modules on the target platform available.
When ETH_LIST_DEVICE is defined, ETH_MAX_DEVICES (Section 2.1.2) cannot be defined.

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 11

2.1.4 ETH_BUFFER_TYPE
The EMAC driver is designed to operate with the controller DMA descriptors and DMA buffers in both
regular non-cached memory and in cached memory. When used with cached memory, the driver performs
all the required cache-invalidate and cache-flush operations to keep the DMA and the CPU in-sync when
memory is updated by one or the other. The following table lists the values ETH_BUFFER_TYPE can be set
to:

Table 2-3 Build Options

ETH_BUFFER_TYPE Description

ETH_BUFFER_UNCACHED The DMA descriptors and the DMA buffer are located in non-
cached memory. The linker section .uncached MUST exist, be
large enough to hold all DMA descriptors and DMA buffers, and
be mapped into non-cached memory. This is the default value if
ETH_BUFFER_TYPE is not externally defined.

ETH_BUFFER_CACHED The DMA descriptors and the DMA buffers are located in cached
memory. Depending on the target platform, it may not be
possible to locate the DMA descriptors in cached memory if the
DMA descriptors are not and cannot be set a size that is a
multiple of the target platform cache line size. When this occurs,
the DMA descriptors are located in the .uncached section (See
ETH_BUFFER_UNCACHED for further information).

ETH_BUFFER_PBUF This is alike ETH_BUFFER_CACHED, except for in the RX
direction, the DMA buffers are not created, nor attached to the
DMA descriptors by the EMAC driver. The attachment must be
performed outside the EMAC driver. Only the RX direction can
use supplied payload buffers and the size of the supplied payload
buffers must be at least ETH_RX_BUSIZE (plus the padding size
if needed) bytes.

ETH_BUFFER_CACHED_DIRECT Same as ETH_BUFFER_CACHED with the difference no cache
flushing and/or invalidation are done. This type of buffering is
only available on target platforms with a mechanism for the
EMAC DMA to directly access the cache contents.

ETH_BUFFER_PBUF_DIRECT Same as ETH_BUFFER_PBUF with the difference no cache
flushing and/or invalidation are done. This type of buffering is
only available on target platforms with a mechanism for the
EMAC DMA to directly access the cache contents.

NOTE: setting ETH_BUFFER_TYPE does not configure the cache. It simply informs the driver to use
cache flushing and invalidation when the buffer type is set to “cached”. When the buffer type is
set to “cached”, the memory section used by the DMA buffers is the same one used by all
variables (e.g. for GCC it’s .bss). For “un-cached” buffer, the buffers are assigned to a memory
section named “.uncached”. Therefore, the linker script file must include the section
“.uncached” and that section must be located in a memory region set by the cache configuration
as an “un-cached” memory. Not doing so will make the Ethernet driver fails. As the operations
of cache flushing and invalidation are “do-nothing” when used on “un-cached” memory, it is safe
to set ETH_BUFFER_TYPE set to ETH_BUFFER_CACHED or ETH_BUFFER_PBUF on “un-cached”
buffers.

 Depending on the target platform, even if ETH_BUFFER_TYPE is set to “cached”, it is possible the
DMA descriptors themselves still need to be located in “un-cached” memory. This happens when
the individual DMA descriptors can’t uniquely fit into an exact number of cache line size. For

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 12

safety, the “.uncached” memory section should always be defined in the linker script and the
cache configuration set-up accordingly.

NOTE: On Atera/Intel Arri V and Cyclone V platform the use of the ???_DIRECT buffer types involve
the DMA accessing the cache through the ACP mapper. As such, by default the EMAC driver
sets-up the AVP mapper through the acp_enable() function. If the application itself uses and
sets-up the ACP Mapper then refer to sections 2.1.9 and 2.1.10.

2.1.5 Buffer size and number of buffers
The build options ETH_RX_BUFSIZE and ETH_TX_BUFSIZE specify the size of the payload buffers the
DMA uses. The build options ETH_N_RXBUF and ETH_N_TXBUF specify how many DMA payload buffers
to use to create the circular chain of DMA buffers. The total amount of memory used for the payload in
each direction, and per EMAC module is:

ETH_?X_BUFSIZE * ETH_N_?XBUF

2.1.6 ETH_MULTI_PHY
ETH_MULTI_PHY controls if the EMAC is connected to a single PHY or multiple ones. An example of
multiple PHYs is a switch-PHY chip with a RGMII I/F to communicate with the EMAC and multiple
PHYs connected to the switch. When ETH_MULTI_PHY is set to a negative (default value), or not defined,
a single PHY is to be accessed by the EMAC. When set to a value between 0 and 31, the EMAC is
informed it has to access multiple PHYs and the value assigned to ETH_MULTI_PHY is the address of the
“master PHY”. When ETH_MULTI_PHY is set to a value equal or larger than 32, the EMAC is informed it
has to access multiple PHYs and the “master PHY” is set as the PHY with the lowest address. Refer to
section for a detailed description on how the EMAC deal with multiple PHYs and what is the “master
PHY”.

2.1.7 ETH_ALT_PHY_IF
ETH_ALT_PHY_IF is a build option enabling the hook to access PHY communication with a different
medium than MDIO. By default the hook is not called. To enable the EMAC driver to access PHYS with
an alternate medium than MDIO, define the build option ETH_ALT_PHY_IF and set ti to a non-zero value.
The interfacing with the hook is described in details in section 3.2.

2.1.8 ETH_ALT_PHY_MTX
The build option ETH_ALT_PHY_MTX is only recognized when the build option ETH_ALT_PHY_IF is
defined and set to a value greater or equal to 0. ETH_ALT_PHY_MTX when not defined uses the same mutex
(one per EMAC device) to protect the access to the AltPhyIF() attached function. If no mutexes
protection is requited for AltPhyIF(), then define ETH_ALT_PHY_MTX and set it to a negative value. If a
single mutex is needed to protect the access to AltPhyIF(), then define and set the build option to a
positive value (See section 3.2 for why this may be needed). If the build option is defined and set to a
value of 0 it is the same as if it hadn’t been defined and one mutex per EMAC device is used for the
protection.

2.1.9 ETH_OFF_DIR_RX
On the Altera/Intel Arria V and Cyclone V the EMAC DMA can access the processor cache contents when
the DMA performs the data transfer through the ACP mapper. The ACP mapper needs to be set-up and the
EMAC driver does it by default. If the application uses and sets-up the ACP mapper then it becomes
necessary for the application to provide the EMAC driver with the address offset used during the address
mapping. For the network to cache data transfers this is controlled through the build option
ETH_OFF_DIR_RX. By default it is set to -1 informing the driver to set-up the ACP mapper itself using the
ACP driver API acp_enable().

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 13

To inform the EMAC driver to not set-up the ACP then one way is to provide the address offset through the
imported global variable G_ETHoffDirRX; this is achieved when the build option is set to a value of -2.
The other way is to specify the address offset directly with ETH_OFF_DIR_RX; this happens when
ETH_OFF_DIR_RX has a value other than -1 and -2.

2.1.10 ETH_OFF_DIR_TX
On the Altera/Intel Arria V and Cyclone V the EMAC DMA can access the processor cache contents when
the DMA performs the data transfer through the ACP mapper. The ACP mapper needs to be set-up and the
EMAC driver does it by default. If the application uses and sets-up the ACP mapper then it becomes
necessary for the application to provide the EMAC driver with the address offset used during the address
mapping. For the cache to networks data transfers this is controlled through the build option
ETH_OFF_DIR_TX. By default it is set to -1 informing the driver to set-up the ACP mapper itself using the
ACP driver API acp_enable().

To inform the EMAC driver to not set-up the ACP then one way is to provide the address offset through the
imported global variable G_ETHoffDirTX; this is achieved when the build option is set to a value of -2.
The other way is to specify the address offset directly with ETH_OFF_DIR_TX; this happens when
ETH_OFF_DIR_RX has a value other than -1 and -2.

2.1.11 ETH_DEBUG
The build options ETH_DEBUG controls the printout of progress and error messages to stdout. This build
option can have three set-ups; when set to a value of zero or less, no messages are sent to stdout. When
set 1, it sends over stdout the set-up information used during initialization and causes of error during the
operation. When set to a value greater than 1, it prints on stdout all operations and causes of errors.

2.1.12 ETH_#_SKEW_???
Multiple build options are available to adjust the time skew on each ones of the RGMII signals. Depending
on the PHY, it’s likely that only a subset of the RGMII signals can be skewed. Default values depends on
the target PHY. Refer to section 4 for a detailed description.

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 14

3 Details
This section provides details on how the driver operates in a multiple PHY set-up and how to communicate
with PHY interface other than the RGMII interface of the EMAC.

3.1 Multiple PHY
The MDIO interface of the EMAC supports the access to multiple PHYs through a simple addressing.
When the build option ETH_MULTI_PHY is not defined or if defined and set to a negative value, the EMAC
is informed it has to handle a single PHY. In that case, when PHY_init() (Section 6.1.2) is called it
makes the EMAC to simply scans the addresses for the presence of a PHY where the addresses scanned
start at 0. The first PHY discovered becomes the sole PHY used by the EMAC. The discovered PHY is
set-up and auto-negotiation is started. If no PHYs are discovered or if the auto-negotiation fails, the
initialization is aborted.

Alternatively, the EMAC driver can be informed it has to handle multiple PHY; one example of such a
situation is the EMAC is connected to switch with multiple PHYs. In that case the EMAC, when
PHY_init() (Section 6.1.2) is called, scans all PHY addresses and sets-up all the PHYs discovered.
During the set-up and auto-negotiation, if the auto negotiation fails the error is ignored except in the case of
the “master PHY”. That “master PHY” may or may not be a real PHY but it is needed to set-up the speed
of the RGMII interface. If the PHY set-up and auto-negotiation fails for the “master PHY”, the
initialization is aborted. The failure of the auto-negotiation fails for other PHYs than the master PHY isn’t
an issue, as proper designed application should periodically monitor the link status of all PHY and deal
with a link down condition.

Note: The “master PHY” address is specified through the build option ETH_ALT_PHY_IF. If two or
more EMAC devices are attached to non-MDIO interfaces, it is the responsibility of the
application to make sure the multiple “master PHYs” are all at the same address. This could
require device / address remapping to fulfill this restriction.

3.2 Alternate PHY I/F
Some PHY uses another communication mechanism the MDIO, e.g. I2C or SPI. The EMAC driver itself
does not handle directly anther type of medium than MDIO but it supports access to PHYs with an alternate
custom communication interface though calls to the function AltPhyIF() supplied by the application. The
function AltPhyIF() prototype is:

int AltPhyIF(int Dev, int Cmd, int Addr, int P1, int P2);

The argument Dev specifies the EMAC device number for which the request applies and the argument
Addr specifies the PHY address or PHY number on that EMAC device; both arguments numbering starts at
0. There are multiple case for which AltPhyIF() is called and it’s specified by the argument Cmd which
can be any of these defines:

 ETH_ALT_PHY_IF_INIT
 ETH_ALT_PHY_IF_CFG
 ETH_ALT_PHY_IF_REG_RD
 ETH_ALT_PHY_IF_REG_WRT
 ETH_ALT_PHY_IF_GET_RATE

The calls to AltPhyIF() are protected by default with a mutex, where each EMAC device uses its own
mutex. A share mutex among multiple EMAC device may be required for proper protection. An example
for this is a switch with two or more RGMII interfaces and two or more of these interfaces are connected to
individual EMACS. Typically such a switch still uses a single alternate PHY interface, alike I2C or SPI, so
the multiple RGMII interfaces, i.e. multiple EMAC devices, must be protected with the same mutex.
Defining the build option ETH_ALT_PHY_MTX and setting it to a positive value will make the EMAC
driver use a single mutex for all alternate PHY accesses.

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 15

NOTE: unless the build option ETH_ALT_PHY_MTX is defined and set to a negative value, there are no
needs to use a mutex to provide exclusive access to the alternate communication interface because
the EMAC driver is already using a mutex to protect all PHY accesses.

The following sub-sections described in details what must be performed and meaning of the return value
for each commands.

3.2.1 ETH_ALT_PHY_IF_INIT
The command ATH_ALT_PHY_IF_INIT is a request to initialize the alternate PHY communication
mechanism to use by the EMAC device Dev. For example, it could be using the I2C driver and calling
i2c_init() plus performing any required global set-up needed. As this is a “device” initialization,
AltPhyIF() is called once per device and the value in the argument Addr must be ignored. If there are no
alternate PHY interfaces supported by the Device Dev, then the return value must be 0. If there are one or
more alternate PHY supported attached the device Dev the return value must be non-zero. The arguments
P1 and P2 are always set to 0 and should be ignored.

3.2.2 ETH_ALT_PHY_IF_CFG
AltPhyIF() is called with the command ETH_ALT_PHY_IF_CFG only for valid Device and PHY
addresses (specified by the arguments Dev and Addr). This command is used for PHY specific
configuration alike clock vs data skew. The argument P2 is always 0 and the argument P1 is exactly the
same as the argument Rate passed to PHY_init() by the application. AltPhyIF() will be called with
every time PHY_init() for that device is called. The caller always ignores the return.

3.2.3 ETH_ALT_PHY_IF_REG_RD
The command ETH_ALT_PHY_IF_REG_RD is a request to read an IEEE standard register from the PHY
specified by the arguments Dev and Addr. The register number to read is specified by the argument P1 and
the argument P2 is to be ignored and the return value is the 16 bits value read from the register specified by
P1. Except for the register numbers 2 and 3, this command is only used for existing PHYs. In the case of
register number 2 and 3, these are the PHY identification registers and they are read by the EMAC driver to
determine is a PHY at the address Addr exists or not. When a PHY exists, the contents of the register 2
and 3 must be returned. When a PHY does not exist, the return value of both register reads MUST be set to
0xFFFF. If a non-existent “master PHY” is used (See section 3.1), instead of returning 0xFFFF, the return
value must be 0x0001 for both register reads.

3.2.4 ETH_ALT_PHY_IF_REG_WRT
The command ETH_ALT_PHY_IF_REG_WRT is a request to write to an IEEE standard register in the PHY
specified by the arguments Dev and Addr. The register number to write is specified by the argument P1
and the argument P2 is the 16 bits value to write to the register. The return value must be 0 upon successful
write and non-zero for a failed write operation. This command is only used for existing PHYs.

3.2.5 ETH_ALT_PHY_IF_GET_RATE
ETH_ALT_PHY_IF_GET_RATE is used to query the “master PHY” (See section 3.1) about the rate the
RGMII interface is set to. The returned value must be the same numbering as used in the return value of
the function PHY_init() (See section 6.1.2)

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 16

4 Skews
Multiple build options constructed in the form ETH_#_SKEW_??? are available to adjust the skew on the
RGMII signals between the EMAC and the PHY. In the build option, the character # must be replaced by
the EMAC device number, starting from 0 and going upward. The characters ??? specify the signal to
skew and these characters can take the following: RXCTL, RXCLK, RX0, RX1, RX2, RX3, TXCTL, TXCLK,
TX0, TX1, TX2, TX3. RXCLK and TXCLK adjust the skew on the clock line, and RXCTL and TXCTL are for
the skew on the control line. The RX0, RX1, RX2, XR3, TX0, TX1, TX2, and TX3 are the skew for the data
line where the numbering from 0 to 3 specify the pair numbering at the Ethernet interface. Unless specified
otherwise the skew is an absolute delay / advance irrelevant from the other signals on the RGMII.

All skews are specified in picosecond (ps) units. Although no PHY have the capability to fine tune the
skew at the picosecond level, the choice for such a granularity was necessary because PHYs typically use
different skew stepping. The default value is used if the build option is not defined or if it is defined and
set to -1 (the value MUST be -1 otherwise the value is literally used). The default values are values that
work on the development boards used by Core Time.

A positive skew value is the signal(s) specified by the build option being delayed by the specified number
in picoseconds. Alternatively, a negative skew is the signal(s) specified by the build option being advanced
in time by the negative of the specified number in picoseconds.

The PHY labeled Marvel 88E1x covers the 4 following parts: 88E10, 88E12, 88E14 and 88E18.

The value specified by the build option should match the specified minimum, maximum and step values
indicated in the table. If this is not respected then the following will occur

- If the value specified is not an exact multiple of the step value, the resulting value used is alike
the mathematical integer operation ((Value/Step)*Step) applied at the specified value.

- Build options values are not checked against the boundaries, nor clipped. If the value specified
is less than the minimum supported or larger than the maximum supported then the skew used
will be the result of some modulo operation.

Only one of build options for the skews is supported per EMAC device, i.e. when an EMAC device is
connected to multiple PHYs then the skew to apply on the individual PHYs must be implemented in the
EMAC driver itself (or in AltPhyIF()).

4.1 ETH_#_SKEW_RXCTL
The build option ETH_#_SKEW_RXCTL sets the skew on the Receiver Control signal of the RGMII
interface. The character # must be set to the EMAC device number starting with a value of 0 going
upward.

Table 4-1 ETH_#_SKEW_RXCTL values

PHY Min Max Step Default

Micrel KSZ9021 -840 960 120 -840

Micrel KSZ9031 -480 420 60 -480

Micrel KSZ9071 -480 420 60 -480

Lantiq PEF7071 Ignored – Not supported

Marvel 88E1x Ignored – Not Supported

TI TIDP83847 Ignored – Not Supported

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 17

4.2 ETH_#_SKEW_RXCLK
The build option ETH_#_SKEW_RXCLK sets the skew on the Receiver Clock signal of the RGMII interface.
The character # must be set to the EMAC device number starting with a value of 0 going upward.

Table 4-2 ETH_#_SKEW_RXCLK values

PHY Min Max Step Default

Micrel KSZ9021 -840 960 120 360

Micrel KSZ9031 -900 960 60 0

Micrel KSZ9071 -900 960 60 0

Lantiq PEF7071 0 1500 500 1500

Marvel 88E1x Ignored – Not Supported

TI TIDP83847 0 4000 250 2250

PEF7071 if ETH_#_SKEW_RXCLK is not defined (or defined and set to -1), the default value specified in
the table is used. To not overload and use the strap pin skew setting instead, define and set
ETH_#_SKEW_RXCLK to a value of -2.

TIDP83847 if the strap option are enabled the skew used is configured from the strap and not from S/W.

4.3 ETH_#_SKEW_RXn
The build options ETH_#_SKEW_RXn covers, with n having the possible values of 0, 1, 2, and 3, the skew to
apply on each one of the 4 pairs of data signals (at the Ethernet I/F). Some PHYs support individual pair
setting when others apply the same skew on all 4 pairs. In the following tables, when the column labeled n
only lists 0 it means the skew specified is applied on all 4 pairs and the build option ETH_#_SKEW_RX0 is
the one used to set the skew. In that case all other build options for the Receiver Data skews, i.e.
ETH_#_SKEW_RX1, ETH_#_SKEW_RX2 and, ETH_#_SKEW_RX3, are ignored.

Table 4-3 ETH_#_SKEW_RXn values

PHY Min Max Step Default n

Micrel KSZ9021 -840 960 120 -840 0, 1, 2, 3

Micrel KSZ9031 -480 420 60 0 0, 1, 2, 3

Micrel KSZ9071 -480 420 60 0 0, 1, 2, 3

Lantiq PEF7071 Ignored – Not Supported

Marvel 88E1x 0 120000 8000 0 0, 1, 2, 3

TI TIDP83847 Ignored – Not Supported

4.4 ETH_#_SKEW_TXCTL
The build option ETH_#_SKEW_TXCTL sets the skew on the Transmitter Control signal of the RGMII
interface. The character # must be set to the EMAC device number starting with a value of 0 going
upward.

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 18

Table 4-4 ETH_#_SKEW_TXCTL values

PHY Min Max Step Default

Micrel KSZ9021 -840 960 120 -840

Micrel KSZ9031 -480 420 60 -480

Micrel KSZ9071 -480 420 60 -480

Lantiq PEF7071 Ignored – Not Supported

Marvel 88E1x Ignored – Not Supported

TI TIDP83847 Ignored – Not Supported

4.5 ETH_#_SKEW_TXCLK
The build option ETH_#_SKEW_TXCLK sets the skew on the Transmitter Clock signal of the RGMII
interface. The character # must be set to the EMAC device number starting with a value of 0 going
upward.

Table 4-5 ETH_#_SKEW_TXCLK values

PHY Min Max Step Default

Micrel KSZ9021 -840 960 120 720

Micrel KSZ9031 -900 960 60 0

Micrel KSZ9071 -900 960 60 0

Lantiq PEF7071 0 1500 500 1500

Marvel 88E1x Set to 0 or non-0 (See below)

TI TIDP83847 0 4000 250 2750

PEF7071 if ETH_#_SKEW_RXCLK is not defined (or defined and set to -1), the default value specified in
the table is used. To not overload and use the strap pin skew setting instead, define and set
ETH_#_SKEW_RXCLK to a value of -2.

88E1x The 88E1x only supports an enable and disable of an internal delay of around ¼ clock period.
Setting ETH_#_SKEW_TXCLK to a zero value disable the TX clock internal delay and when
set to a non-zero value it enables the delay. If ETH_#_SKEW_TXCLK is not defined or if
defined and set to a value of -1 then the delay is enable.

TIDP83847 if the strap option are enabled then the skew to use is configured from the straps and not from
the S/W.

4.6 ETH_#_SKEW_TXn
The build options ETH_#_SKEW_TXn covers, with n having the possible values of 0, 1, 2, and 3, the skew to
apply on each one of the 4 pairs of data signals (at the Ethernet I/F). Some PHYs support individual pair
setting when others apply the same skew on all 4 pairs. In the following table, when the column labeled n
only lists 0 it means the skew specified is applied on all 4 pairs and the build option ETH_#_SKEW_TX0 is
the one used to set the skew. In that case all other build options for the Transmitter Data skews, i.e.
ETH_#_SKEW_TX1, ETH_#_SKEW_TX2, and ETH_#_SKEW_TX3, are ignored.

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 19

Table 4-6 ETH_#_SKEW_TXn values

PHY Min Max Step Default n

Micrel KSZ9021 -840 960 120 -840 0, 1, 2, 3

Micrel KSZ9031 -480 420 60 0 0, 1, 2, 3

Micrel KSZ9071 -480 420 60 0 0, 1, 2, 3

Lantiq PEF7071 Ignored – Not Supported

Marvel 88E1x Ignored – Not Supported

TI TIDP83847 Ignored – Not Supported

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 20

5 EMAC API
In this section, the EMAC API of all common EMAC driver functions is provided. For the PHY API, refer
to the next section. Section 7 gives examples on how to use the EMAC.

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 21

5.1.1 ETH_MACAddressConfig

Synopsis
#include “???_ethernet.h”

void ETH_MACAddressConfig(int Dev, unint32_t MacAddr, uint8_t *Addr);

Description

ETH_MACAddressConfig() is the component used to set the MAC address in the EMAC
module. The module’s device number is indicated by the argument Dev and the MAC
address register to program is indicated by the argument MacAddr. The 6 byte MAC address
is supplied through the Addr array of bytes, where the first byte (index 0) is the LSByte of
the MAC address.

Arguments

Dev Module’s device number (Number starting at 0)
MacAddr MAC address register to set-up (These tokens must be used:

ETH_MAC_Address0 up to ETH_MAC_AddressN, where N is target specific)
Addr 48 bit MAC address to set-up. The LSByte of the MAC address is in Addr[0]

and the MSByte of the MAC address is in Addr[5].

Returns
void

Component type

Function

Options

Notes

See Also
ETH_MACAddressGet

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 22

5.1.2 ETH_MACAddressGet

Synopsis
#include “???_ethernet.h”

void ETH_MACAddressGet(int Dev, unint32_t MacAddr, uint8_t *Addr);

Description

ETH_MACAddressGet() is the component used to retrieve the MAC address that was set-up
in the EMAC module. The module’s device number is indicated by the argument Dev and
the MAC address register to extract the MAC address from is indicated by the argument
MacAddr. The 6 byte MAC address is reported through the Addr array of bytes, where the
first byte (index 0) is the LSByte of the MAC address.

Arguments

Dev Module’s device number (Number starting at 0)
MacAdrr MAC address register to extract the MAC address (These tokens must be used:

ETH_MAC_Address0 up to ETH_MAC_AddressN, where N is target specific)
Addr The 48 bit MAC address extracted is deposited in this buffer. The LSByte of

the MAC address is in Addr[0] and the MSByte of the MAC address is in
Addr[5]. Must be at least dimensioned to 6 bytes

Returns
void

Component type

Function

Options

Notes

See Also
ETH_MACAddressConfig

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 23

5.1.3 ETH_DMARxDescChainInit

Synopsis
#include “???_ethernet.h”

void ETH_DMARxDescChainInit(int Dev);

Description

ETH_DMARxDescChainInit() creates the circular linked list of descriptors used by the
DMA in the receiving direction, rendering the reception ready to be started. The EMAC
module number is specified through the argument Dev. ETH_DMARxDescChainInit()
does not enable the received interrupts, nor does it starts the transfers. For these, refer to the
components ETH_DMARxDescReceiveITConfig() and ETH_Start().

If the buffer type build option ETH_BUFFER_TYPE is set to ETH_BUFFER_PBUF, then the
application must attach the DMA payload buffers to the descriptors after
ETH_DMARxDescChainInit() has been applied. Refer to the initialization example (Sect
7.1.2).

Arguments

Dev Module’s device number to set-up (Number starting at 0)

Returns

void

Component type

Function

Options

Notes

See Also

ETH_DMATxDescChainInit
ETH_DMARxDescReceiveITConfig
ETH_Start

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 24

5.1.4 ETH_DMARxDescReceiveITConfig

Synopsis
#include “???_ethernet.h”

void ETH_DMARxDescReceiveITConfig(int Dev, int NewState);

Description

ETH_DMARxDescReceiveITConfig() controls if the reception of packets generates an
interrupt. The EMAC module number is specified through the argument Dev. To enable the
reception interrupts, the argument NewState must be set to a non-zero value. To disable the
reception interrupts, the argument NewState must be set to a value of 0.

Arguments

Dev Module’s device number to set-up (Number starting at 0)
NewState == 0 : disable the reception interrupts
 != 0 : enable the reception interrupts

Returns

void

Component type

Function

Options

Notes

See Also

ETH_DMARxDescChainInit
ETH_Start

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 25

5.1.5 ETH_DMATxDescChainInit

Synopsis
#include “???_ethernet.h”

void ETH_DMATxDescChainInit(int Dev);

Description

ETH_DMATxDescChainInit() creates the circular linked list of descriptors used by the
DMA in the transmitting direction, rendering the transmission ready to be started. The
EMAC module number is specified through the argument Dev.
ETH_DMATxDescChainInit() does not start, nor does enable the checksum insertion by the
EMAC module (when applicable). For these, please refer to the components ETH_Start()
and ETH_DMATxDescChecksumInsertionConfig().

Arguments

Dev Module’s device number to set-up (Number starting at 0)

Returns

void

Component type

Function

Options

Notes

.
See Also

ETH_DMARxDescChainInit
ETH_DMARxDescReceiveITConfig
ETH_DMATxDescChecksumInsertionConfig
ETH_Start

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 26

5.1.6 ETH_DMATxDescTransmitITConfig

Synopsis
#include “???_ethernet.h”

void ETH_DMATxDescTransmitITConfig(int Dev, int NewState);

Description

ETH_DMATxDescTransmitITConfig() controls if the transmission of packets generates an
interrupt. The EMAC module number is specified through the argument Dev. To enable the
transmission interrupts, the argument NewState must be set to a non-zero value. To disable
the transmission interrupts, the argument NewState must be set to a value of 0.

Arguments

Dev Module’s device number to set-up (Number starting at 0)
NewState == 0 : disable the transmission interrupts
 != 0 : enable the transmission interrupts

Returns

void

Component type

Function

Options

Notes

See Also

ETH_DMATxDescChainInit
ETH_Start

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 27

5.1.7 ETH_DMATxDescChecksumInsertionConfig

Synopsis
#include “???_ethernet.h”

void ETH_DMATxDescChecksumInsertionConfig(int Dev, int ChkSum);

Description

ETH_DMATxDescChecksumInsertionConfig() controls the insertion by the EMAC
module of the TCP / UDP / ICMP checksum, including the pseudo header. The module
device to set-up is specified with the argument Dev. The argument ChkSum, a Boolean,
requests the module to insert the checksum (ChkSum != 0) or to not insert the checksum
(ChkSum == 0). ETH_DMATxDescChecksumInsertionConfig() should only be used
before enabling the transmission with ETH_Start() (Section 5.1.17).

Arguments

Dev Module’s device number to set-up (Number starting at 0)
ChkSum == 0 : request the module to not insert the checksum.
 != 0 : request the module to insert the checksum

Returns

void

Component type

Function

Options

Notes

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 28

5.1.8 ETH_Get_Received_Frame_Length

Synopsis
#include “???_ethernet.h”

int ETH_Get_Received_Frame_Length(int Dev);

Description

ETH_Get_Received_Frame_Length() is used to know if a packet is available in the
reception direction and, when one is available, what is its size. The module’s device number
is specified through the argument Dev and the information is delivered in the retuned value.
When the return value is negative, then no new packets are available. Non-negative values
indicate the number of bytes in the new packet (including 0 for empty payload packet).

Arguments

Dev EMAC device number to retrieve the packet info from

Returns

int < 0: no new packet available
 >=0: size in bytes of the new packet

Component type

Function

Options

Notes

If ETH_Get_Received_Frame_Length() is used after reading one or more segments
through ETH_Get_Received_Multi(), the returned value will not report the size of the
whole packet, but instead will report the size of the unread section of the packet.

See Also

ETH_Get_Received_Frame_Length
ETH_Get_Received_Multi

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 29

5.1.9 ETH_Get_Received_Multi

Synopsis
#include “???_ethernet.h”

FrameTypeDef ETH_Get_Received_Multi(int Dev)

Description

ETH_Get_Received_Multi() is used to retrieve the information on the oldest
non-extracted segment received by the DMA. The module’s device number is specified
through the argument Dev and the retrieved information is inserted in the retuned data
structure of type FrameTypeDef. The number of bytes held in the segment is indicated in
FrameTypeDef.length. If the value is negative then there are no more segments available.
The base address of the payload is indicated by FrameTypeDef.buffer, and if the base
address of the payload buffer is NULL then there are no more segments available.

Arguments

Dev EMAC device number to retrieve the packet segment from

Returns

FrameTypeDef

Component type

Function

Options

Notes

Once all the segments of a packet have been extracted, the component
ETH_Release_Received() must be called to return all the DMA descriptors that were
holding the segment(s) of the packet back to the DMA.

See Also

ETH_Get_Received_Frame_Length
ETH_Release_Received

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 30

5.1.10 ETH_Get_Transmit_Buffer

Synopsis
#include “???_ethernet.h”

void *ETH_Get_Transmit_Buffer(int Dev);

Description

ETH_Get_Transmit_Buffer() is used by the application to know the base address of the
next transmit buffer available to send a packet, or segment of a packet. The module’s device
number is specified through the argument Dev. The component returns the base address of
the payload buffer, and NULL if there are no more DMA transmit descriptors available. The
non-availability of a transmit descriptor is due to the DMA owning all transmit descriptors; in
other words, all the transmit descriptors have been given to the DMA and transmission is still
pending.

Arguments

Dev EMAC device number to obtain the payload buffer from

Returns

Void * == NULL : no transmit payload buffers available
 != NULL : base address of the payload buffer

Component type

Function

Options

Notes

The non-availability of a transmit descriptor is due to the DMA owning all transmit
descriptors; in other words, all the transmit descriptors have been given to the DMA and
transmission is still pending. This could also be provoked if the application requires a
number of segments for a packet where the number of segments exceeds the number of
transmission DMA descriptors (ETH_N_TXBUF).

ETH_Get_Transmit_Buffer() must always be used and its return value checked before
calling the component ETH_Prepare_Transmit_Descriptors() or the component
ETH_Prepare_Transmit_Descriptors().

See Also

ETH_Prepare_Transmit_Descriptors
ETH_Prepare_Multi_Transmit

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 31

5.1.11 ETH_MacConfigDMA

Synopsis
#include “???_ethernet.h”

int ETH_MacConfigDMA(int Dev, int Rate);

Description

ETH_MacConfigDMA() is the component used to start-up the Ethernet link (this does not
start the RX & TX of the packets). The device to start-up is specified with the argument Dev.
The link rate can be set to auto-negotiate or set to a desired speed / duplexing with the value
assigned to the argument Rate. The returned value reports the established speed and duplex
when successful or an error if the link did not established connection.

Arguments

Dev EMAC device number to start-up the Ethernet link
Rate Specifies if using auto-negotiation or using a fixed rate and duplexing. The

accepted values for Rate are:
 10 10 Mbps / full duplex
 11 10 Mbps / half duplex
 100 100 Mbps / full duplex
 101 100 Mbps / half duplex
 1000 1000 Mbps / full duplex
 1001 1000 Mbps / half duplex
 Negative auto-negotiation

Returns

int Resulting connection speed and duplexing or error
 10 10 Mbps / full duplex
 11 10 Mbps / half duplex
 100 100 Mbps / full duplex
 101 100 Mbps / half duplex
 1000 1000 Mbps / full duplex
 1001 1000 Mbps / half duplex
 Negative the connection was not established

Component type

Function

Options

Notes

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 32

5.1.12 ETH_Prepare_Transmit_Descriptors

Synopsis
#include “???_ethernet.h”

int ETH_Prepare_Transmit_Descriptors(int Dev, int Len);

Description

ETH_Prepare_Transmit_Descriptors() is the component to use to give to the DMA a
transmit descriptor that holds a non-segmented packet. The payload that will be transmitted
is the most recent one returned by the component ETH_Get_Transmit_Buffer(). The
module’s device number is specified through the argument Dev, and the size of the packet (in
bytes) is specified by the argument Len.

Arguments

Dev EMAC device number to retrieve the packet segment from
Len Number of bytes in the packet

Returns

int == 0 Success
 == 1 The DMA owns all the descriptors
 This can only happen if ETH_Get_Transmit_Buffer was not called
 before or if it was called, the returned value not checked against NULL.
 == 2 The packet length specified by Len exceeds the size of the DMA payload

Component type

Function

Options

Notes

The component ETH_Get_Transmit_Buffer() must always be used and its return value
checked before calling ETH_Prepare_Transmit_Descriptors().

If a packet is too large to fit in the allocated DMA payload (build option ETH_RX_BUFSIZE),
then the component ETH_Prepare_Multi_Transmit must be used instead of
ETH_Prepare_Transmit_Descriptors().

See Also

ETH_Get_Transmit_Buffer
ETH_Prepare_Multi_Transmit

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 33

5.1.13 ETH_Prepare_Multi_Transmit

Synopsis
#include “???_ethernet.h”

int ETH_Prepare_Multi_Transmit(int Dev, int Len, int IsFirst,
 int IsLast);

Description

ETH_Prepare_Multi_Transmit() is the component to use to give to the DMA a transmit
descriptor that holds a segment of a packet. The payload of the segment is the most recent
one returned by the component ETH_Get_Transmit_Buffer(). The module’s device
number is specified through the argument Dev and the size of the packet (in bytes) is
specified by the argument Len. The argument IsFirst, a Boolean, indicates the segment as
being the first segment of a packet when set to a non-zero value. When set to a value of 0,
then the segment is not the first one. The argument IsLast, a Boolean, indicates the
segment as being the last segment of a packet when set to a non-zero value. When set to a
value of 0, then the segment is not the last one. When a single segment is the whole packet,
both argument IsFirst and IsLast must be set to a non-zero value.

Arguments

Dev EMAC device number to retrieve the packet segment from
Len Number of bytes in the segment
IsFirst When non-zero, indicates this is the first segment of the packet
IsLast When non-zero, indicates this is the last segment of the packet

Returns

int == 0 Success
 == 1 The DMA owns all the descriptors
 This can only happen if ETH_Get_Transmit_Buffer was not called
 before or if it was called, the returned value not checked against NULL.
 == 2 The packet length specified by Len exceeds the size of the DMA payload
 == 3 The packet was never given its first segment

Component type

Function

Options

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 34

Notes

The packet is not transmitted as long as the argument IsLast is zero. The internal state
machine is self-correcting upon incorrect usage of IsFirst and/or IsLast.

The component ETH_Get_Transmit_Buffer() must always be used and its return value
checked before calling ETH_Prepare_Multi_Transmit().

If a packet is too large to fit in the allocated DMA payload (build option ETH_TX_BUFSIZE),
then the component ETH_Prepare_Transmit_Descriptors() must be used instead of
ETH_Prepare_Multi_Transmit().

See Also

ETH_Get_Transmit_Buffer
ETH_Prepare_Transmit_Descriptors

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 35

5.1.14 ETH_ReleaseMulti

Synopsis
#include “???_ethernet.h”

void ETH_ReleaseMulti(int Dev);

Description

Once a packet all the segments of a packet have been extracted through the component
ETH_Get_Received_Multi(), the component ETH_ReleaseMulti() must be called to
return to the DMA the descriptor the extracted packet was using. This component also
sets-up the EMAC driver internal mechanism to handle the next packet received or to be
retrieved.

Arguments

Dev EMAC device number to wrap-up the extraction of a packet

Returns

void

Component type

Function

Options

Notes

If ETH_ReleaseMulti() is used before having read all the segments of a packet (through
ETH_Get_Received_Multi()), then the internal EMAC driver mechanism will consider all
the data that was extracted was one packet and the remainder of the un-read packet becomes
now considered as a newly received packet. Therefore, ETH_ReleaseMulti() should only
be used once all the segments of a packet have been extracted.

See Also
ETH_Get_Received_Frame_Length
ETH_Get_Received_Multi

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 36

5.1.15 ETH_ResetEMAC

Synopsis
#include “???_ethernet.h”

void ETH_ResetEMACs(int Dev);

Description

ETH_ResetEMAC() is used to reset and pre-initialize one EMACs device on the platform. It
should be called only once and this should be done before using any other EMAC driver
components of that EMAC device.

Arguments

Dev EMAC device number to reset & initialize

Returns

void

Component type

Function

Options

Notes

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 37

5.1.16 ETH_ResetEMACs

Synopsis
#include “???_ethernet.h”

void ETH_ResetEMACs(void);

Description

ETH_ResetEMACs() is used to reset and pre-initialize all EMACs devices on the platform.
It should be called only once and this should be done before using any other EMAC driver
components.

Arguments
void

Returns

void

Component type

Function

Options

Notes

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 38

5.1.17 ETH_Start

Synopsis
#include “???_ethernet.h”

void ETH_Start(int Dev);

Description

ETH_Start() start the transmission and reception of the EMAC module. The module
device to start is specified with the argument Dev.

Arguments

Dev Module’s device number to start (Number starting at 0)

Returns

void

Component type

Function

Options

Notes

Before using ETH_Start(), each of these steps must be performed:

Ø RX DMA chain initialization
Ø If the buffer type is set to ETH_BUFFER_PBUF, attach the payload buffers to the

reception descriptors
Ø Enable / disable the reception interrupt
Ø TX DMA chain initialization
Ø Enable / disable the hardware insertion of the checksum.

See Also
ETH_DMARxDescChainInit
ETH_DMARxDescReceiveITConfig
ETH_DMATxDescChainInit
ETH_DMATxDescChecksumInsertionConfig
ETH_Stop

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 39

5.1.18 ETH_Stop

Synopsis
#include “???_ethernet.h”

void ETH_Stop(int Dev);

Description

ETH_Stop() stops the transmission and reception of the EMAC module. The module device
to stop is specified with the argument Dev.

Arguments

Dev Module’s device number to stop (Number starting at 0)

Returns

void

Component type

Function

Options

Notes

After using ETH_Stop(), it may be possible or may not be as this depends on the target
platform, to use ETH_start() without having go through the whole initialization sequence.

See Also

ETH_Start

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 40

6 PHY API
In this section, the PHY API of all common EMAC driver functions is provided. For the EMAC API, refer
to the previous section. Section 7 gives examples on how to use the EMAC.

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 41

6.1.1 AltPhyIF

Synopsis
#include “???_ethernet.h”

int AltPhyIF(int Dev, int Cmd, int Addr, int P1, int P2);

Description

AltPhyIF() is a function supplied by the application for custom communications with one
or multiple PHYs. This function is called only f the build option ETH_ALT_PHY_IF is
defined and set to a non-zero value. The EMAC device calling AltPhyIF() is indicated by
the argument Dev and the PHY address by the argument Addr. There are 5 commands that
can be specified with the argument Cmd and depending on the command, the arguments P1
and P2 could be arguments specific to the command.

Arguments

Dev Module’s device number to stop (Number starting at 0)
Cmd Type of operation to perform.
Addr PHY address or number (Starts at 0)
P1 1st argument to the command
P2 2nd argument to the command

Returns

int The return value is command specific

Component type

Function

Options

There are 5 commands that can be specified
 ETH_ALT_PHY_IF_INIT
 ETH_ALT_PHY_IF_CFG
 ETH_ALT_PHY_IF_REG_RD
 ETH_ALT_PHY_IF_REG_WRT
 ETH_ALT_PHY_IF_GET_RATE

A detailed description is provided in section 0

Notes

See Also

Section 0.

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 42

6.1.2 PHY_init

Synopsis
#include “???_ethernet.h”

int PHY_init(int Dev, int Rate);

Description

ETH_MACAddressConfig() is the component used to set the MAC address in the EMAC
module. The module’s device number is indicated by the argument Dev and the MAC
address register to program is indicated by the argument MacAddr. The 6 byte MAC address
is supplied through the Addr array of bytes, where the first byte (index 0) is the LSByte of
the MAC address.

Arguments

Dev Module’s device number (Number starting at 0)
Rate Desired Ethernet rate. The recognized values for Rate are:
 10 : 10 Mbps full duplex
 11 : 10 Mbps half duplex
 100 : 100 Mbps full duplex
 101 : 100 Mbps half duplex
 1000 : 1000 Mbps full duplex
 1001 : 1000 Mbps half duplex
 -ve : auto-negotiation

Returns
int
 10 : 10 Mbps full duplex
 11 : 10 Mbps half duplex
 100 : 100 Mbps full duplex
 101 : 100 Mbps half duplex
 1000 : 1000 Mbps full duplex
 1001 : 1000 Mbps half duplex
 -ve : error

Component type

Function

Options

Notes

See Also

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 43

7 Examples

7.1 Initialization
The first step required when using the EMAC driver is to reset and do the basic initialization of all EMAC
modules on the chip. This needs to be done only once and it must performed before using any EMAC
driver components. Then the IP stack and the driver/buffer can be configured and interrupts enabled:

Table 7-1 Global Initialization

 ETH_ResetEMACs();

 - Install EMAC interrupt handler
 - Init the IP Stack & Driver/Buffers
 - Enable EMAC interrupts

Once the EMAC modules have been reset and are ready to be programmed and used, the sequence of
initialization is different if regular buffers are used or if supplied buffers are used. The supplied buffer
examples use the LwIP pbufs. For sake of generality, the EMAC device used in the followings example is
the token EMAC_DEVICE as the value is dependent on the EMAC module to handle.

When using Abassi, a custom interrupt handler, which is IP stack dependent, should be used instead of
relying on polling. Such an interrupt handler is provided for the lwIP IP stack in the file ethernetif.c
located in lwip-?-?-?/ports/Target/RTOS for the lwIP IP stack.

7.1.1 Initialization for regular buffers
The initialization when the EMAC driver is using regular buffers (ETH_BUFFER_TYPE is set to either
ETH_BUFFER_CACHED or ETH_BUFFER_UNCACHED) is straightforward. The first step is to bring the link
up using the component ETH_MacConfigDMA(), specifying which EMAC module and desired link rate.
Here, the link rate is left to be determined through auto-negotiation as the Rate argument (2nd argument) is
set to -1. Once the link is up, the MAC address (not the IP address) must be provided to the EMAC module
through the component ETH_MACAddressConfig(). Then the sequence becomes:

Ø Initialize the receiver DMA descriptor & buffer chain through ETH_DMARxDescChainInit()

Ø Initialize the transmission DMA descriptor & buffer chain through
ETH_DMATxDescChainInit()

Ø Enable the Receive interrupts if interrupts are used in the reception, through
ETH_DMARxDescReceiveITConfig()

Ø Enable the Transmit interrupts if interrupts are used in the transmission, through
ETH_DMATxDescTransmitITConfig()

Ø If the EMAC module is capable of inserting the IP header checksum and if the IP stack is
configure to offload the checksum calculation, then set-up the module to compute and insert the
checksum itself through ETH_DMATxDescChecksumInsertionConfig()

Ø Finally, the last step in the initialization is to start the DMA through ETH_Start()

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 44

Table 7-2 Regular Buffer Initialization

 ii = ETH_MacConfigDMA(EMAC_DEVICE, -1);
 if (ii >= 0) {
 printf("The link #%d is up at %d Mbps %s duplex\n",
 EMAC_DEVICE, ii&~1, (ii&1)?"half":"full");
 }
 else {
 printf("Ethernet link #%d failed to connect\n", EMAC_DEVICE);
 }

 ETH_MACAddressConfig(EMAC_DEVICE, ETH_MAC_Address0, netif->hwaddr);

 ETH_DMARxDescChainInit(EMAC_DEVICE);
 ETH_DMARxDescReceiveITConfig(EMAC_DEVICE, 1);

 ETH_DMATxDescChainInit(EMAC_DEVICE);
 ETH_DMARxDescTransmitITConfig(EMAC_DEVICE, 1);
 #ifdef CHECKSUM_BY_HARDWARE
 ETH_DMATxDescChecksumInsertionConfig(EMAC_DEVICE, 1);
 #else
 ETH_DMATxDescChecksumInsertionConfig(EMAC_DEVICE, 0);
 #endif

 ETH_Start(EMAC_DEVICE);

7.1.2 Initialization for pbuf
The initialization when the EMAC driver is using supplied buffers (ETH_BUFFER_TYPE is set to
ETH_BUFFER_PBUF) must attach the supplied buffers to the DMA chain used in the reception. The internal
global data structure G_DMArxDescTbl[][] must be set-up to supply the buffer information to the DMA.
Two entries of interest in G_DMArxDescTbl[][] when attaching external buffer:

Ø Buff pointer to the payload buffer

Ø PbufPtr general purpose pointer (of type void *) that can be used to hold any higher
level information related to the payload buffer attached to the DMA descriptor.

As for the regular buffer, ETH_DMARxDescChainInit() is called first, then, before going further (calling
ETH_DMATxDescChainInit()), the buffers are attached to the RX DMA descriptors. Step by step this
involves, one iteration for each of the ETH_N_RXBUF in the reception DMA chain:

Ø Get a new buffer or buffer description element. In the case of LwIP, this involves using the
pbuf_alloc() component.

Ø Optionally, if buffer description elements are used, memorize the buffer description element for
later use by the stack in the field PbufPtr in G_DMArxDescTbl[MAP_EMAC(EMAC_DEVICE)][].

Ø If IP padding is required due to integer alignment on the target platform, then perform the
dropping of the padding to obtain a new payload buffer address

Ø Memorize the payload buffer address for use by the DMA and for later use by the IP stack in the
field Buff in G_DMArxDescTbl[MAP_EMAC(EMAC_DEVICE)][]

Ø If the payload buffers are located in cached memory, then the whole payload buffer memory must
be invalidated. The invalidation must be performed everytime after the buffer is used to extract
newly received data.

Finally, if the DMA descriptors are located in cached memory, the memory of all ETH_N_RXBUF
descriptors must be flushed to move the DMA descriptors from the data cache into the external physical
memory such that the DMA can access them.

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 45

Table 7-3 Regular Buffer Initialization

 …

 ETH_DMARxDescChainInit(EMAC_DEVICE);

 for (ii=0 ; ii<ETH_N_RXBUF ; ii++) {
 NewPbuf = pbuf_alloc(PBUF_RAW, ETH_RX_BUFSIZE+ETH_PAD_SIZE, PBUF_POOL);
 G_DMArxDescTbl[ETH_MAP_DEV(EMAC_DEVICE)][ii].PbufPtr = NewPbuf
 SKIP_PAD(NewPbuf);
 G_DMArxDescTbl[ETH_MAP_DEV(EMAC_DEVICE)][ii].Buf = (uint32_t)NewPbuf->payload;
 DCacheInvalRange(NewPbuf->payload, ETH_RX_BUFSIZE);
 }
 DCacheFlushRange(&G_DMArxDescTbl[0], ETH_N_RXBUF*sizeof(G_DMArxDescTbl[0]));

 ETH_DMARxDescReceiveITConfig(EMAC_DEVICE, 1);

 …

7.2 Packet transmission

7.2.1 Sending Segmented Packets
This example for sending a packet through the EMAC driver covers all possible ways an IP stack could
deliver a packet to send out. Mainly, the IP stack could have broken the packet to send it into multiple
smaller segments. Plus, the whole packet, or the packet segments, could be larger than size of the DMA
payload buffer in the transmit direction.

Basically, to send something through the EMAC driver requires 3 basic steps:

Ø Obtain the address of the payload buffer the DMA will use for the next transmission. The buffer
address is obtained through the component ETH_Get_Transmit_Buffer()

Ø Copy the payload to send into the DMA payload buffer, up to the maximum size of the payload
buffer, which is ETH_TX_BUFSIZE.

Ø Set-up the DMA descriptor to prepare it to be used by the DMA through the component
ETH_Prepare_Multi_Transmit()

If there are no available DMA descriptors for transmission, then the application can pause and wait until
one becomes available, or it can abort. The EMAC driver has been designed to be self-recovering. If a
packet was partially set-up to be transmitted and the construction was aborted, the EMAC driver will self-
recover from this error. Recovery will also be performed if the first segment of a packet is missing.

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 46

Table 7-4 Segmented packet transmission

 SKIP_PAD(p);

 IsFirst = 1;
 for(Pbuf=p ; Pbuf!=NULL ; Pbuf=Pbuf->next) {
 LeftOver = Pbuf->len;
 BufPtr = Pbuf->payload;
 while(LeftOver > 0) {
 for (ii=0 ; ii<10 ; ii++) {
 DMAbuf = ETH_Get_Transmit_Buffer(EMAC_DEVICE);
 if (DMAbuf != NULL) {
 break;
 }
 TSKsleep(OS_MS_TO_TICK(20));
 }
 if (DMAbuf == NULL) {
 CLAIM_PAD(p);
 Return(ERR_MEM);
 }
 Nbytes = (LeftOver < ETH_TX_BUFSIZE)
 ? LeftOver
 : ETH_TX_BUFSIZE;
 LeftOver -= Nbytes;
 IsLast = (Pbuf->len == Pbuf->tot_len)
 && (LeftOver == 0);
 memmove((void *)&DMAbuf[0], BufPtr, (size_t)Nbytes);
 BufPtr += Nbytes;

 ETH_Prepare_Multi_Transmit(EMAC_DEVICE, Nbytes, IsFirst, IsLast);
 IsFirst = 0;
 }
 if (IsLast != 0) {
 IsFirst = 1;
 }
 }

 CLAIM_PAD(p);

In the previous example, based on LwIP, the outer loop deals with possibly multiple packets where each
packet could have been broken into smaller segments by the IP stack:

for(Pbuf=p ; Pbuf!=NULL ; Pbuf=Pbuf->next) {

The last segment of a packet is indicated when Pbuf->len == Pbuf->tot_len and the last packet is
indicated when Pbuf->next == NULL.

The inner loop deals with the possible breaking down of the individual segments into sizes that don’t
exceed the DMA payload buffer. It uses the variable LeftOver to keep track of how many bytes have still
not been sent out and the pointer BufPtr to keep track of the address of the start of the next sub-segment to
transmit. All there is to do is to get a DMA payload buffer, copy up to ETH_TX_BUFSIZE byte and give the
payload to the EMAC driver. Then the left over number of bytes to transmit and the address of the next
byte to copy is updated. All along, the first ever segment is reported to
ETH_Prepare_Multi_Transmit() as being the first segment of the packet. Only when the updated
number of bytes left to transmit is zero will ETH_Prepare_Multi_Transmit() be informed of it.

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 47

7.2.2 Sending Non-Segmented Packets
This example, much simpler than the previous, shows the operations required to send full packets. The 3
step sequence is the same except the component ETH_Prepare_Transmit_Descriptor() is used
instead of the component ETH_Prepare_Multi_Transmit(). The example does not include the
verification that the packets are indeed non-segmented, nor that the packet size does not exceed the size of
the DMA payload buffer. A semaphore that would be posted by the TX done interrupt is used in this
example.

Table 7-5 Non-segmented packet transmission

 SKIP_PAD(p);

 for(Pbuf=p ; Pbuf!=NULL ; Pbuf=Pbuf->next) {
 for (ii=0 ; ii<10 ; ii++) {
 DMAbuf = ETH_Get_Transmit_Buffer(EMAC_DEVICE);
 if (DMAbuf != NULL) {
 break;
 }
 SEMwait(EmacTXsema, OS_MS_TO_TICK(20));
 }
 if (DMAbuf == NULL) {
 CLAIM_PAD(p);
 return(ERR_MEM);
 }
 memmove((void *)&DMAbuf[0], Pbuf->payload, (size_t)Pbuf->len);
 ETH_Prepare_Transmit_Desriptor(EMAC_DEVICE, (size_t)Pbuf->len);
 }

 CLAIM_PAD(p);

7.3 Receiving a Packet

7.3.1 Receiving a Packet (internal payload buffers)
Packet reception using the internal payload buffers of the EMAC driver is simple. Basically, extracting the
payload of packets that are received through the EMAC driver requires 3 steps:

Ø Check if a packet is available, and if available how many bytes in the packet. This is done through
the use of the component ETH_Get_Received_Frame_Length().

Ø Copy the payload from the DMA payload buffer into the stack payload buffers. If the packet that
was received is segmented, a simple loop handles the segment reconstruction.

Ø Set-up the DMA descriptor to get it ready to be used by the DMA through the component
ETH_Release_Received()

Table 7-6 Packet reception (internal buffers)

 Len = ETH_Get_Received_Frame_Length(EMAC_DEVICE);
 if (Len >= 0) {
 Len += ETH_PAD_SIZE;
 BufDst = pbuf_alloc(PBUF_RAW, Len+ETH_PAS_SIZE, PBUF_POOL);
 SKIP_PAD(BufDst);
 Buf8 = BufDst->payload;
 do {
 Frame = ETH_Get_Received_Multi(EMAC_DEVICE);
 if (Frame.length >= 0) {
 memmove(Buf8, (void *)Frame.buffer, Frame.length);
 Buf8 += Frame.length;
 Len -= Frame.length;

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 48

 }
 else {
 Len = 0;
 }
 } while (Len > 0);

 ETH_Release_Received(EMAC_DEVICE);

 CLAIM_PAD(BufDst);

 STATS_INC(lwip_stats.link.recv);
 }

 return(DstBuf);

7.3.2 Receiving a Packet (external payload buffers)
The proper general code example for receiving a packet using external buffer is more complex than the one
shown here. This example is simplified because it requires the received packet to not be segmented.

Table 7-7 Packet reception (external buffers)

 Len = ETH_Get_Received_Frame_Length(EMAC_DEVICE);
 if (Len >= 0) {
 Frame = ETH_Get_Received_Multi(EMAC_DEVICE);
 if (Frame.length == Len) {
 BufDst = Frame.descriptor->PbufPtr;
 pbuf_realloc(BufDst, Frame.length);
 NewPbuf = pbuf_alloc(PBUF_RAW, ETH_RX_BUFSIZE+ETH_PAD_SIZE, PBUF_POOL);
 Frame.descriptor->PbufPtr = NewPbuf;
 if (NewPbuf = NULL) {
 return(NULL);
 }
 SKIP_PAD(NewPbuf);
 Frame.descriptor->Buff = (uint32_t)NewPbuf->payload;
 }

 ETH_Release_Received(EMAC_DEVICE);

 CLAIM_PAD(BufDst);

 STATS_INC(lwip_stats.link.recv);
 }

 return(NewPbuf);

Abassi RTOS EMAC Support 2019.08.01

Rev 1.19 Page 49

8 References
[R1] Abassi RTOS – User Guide, available at http://www.code-time.com
[R2] mAbassi RTOS – User Guide, available at http://www.code-time.com
[R3] µAbassi RTOS – User Guide, available at http://www.code-time.com

