
Copyright Information
This document is copyright Code Time Technologies Inc. ©2015-2018 All rights reserved. No part of this document may be
reproduced or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of
Code Time Technologies Inc.
Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

Abassi RTOS
I2C Support

Disclaimer
Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the
document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in
the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

Abassi RTOS I2C Support 2018.11.21

Rev 1.17 Page 3

Table of Contents
1 INTRODUCTION .. 6

1.1 DISTRIBUTION CONTENTS .. 6
1.2 FEATURES ... 6
1.3 LIMITATIONS .. 6

2 TARGET SET-UP .. 7
2.1 BUILD OPTIONS .. 7

2.1.1 OS_PLATFORM ... 8
2.1.2 I2C_MAX_DEVICES .. 8
2.1.3 I2C_CLK ... 8
2.1.4 I2C_LIST_DEVICE... 8
2.1.5 I2C_N_TRIES ... 9
2.1.6 I2C_USE_MUTEX .. 9
2.1.7 I2C_OPERATION ... 9
2.1.8 I2C_ISR_RX_THRS .. 10
2.1.9 I2C_ISR_TX_THRS... 10
2.1.10 I2C_MIN_4_RX_DMA .. 11
2.1.11 I2C_MIN_4_TX_DMA .. 11
2.1.12 I2C_MIN_4_RX_ISR ... 11
2.1.13 I2C_MIN_4_TX_ISR ... 12
2.1.14 I2C_TOUT_ISR_ENB ... 12
2.1.15 I2C_REMAP_LOG_ADDR ... 12
2.1.16 I2C_ARG_CHECK ... 12
2.1.17 I2C_DEBUG ... 12

3 TRANSFERS ... 13
4 MULTIPLE DRIVERS .. 14
5 API .. 17

5.1.1 i2c_init .. 18
5.1.2 i2c_recv ... 19
5.1.3 i2c_send .. 20
5.1.4 i2c_send_recv ... 21
5.1.5 I2CintHndl_n .. 22

6 EXAMPLES .. 23
6.1 INITIALIZATION ... 23
6.2 I2C WRITE ... 23
6.3 I2C COMBINED WRITE / READ ... 24

7 REFERENCES .. 25
8 REVISION HISTORY ... 26

Abassi RTOS I2C Support 2018.11.21

Rev 1.17 Page 4

List of Figures

Abassi RTOS I2C Support 2018.11.21

Rev 1.17 Page 5

List of Tables
TABLE 1-1 DISTRIBUTION ... 6
TABLE 2-1 BUILD OPTIONS .. 7
TABLE 2-2 BUILD OPTIONS .. 9
TABLE 2-3 I2C_OPERATION BIT DEFINITIONS .. 9
TABLE 4-1 BAPI REMAPPING ... 14
TABLE 4-2 MULTIPLE I2C WRAPPER EXAMPLE (I2C.C) .. 15
TABLE 4-3 MULTIPLE I2C WRAPPER EXAMPLE (I2C.H) .. 16
TABLE 6-1 INITIALIZATION ... 23
TABLE 6-2 I2C WRITE ... 23
TABLE 6-3 I2C COMBINED WRITE / READ ... 24

Abassi RTOS I2C Support 2018.11.21

Rev 1.17 Page 6

1 Introduction
This document describes the I2C driver used by Abassi1 [R1] (including mAbassi [R2] and µAbassi [R3]).
The standalone version of the I2C driver is also described here.

1.1 Distribution Contents
The set of files supplied with this distribution are listed in Table 1-1 below:

Table 1-1 Distribution

File Name Description

???_i2c.h Include file for the I2C driver (??? is target dependent)

???_i2c.c “C” file for the Abassi I2C driver (??? is target dependent)

Demo_8_<PROC>_<TOOL>.c “C” file for testing. <TOOL> is the name of the build
environment tool-set, <PROC> is the processor.

SAL.h Include file for the standalone abstraction layer (supplied
with standalone package only)

SAL.c “C” file for the standalone abstraction layer (supplied with
standalone package only)

ISRhandler_???.s “ASM” add-on file for the standalone version. It contains
support for both the driver and the demo application
(supplied with standalone package only)

1.2 Features
The I2C driver API and build options are kept the same across all target platforms. Target specific extra
functionality is not described in this document; refer to the code itself. When possible (i.e. GPIO muxing
with I2C lines), if the platform I2C module does not support bus clearing upon bus lock-up, the driver will
manually perform the bus clearing by muxing GPIO lines to the I2C clock line and toggling it. As much as
possible, and depending on the target controller capabilities, the driver aborts transfers upon encountering
an error and report the issue; e.g. TX FIFO under-run or RX FIFO overrun. Also monitored is the transfer
time; if the transfer takes much longer time than the expected exchange time then the driver will abort the
transfer and report the issue.

1.3 Limitations
Some controller cannot support some of the features described in this document. Please refer to the
specific driver code for a description / list of these limitations; this is described near the top of the files
??_i2c.h and ??_i2c.c.

1 When Abassi is mentioned in this document, unless explicitly stated, it always means Abassi, mAbassi
and µAbassi.

Abassi RTOS I2C Support 2018.11.21

Rev 1.17 Page 7

2 Target Set-up
All there is to do to configure and enable the use of the I2C driver in an application based on Abassi is to
include the following file in the build:

Ø ???_i2c.c (For Abassi & standalone)

Ø SAL.c (For Standalone)

Ø ISRhandler_???.s (For Standalone)

and to set-up the include search directory order making sure the file ???_i2c.h is found (and SAL.h for
the standalone).

If interrupts are used, one or multiple I2C interrupt handlers (I2CintHndl_n(), Section 5.1.5) must be
attached to the interrupt controller. In Abassi this is simply done using the OSisrInstall() component.

The I2C driver may or may not, depending on the target platform, be independent from other include files.

2.1 Build Options
There are a few build options that allow the I2C driver to be configured for the needs of the target
application. The following table lists all of them (there is an alternate token naming, refer to section 4) :

Table 2-1 Build Options

Token Name Default Description
OS_PLATFORM Target dependent Number indicating the target platform.

Refer to ???_i2c.h and Platform.h to
see the list of supported platforms and the
default one.

I2C_CLK Target dependent Clock frequency of the I2C controller.
I2C_MAX_DEVICES Target dependent Number of I2C controllers(s) available in

the target platform.
I2C_LIST_DEVICE Target dependent Bit field selecting the I2C controller(s) to

use. The default value is dependent on the
build option OS_PLATFORM.

I2C_N_TRIES 1 When a bus transfer failure is detected,
number of times the driver will try the
same transfer again.

I2C_USE_MUTEX 1 Boolean used to activate the I2C driver
internal protection for exclusive device
access.

I2C_OPERATION 0x10101 Bit field defining how the I2C driver
operates.

I2C_ISR_RX_THRS 50 Threshold in percentage of the RX FIFO
size to trigger the RX interrupt.

I2C_ISR_TX_THRS 50 Threshold in percentage of the TX FIFO
size to trigger the TX interrupt.

I2C_MIN_4_RX_DMA 2 Minimum number of bytes to read in order
to use DMA transfers instead of polling.

I2C_MIN_4_TX_DMA 4 Minimum number of bytes to write in order
to use DMA transfers instead of polling.

I2C_MIN_4_RX_ISR 4 Minimum number of bytes to read in order

Abassi RTOS I2C Support 2018.11.21

Rev 1.17 Page 8

to use the interrupts instead of polling.
I2C_MIN_4_TX_ISR 2 Minimum number of bytes to write in order

to use the interrupts instead of polling.
I2C_MIN_4_RX_ISR 2 Minimum number of bytes to read in order

to use the interrupts instead of polling.
I2C_MIN_4_TX_ISR 2 Minimum number of bytes to write in order

to use the interrupts instead of polling.
I2C_MULTICORE_ISR 0 Boolean to enable/disable the ISR handler

to be used by multiple cores
I2C_TOUT_ISR_ENB 1 Boolean to enable/disable the timeout

check for transfers done through polling
I2C_REMAP_LOG_ADDR 1 Boolean to enable/disable the conversion

from logical to physical address with DMA
transfers

I2C_ARG_CHECK 1 Boolean to enable/disable the check on the
validity of the API function arguments

I2C_DEBUG 0 Boolean controlling the sending of
progress / debug messages to stdout.

2.1.1 OS_PLATFORM
The build option OS_PLATFORM informs the I2C driver about the platform it is operating on. There are
three benefits ensuing from the presence of this build option:

Ø The I2C driver implicitly knows the total number of I2C devices on the platform.

Ø The I2C driver is able to configure and reset the I2C devices without intervention of the
application.

Ø Provides the implicit information on which GPIO port to use when the driver has to manually
toggle the I2C data and clock lines to try to clear a bus lock-up.

The information on the numbering used for OS_PLATFORM is available in the Platform.txt and
Platform.h files also supplied as part of the distribution.

2.1.2 I2C_MAX_DEVICES
The build option I2C_MAX_DEVICES informs the I2C driver on how many I2C controllers (devices) are on
the target platform. If this build option is not set, then the I2C driver will rely on the build option
I2C_LIST_DEVICE (Section 2.1.4). If the build option I2C_LIST_DEVICE is also not set, then the I2C
driver will rely on the OS_PLATFORM value (Section 2.1.1).

2.1.3 I2C_CLK
The build option I2C_CLK defines the clock frequency the I2C controller operates with. A default value is
set according to the target platform specified by OS_PLATFORM. If the module clock frequency is different
from the default value, all there is to do is defined the build option I2C_CLK and set it to the clock
frequency in Hz.

2.1.4 I2C_LIST_DEVICE
The build option I2C_LIST_DEVICE informs the I2C driver about the individual I2C controllers (devices)
that are used by the application. When the target platform has multiple I2C devices, enabling only the
devices used by the application offers a main benefit:

Abassi RTOS I2C Support 2018.11.21

Rev 1.17 Page 9

Ø Minimize the data memory required by the driver, as there is no need to reserve memory for the
queue descriptors / buffers / interrupt handlers and semaphores or optional mutexes of unused
devices.

This build option is a bit field, where the bit position represents the I2C device number; device numbering
starts at 0. When the corresponding bit is cleared (reset to 0) it specifies the device is not used; when the
corresponding bit is set to 1 then the device is used. The following table shows the valid combinations for
a target platform with 2 I2C devices:

Table 2-2 Build Options

I2C_LIST_DEVICE I2C #0 I2C #1

1 In use Not used

2 Not used In use

3 In use In use

If the build option I2C_LIST_DEVICE is not externally defined, the default value will be set according to
the build option I2C_MAX_DEVICES (Section 2.1.2). If the build option I2C_MAX_DEVICES is also not set,
then I2C_LIST_DEVICE will be set according to the build option OS_PLATFORM (Section 2.1.1) and will
make all the I2C devices available on the target platform.

2.1.5 I2C_N_TRIES
The I2C bus is not a foolproof bus. Bus transfer failures can happen, and when a failure is detected, the
driver can be configured at build time to retry the transfer a number of times. The build option
I2C_N_TRIES specifies if retries are performed and when so, the maximum number of times it retries.
Setting the build option I2C_N_TRIES to a value of 0 will not make the driver retry a transfer upon failure.
A positive value of N will make the driver retry a maximum number of N retries.

2.1.6 I2C_USE_MUTEX
In an RTOS environment, the driver can provide exclusive access protection to the I2C device(s) through
its internal mutex(es). By default, the build option I2C_USE_MUTEX is set to a non-zero value, meaning the
driver uses one mutex per device as the exclusive access protection mechanism. Defining and setting the
build option I2C_USE_MUTEX to a zero value will configure the driver to not use mutexes, therefore the
application has to enforce there be no concurrent accesses to the same device.

2.1.7 I2C_OPERATION
The build option I2C_OPERATION is used to configure how the I2C driver operates. This build option is a
bit field. The meaning of each bits, (bit position #0 is the LSBit), is described in the following table:

Table 2-3 I2C_OPERATION bit definitions

Bit # Description

0 Interrupts are disabled during a read (receive) burst. To not disable the interrupts
during a read burst, bit #0 must be reset to zero. To disable the interrupts during a
read burst, bit #0 must be set to 1.

1 Interrupts are used to empty the controller RX FIFO when performing a read
(receive) operation and/or interrupts are used to report the end of transmission. To
not allow the use of interrupts when reading the RX FIFO, bit #1 must be reset to
zero. To allow use of interrupts when reading RX FIFO, bit #1 must be set to 1.

2 DMA is used to empty the controller RX FIFO when performing a read (receive)
operation. To not allow the use of the DMA to read the RX FIFO, bit #2 must be

Abassi RTOS I2C Support 2018.11.21

Rev 1.17 Page 10

reset to zero. To allow the use of the DMA to read the RX FIFO, bit #2 must be set
to 1. The end of the transfer can be polled or blocked on an interrupt depending on
the setting of bit #1.

8 Interrupts are disabled during a write (send) burst. To not disable the interrupts
during a write burst, bit #8 must be reset to zero. To disable the interrupts during a
write burst, bit #8 must be set to 1.

9 Interrupts are used to fill the controller TX FIFO when performing a write (send)
operation and/or interrupts are used to report the end of transmission. To not allow
the use of interrupts when filling the TX FIFO, bit #9 must be reset to zero. To allow
the use of interrupts when filling TX FIFO, bit #9 must be set to 1.

10 DMA is used to fill the controller TX FIFO when performing a write (send)
operation. To not allow the use of the DMA to fill the TX FIFO, bit #9 must be reset
to zero. To allow the use of the DMA to fill the TX FIFO, bit #9 must be set to 1.
The end of transfer can be polled or blocked on an interrupt depending on the setting
of bit #9.

16 When bit #16 is set to 1, the bus clear operation will be performed upon an I2C
transfer failure. If bit #16 is clear to 0, no bus clear will be performed.

2.1.8 I2C_ISR_RX_THRS
The build option I2C_ISR_RX_THRS is used to set the threshold, or watermark, at which the data receive
interrupts are triggered. When interrupts are used to read from the I2C bus (I2C_OPERATION bit #1 set to
1), the RX interrupt is triggered when the RX FIFO holds more than a preset number of bytes. The build
option I2C_ISR_RX_THRS specifies this threshold, in percentage of the FIFO size. Therefore only values
between 0 and 100 are accepted for I2C_ISR_RX_THRS.

Each application has an optimal value for the RX threshold. To maximize the performance, the interrupt
handler should ideally be entered exactly when the FIFO is full or very close to be full. As there is always
a bit of latency between the time an interrupt is raised and when the interrupt handler starts retrieving data,
the optimal threshold should be set to the number of bytes that are transferred on the I2C bus in the latency
duration. Assuming a FIFO of 32 bytes and assuming an interrupt latency of 10 us with a I2C bus of 3.2
MHz, then 4 bytes are read in 10 us. This optimal threshold is located at 32-4 bytes, which is 28 or 88% of
32. In this example, the optimal value to set I2C_ISR_RX_THRS is 88.

Setting this threshold too low has the effect of increasing the number of interrupts and setting it too high
will or could provoke overflows of RX FIFO, therefore loss of received bytes. Unless the controller
performs clock stretching, if the RX FIFO overflows, bytes will be lost and the driver will abort the
transfer.

This build option is ignored if bit #1 in I2C_OPERATION (Section 2.1.7) is reset to zero.

2.1.9 I2C_ISR_TX_THRS
The build option I2C_ISR_TX_THRS is used to set the threshold, or watermark, at which the data write
interrupt is triggered. When interrupts are used to write to the I2C (I2C_OPERATION bit #9 set to 1), the
TX interrupt is triggered when the write FIFO holds less than a preset number of bytes. The build option
I2C_ISR_TX_THRS specifies this threshold, in percentage of the FIFO size. Therefore only values
between 0 and 100 are accepted for I2C_ISR_TX_THRS.

Each application has an optimal value for the TX threshold. To maximize the performance the interrupt
handler should in theory be starts filling the FIFO exactly when the FIFO is empty or very close to be
empty. As there is always a bit of latency between the time an interrupt is raised and when the interrupt
handler starts writing data, the optimal threshold should be set to the number of bytes that are transferred on
the I2C bus in the latency duration.

Abassi RTOS I2C Support 2018.11.21

Rev 1.17 Page 11

Setting this threshold too high has the effect of increasing the number of interrupts and setting it too low
will or could provoke under-runs of TX FIFO, therefore loss of transmitted bytes. If the controller does not
support clock stretching, the TX FIFO will under-run and the bus transaction will either show the end of
transfer conditions or a TX FIFO underflow error; due to that, the driver will abort transfer.

This build option is ignored if bit #9 in I2C_OPERATION (Section 2.1.7) is reset to zero.

2.1.10 I2C_MIN_4_RX_DMA
The build option I2C_MIN_4_RX_DMA is used to set the minimum number of bytes to be read for using
DMA transfers. Setting up the DMA for a transfer always involves a certain amount of CPU overhead.
When a small number of bytes are to be read, it is highly probable the time required to perform the read
itself is less than the overall DMA set-up overhead. When the RX DMA transfers are enabled through the
build option I2C_OPERATION, if the number of bytes to read is less than the value specified by
I2C_MIN_4_RX_DMA, the read transfer is performed through polling or interrupts instead of using the
DMA.

This build option is ignored if bit #2 in I2C_OPERATION (Section 2.1.7) is reset to zero.

When using i2c_send_recv() (Section 5.1.4), and when the controller natively supports the combined
format, the minimum required of bytes to transfer uses an OR condition between I2C_MIN_4_RX_DMA and
I2C_MIN4_TX_DMA.

2.1.11 I2C_MIN_4_TX_DMA
The build option I2C_MIN_4_TX_DMA is used to set the minimum number of bytes to be sent for using
DMA transfers. Setting up the DMA for a transfer always involves a certain amount of CPU overhead.
When a small number of bytes are to be sent, it is highly probable the time required to perform the sending
itself is less than the overall DMA set-up overhead. When the TX DMA transfers are enabled through the
build option I2C_OPERATION, if the number of bytes to send is less than the value specified by
I2C_MIN_4_TX_DMA, the transfer is performed through polling or interrupts instead of using the DMA.

This build option is ignored if bit #10 in I2C_OPERATION (Section 2.1.7) is reset to zero.

When using i2c_send_recv() (Section 5.1.4), and when the controller natively supports the combined
format, the minimum required of bytes to transfer uses an OR condition between I2C_MIN_4_RX_DMA and
I2C_MIN4_TX_DMA.

2.1.12 I2C_MIN_4_RX_ISR
The build option I2C_MIN_4_RX_ISR is used to set the minimum number of bytes to be read for using the
interrupts. The whole interrupt handling always involves a certain amount of CPU overhead: a task
becoming blocked, interrupt handler operating, and unblocking the task. When a small number of bytes are
to be read, it is highly probable the time required to perform the read itself is less than the overall interrupt
overhead. When the RX interrupts are enabled through the build option I2C_OPERATION, if the number of
bytes to read is less than the value specified by I2C_MIN_4_RX_ISR, the read transfer is performed
through polling instead of using interrupts.

This build option is ignored if bit #1 in I2C_OPERATION (Section 2.1.7) is reset to zero.

When using i2c_send_recv() (Section 5.1.4), and when the controller natively supports the combined
format, the minimum required of bytes to transfer uses an OR condition between I2C_MIN_4_RX_ISR and
I2C_MIN4_TX ISR.

Abassi RTOS I2C Support 2018.11.21

Rev 1.17 Page 12

2.1.13 I2C_MIN_4_TX_ISR
The build option I2C_MIN_4_TX_ISR is used to set the minimum number of bytes to be written for using
the interrupts. The whole interrupt handling always involves a certain amount of CPU overhead: a task
becoming blocked, interrupt handler operating, and unblocking the task. When a small number of bytes are
to be written, it is highly probable the time required to perform the write itself is less than the overall
interrupt overhead. When the TX interrupt are enabled through the build option I2C_OPERATION, if the
number of bytes to write is less than the value specified by I2C_MIN_4_TX_ISR, the write transfer is
performed through polling instead of using interrupts.

This build option is ignored if bit #9 in I2C_OPERATION (Section 2.1.7) is reset to zero.

When using i2c_send_recv() (Section 5.1.4), and when the controller natively supports the combined
format, the minimum required of bytes to transfer uses an OR condition between I2C_MIN_4_RX_ISR and
I2C_MIN4_TX ISR.

2.1.14 I2C_TOUT_ISR_ENB
The build option I2C_TOUT_ISR_ENB is a Boolean controlling if interrupts are shortly re-enabled when
checking for timeouts when performing a transfer through polling. When a transfer through polling is
performed and the interrupts are disabled during the burst (controlled with I2C_OPERATION), this could
makes the update of the RTOS timer tick impossible as the timer tick counter is updated through interrupts.
The RTOS timer tick won’t get updated is the interrupts are disabled on a single core target or when on a
multicore target if the core where the driver is operating is the only one handling the RTOS timer tick
interrupts. This is one case on a multi-core where it would be advisable to interrupt all core for the RTOS
timer tick update.

The setting of I2C_TOUT_ISR_ENB does not affect the timeout check when the transfer is interrupt based
or DMA based.

2.1.15 I2C_REMAP_LOG_ADDR
When the MMU is set-up to remap memory areas at different addresses from the physical address, it is
necessary to convert the logical address to their physical equivalents when using DMA transfers. The build
option I2C_REMAP_LOG_ADDR is a Boolean that selects if the addresses used by the DMA are converted
from logical to physical. By default it is set to a non-zero value (enable). Although the remapping function
is a low instruction count, one may want to not perform a redundant remapping when the logical addresses
are the same as the physical. The remapping can be turned off setting the build option
I2C_REMAP_LOG_ADDR to zero.

2.1.16 I2C_ARG_CHECK
The build options I2C_ARG_CHECK controls if the driver checks the validity of the API function arguments
or not. This build option is a Boolean; when set to a non-zero value, the driver checks the validity of the
arguments and returns an error code when the arguments are invalid. When set to a zero value, it does not
check the validity of the arguments.

2.1.17 I2C_DEBUG
The build options I2C_DEBUG controls the printout of progress and error messages to stdout. This build
option can have three set-ups; when set to a value of zero or less, no messages are sent to stdout. When
set 1, it sends over stdout the set-up information used during initialization and causes of error during the
operation. When set to a value greater than 1, it prints on stdout all operations and causes of errors.

Abassi RTOS I2C Support 2018.11.21

Rev 1.17 Page 13

3 Transfers
The way transfers are performed, through polling, ISR or DMA and how the end of transfer (EOT) is
detected depend on a set of rules based on the number of data to transfer, the value of I2C_OPERATION and
a few other build options. The descriptions are for the reception direction, the same applies for the transmit
direction. When EOT is done with ISR, the driver uses a semaphore on which the calling task blocks until
the transfer is completed or upon an expiry timeout / error occurred. The following rules are for the RX
direction, the same applies for the TX direction, replacing bit #1 & #2 by bit #9 & #10 and replacing the RX
by TX in the build options token names.

1. If bit 1 is clear (ISR transfers disabled) and bit #2 is clear (DMA transfers disable), the data is
always transferred with polling.

2. If bit 1 is set (ISR transfers enable) and bit #2 is cleared (DMA transfers disabled) the transfer will
be performed through ISRs only if all these two conditions are met:

o nData >= I2C_MIN_4_RX_ISR

o nData > I2C_ISR_RX_THRS * RX_FIFO_SIZE / 100

3. If bit 1 is clear (ISR transfers disable) and bit #2 is set (DMA transfers enable) the transfer will be
performed through DMA only if all these two conditions are met:

o nData >= I2C_MIN_4_RX_ISR

o nData > I2C_ISR_RX_THRS * RX_FIFO_SIZE / 100

4. If bit 1 is set (ISR transfers enable) and bit #2 is set (DMA transfers enable) the transfer will be
performed through ISRs, only if all these three conditions are met:

o nData >= I2C_MIN_4_RX_ISR

o nData > I2C_ISR_RX_THRS * RX_FIFO_SIZE / 100

o The conditions in 3) are NOT met

5. If bit 1 is set (ISR transfers enable) and bit #2 is set (DMA transfers enable) the transfer will be
performed through DMA, only if all these two conditions are met (when met, the conditions to
validate an ISR transfer are not relevant):

o nData >= I2C_MIN_4_RX_ISR

o nData > I2C_ISR_RX_THRS * RX_FIFO_SIZE / 100

The detection / waiting for the end of transfer (EOT) is performed according to these rules:

1. If bit 1 is clear (ISR transfers disable), EOT is always performed with polling.

2. If bit 1 is set (ISR transfers enabled), EOT is performed with polling if the transfer is done through
polling. If the transfer is performed with ISR or DMA, then EOT detection is done through ISRs

NOTE: Most controllers have a TX FIFO and when data is sent, the TX FIFO is always filled in bulk
before enabling the transfer. Therefore if the total number of data to transmit all fits in the TX
FIFO there won’t be any transfer performed through polling, ISR or DMA.

NOTE: Depending on the target controller, when transfers happen, being either for receiving data or for
sending data, the controller requires both filling the output data register or the TX FIFO and
reading the input data register or the RX FIFO. For such controller, the individual setting for the
ISR & DMA in the RX and TX direction applies to the internal operation. i.e. for data reception,
as it is required to fill the output data register or the TX FIFO, the ISR / DMA TX setting applies
when filling the output data register / TX FIFO.

Abassi RTOS I2C Support 2018.11.21

Rev 1.17 Page 14

4 Multiple Drivers
It is possible to use 2 or more drivers for different I2C controllers. Example of the need for this is a
processor with on-chip I2C(s) on a board with different type of I2C(s), or a SocFPGA with added I2C(s) in
the FPGA fabrics that are of different type than the processor system I2C(s). To use multiple drivers the
build option I2C_MULTIPLE_DRIVER must be defined and set to a non-zero value. This changes the API
names of the driver by pre-pending the I2C type to the function names. For example, if cd_i2c.c is used,
the APIs are named as following:

Table 4-1 BAPI remapping

The prefix is always the prefix in the file name; e.g. cd_i2c.c prefix is “cd” and dw_i2c.c is “dw”.

All build options, if not prefixed,apply to all the drivers. To set build options on a per-driver basic all there
is to do is used the build option that has been pre-fixed with the same prefix used in the API but in
uppercase. For example to set each of the multiple drivers to support 3 devices each, the build option
I2C_MAX_DEVICES should defined and set to 3. If the cd_i2c and the dw_i2c drivers are use together
and, as for the example below, there are 2 devices used for the cd and 3 used for the dw, then
CD_I2C_MAX_DEVICES should defined and set to 2 and DW_I2C_MAX_DEVICES should defined and set to
3. When a driver specific build option is defined then the driver for which the build option applies ignores
the the equivalent global build.

A custom wrapper must be provided. The following code shows such a driver for the cd_i2c (2 I2Cs
accessed as device #0 and #1, mapped to cd’s #01 and #1) and the dw_i2c (3 I2Cs accessed as device #2,
#3, and #4, mapped as dw’s #0, #1, and #2). The example uses contiguous device number for cd (#0 and
#1) and for dw (#0, #1, and #2) as it’s easier to show the “how to”. Non-contiguous and non starting from
#0 devices can also be used by implementing the appropriate input–output device remapping.

Original Multiple

i2c_init() cd_i2c_init()

i2c_recv() cd_i2c_recv()

i2c_send() cd_i2c_send()

i2c_send_recv() cd_i2c_send_recv()

I2CintHndl_#() cd_I2CintHndl_#()

Abassi RTOS I2C Support 2018.11.21

Rev 1.17 Page 15

Table 4-2 Multiple I2C wrapper example (i2c.c)

#include "i2c.h"

/* --- */

int i2c_init(int Dev, int AddBits, int Freq)
{
int RetVal;

 RetVal = (Dev < 2)
 ? cd_i2c_init(Dev, AddBits, Freq)
 : dw_i2c_init(Dev-2, AddBits, Freq);

 return(RetVal);
}

/* --- */

int i2c_recv(int Dev, int Target, char *Buf, int Len)
{
int RetVal;

 RetVal = (Dev < 2)
 ? cd_i2c_recv(Dev, Target, Buf, Len)
 : dw_i2c_recv(Dev-2, Target, Buf, Len);

 return(RetVal);
}

/* --- */

int i2c_send(int Dev, int Target, char *Buf, int Len)
{
int RetVal;

 RetVal = (Dev < 2)
 ? cd_i2c_send(Dev, Target, Buf, Len)
 : dw_i2c_send(Dev-2, Target, Buf, Len);

 return(RetVal);
}

/* --- */

int i2c_send_recv(int Dev, int Target, const char *BufTX, int LenTX, char *BufRX,
 int LenRX)
{
int RetVal;

 RetVal = (Dev < 2)
 ? cd_i2c_send_recv(Dev, Target, BufTx, LenTx, BufTX, LenRX)
 : dw_i2c_send_recv(Dev-2, Target, BufTx, LenTx, BufTX, LenRX);

 return(RetVal);
}

/* --- */

void I2CintHndl_0(void) {cd_I2CintHndl_0(); }
void I2CintHndl_1(void) {cd_I2CintHndl_1(); }
void I2CintHndl_2(void) {dw_I2CintHndl_0(); }
void I2CintHndl_3(void) {dw_I2CintHndl_1(); }
void I2CintHndl_4(void) {dw_I2CintHndl_2(); }

Abassi RTOS I2C Support 2018.11.21

Rev 1.17 Page 16

/* EOF */

Table 4-3 Multiple I2C wrapper example (i2c.h)

#ifndef __I2C_H__
#define __I2C_H__ 1

#include "cd_i2c.h" /* cd I2C driver */
#include "dw_i2c.h" /* dw I2C driver */

#ifndef I2C_MULTI_DRIVER /* It must be defined and set to !=0 */
 #define I2C_MULTI_DRIVER 0 /* Set 0 to trigger the error message */
#endif

#if ((I2C_MULTI_DRIVER) == 0)
 #error "I2C_MULTI_DRIVER must be defined and set to a non-zero value"
#endif

#define I2C_MAX_DEVICES ((CD_I2C_MAX_DEVICES)+(DW_I2C_MAX_DEVICES))
#define I2C_LIST_DEVICE ((CD_I2C_LIST_DEVICE)|((DW_I2C_LIST_DEVICE)<<2))

/* --- */

int i2c_init (int Dev, int AddBits, int Freq);
int i2c_recv (int Dev, int Target, char *Buf, int Len);
int i2c_send (int Dev, int Target, const char *Buf, int Len);
int i2c_send_recv(int Dev, int Target, const char *BufTX, int LenTX, char *BufRX,
 int LenRX);

/* --- */

extern void I2CintHndl_0(void);
extern void I2CintHndl_1(void);
extern void I2CintHndl_2(void);
extern void I2CintHndl_3(void);
extern void I2CintHndl_4(void);

#endif

/* EOF */

Abassi RTOS I2C Support 2018.11.21

Rev 1.17 Page 17

5 API
In this section, the API of all common I2C driver functions is provided. The next section gives examples
on how to use the I2C

Abassi RTOS I2C Support 2018.11.21

Rev 1.17 Page 18

5.1.1 i2c_init

Synopsis
#include “???_i2c.h”

void i2c_init(int Dev, int AddBits, int Freq);

Description

i2c_init() is the component used to initialize one I2C module. The module’s controller
number is indicated by the argument Dev and the address width (7 or 10 bits) is indicated by
the argument AddBits. The I2C bus frequency is specified with the argument Freq.

Arguments

Dev Module’s controller number (Number starting at 0)
AddBits I2C bus address width. Must be either set to a value of 7 or 10
Freq Frequency of the bus specified in Hz.

Returns
void

Component type

Function

Options

Notes

See Also

Abassi RTOS I2C Support 2018.11.21

Rev 1.17 Page 19

5.1.2 i2c_recv

Synopsis
#include “???_i2c.h”

int i2c_recv(int Dev, unsigned int target, char *buffer, int len);

Description

i2c_recv() is the component used to perform a read operation (a transfer of data from a
slave to the master). The I2C controller to use is indicated by the argument Dev and the slave
address with the argument target. The number of bytes to read from the slave is specified
by the argument len and the argument buffer is the base address of the buffer used to
collect the data read from the slave.

Arguments

Dev Module’s device number (Number starting at 0)
target I2C address of the slave to read from
buffer Buffer that will hold the data read from the slave. This buffer must be size to at

least len bytes
len Number of bytes to read from the slave

Returns

int == 0 : the transfer was successful
 != 0 : the transfer failed

Component type

Function

Options

Notes

See Also
i2c_send()
i2c_send_recv()

Abassi RTOS I2C Support 2018.11.21

Rev 1.17 Page 20

5.1.3 i2c_send

Synopsis
#include “???_i2c.h”

int i2c_send(int Dev, unsigned int target, const char *buffer,
 int len);

Description

i2c_send() is the component used to perform a write operation (a transfer of data from the
master to a slave). The I2C controller to use is indicated by the argument Dev and the slave
address with the argument target. The number of bytes to write to the slave is specified by
the argument len and the argument buffer is the base address of the buffer holding the data
to send to the slave.

Arguments

Dev Module’s device number (Number starting at 0)
target I2C address of the slave to send to
buffer Buffer holding the len bytes to send to the slave.
len Number of bytes to write to the slave

Returns

int == 0 : the transfer was successful
 != 0 : the transfer failed

Component type

Function

Options

Notes

See Also
i2c_recv()
i2c_send_recv()

Abassi RTOS I2C Support 2018.11.21

Rev 1.17 Page 21

5.1.4 i2c_send_recv

Synopsis
#include “???_i2c.h”

int i2c_send_recv(int Dev, unsigned int target, const char *tx_buf,
 int tx_len, char *rx_buf, int rx_len);

Description

i2c_send_recv() is the component used to perform a combined write operation (a transfer
of data from the master to a slave) followed by a read operation (a transfer from the slave to
the master). The I2C controller to use is indicated by the argument Dev and the slave address
with the argument target. The number of bytes to write to the slave is specified by the
argument tx_len and the argument tx_buf is the base address of the buffer holding the data
to send to the slave. The number of bytes to read from the slave is specified by the argument
rx_len and the argument rx_buf is the base address of the buffer used to collect the data
read from the slave.

Arguments

Dev Module’s device number (Number starting at 0)
target I2C address of the slave to read from
tx_buf Buffer holding the tx_len bytes to send to the slave.
Tx_len Number of bytes to write to the slave
rx_buf Buffer that will hold the data read from the slave. This buffer must be size to at

least rx_len bytes
rx_len Number of bytes to read from the slave

Returns

int == 0 : the transfer was successful
 != 0 : the transfer failed

Component type

Function

Options

Notes

See Also
i2c_recv()
i2c_send()

Abassi RTOS I2C Support 2018.11.21

Rev 1.17 Page 22

5.1.5 I2CintHndl_n

Synopsis
#include “???_i2c.h”

void I2CintHndl_n(void);

Description

I2CintHndl_n() is the interrupt handler for the I2C driver (not used by the standalone
version). The n in the name is a numerical value that specifies the device number the
interrupt handler is for.

Arguments
void

Returns
void

Component type

Function

Options

Notes

The interrupt handler should always be attached to the targeted I2C device interrupt and the
number of the interrupt handler MUST match the device number. If there is a mismatch, then
the application will most likely crash. If the interrupt handler is not attached and the related
interrupt is enabled, the I2C driver for this device will not operate at all (not applicable for
the standalone version).

See Also

Abassi RTOS I2C Support 2018.11.21

Rev 1.17 Page 23

6 Examples

6.1 Initialization
The first step required when using the I2C driver is to initialize the device controller to be used. The second
step required (not applicable with the standalone version) is to attach the interrupt handler for the I2C
device and enable these interrupts. The following example shown the initialization of controller #2, set to
use 10 bit address at the fast mode (400 kHz):

Table 6-1 Initialization

 i2c_init(2, 10, 400000);

 OSisrInstall(I2C_INT2, &I2CintHndl_2);
 GICenable(I2C_INT2, 128, 1);

6.2 I2C write
The following example shows how to write to a slave device. The slave device used in this example is
Maxim’s DS1339 I2C real time clock located at address 0x68 on the I2C bus. The Date/time set is:

9h 10min 11 sec / Jan 2nd 2014 / Thursday (day #5)

The arguments used in i2c_send() are:

 1st: 2 Controller #2

 2nd 0x68 I2C slave address

 3rd &Buf[0] Base address of the buffer holding the data to send

 4th 8 8 bytes to write to the slave

Table 6-2 I2C write

char Buf[8];

 …

 Buf[0] = 0; /* Start writing at the first register */
 Buf[1] = 11; /* Seconds */
 Buf[2] = 10; /* Minutes */
 Buf[3] = 11; /* Hours */
 Buf[4] = 5; /* Day of the week */
 Buf[5] = 2; /* Date (day) */
 Buf[6] = 1; /* Date (month) */
 Buf[7] = 14; /* Date (Year – 2000) */

 if (0 != i2c_send(2, 0x68, &Buf[0], 8)) {
 puts(“Write error”);
 }

 …

Abassi RTOS I2C Support 2018.11.21

Rev 1.17 Page 24

6.3 I2C combined write / read
The following example shows how to perform a combined write and read to/from a slave device. The slave
device used in this example is Maxim’s DS1339 I2C real time clock located at address 0x68 on the I2C
bus. The purpose of using the combined write and read with the DS1339 is to first inform the DS1339
what is going to be the first register read in the read operation. For every byte read, the DS1339 will
internally increments the register to read. In the example, the meaning / index of the bytes read from the
DS1339 is the same as the previous example.

The arguments used in i2c_send_recv() are:

 1st: 2 Controller #2

 2nd 0x68 I2C slave address

 3rd &TxBuf[0] Base address of the buffer holding the data to send

 4th 1 1 byte to write to the slave

 5th &RxBuf[0] Base address of the buffer to capture the data read

6th 8 8 byte to read from the slave

Table 6-3 I2C combined write / read

char RxBuf[1];
char TxBuf[8];

 …

 TXbuf[0] = 0;

 if (0 != i2c_send_recv(2, 0x68, &TxBuf[0], 1, &RxBuf[0], 8)) {
 puts(“Write/Read error”);
 }

 …

Abassi RTOS I2C Support 2018.11.21

Rev 1.17 Page 25

7 References
[R1] Abassi RTOS – User Guide, available at http://www.code-time.com
[R2] mAbassi RTOS – User Guide, available at http://www.code-time.com
[R3] µAbassi RTOS – User Guide, available at http://www.code-time.com

Abassi RTOS I2C Support 2018.11.21

Rev 1.17 Page 26

8 Revision History
Date Version Author/Editor Description

2015.06.15 1.4 EV First draft

2015.06.15 1.5 AP Review changes

2016.01.12 1.6 EV Added I2C_PLATFORM info

2016.04.06 1.7 EV Small clean-up

2016.04.06 1.8 AP Review changes

2016.11.02 1.9 EV Upgraded to standard driver I/F

2016.11.02 1.10 AP Review changes

2016.11.21 1.11 EV Added I2C_POLLING_TOUT

2016.11.23 1.12 AP Review changes

2017.05.29 1.13 EV Full rework / I2Cn_SHARE_GPIO is now obsolete

2017.09.03 1.14 EV Updates

2018.08.17 1.15 EV Added multiple drivers

2018.08.28 1.16 EV Small changes

2018.11.17 1.17 EV Alternate Token naming

