
Copyright Information
This document is copyright Code Time Technologies Inc. ©2016-2020 All rights reserved. No part of this document may be
reproduced or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of
Code Time Technologies Inc.
Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

Abassi RTOS
QSPI Flash Memory Support

Disclaimer
Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the
document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in
the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 3

Table of Contents
1 INTRODUCTION .. 7

1.1 DISTRIBUTION CONTENTS .. 7
1.2 LIMITATIONS .. 7
1.3 FEATURES ... 8
1.4 REQUIREMENTS .. 8
1.5 NOMENCLATURE .. 8

2 TARGET SET-UP .. 9
2.1 BUILD OPTIONS .. 9

2.1.1 OS_PLATFORM ... 11
2.1.2 QSPI_CLK .. 11
2.1.3 QSPI_MAX_DEVICES ... 11
2.1.4 QSPI_LIST_DEVICE .. 11
2.1.5 QSPI_MAX_SLAVES .. 12
2.1.6 QSPI_USE_MUTEX ... 12
2.1.7 QSPI_OPERATION .. 12
2.1.8 QSPI_DMA_DEV ... 12
2.1.9 QSPI_ISR_RX_THRS .. 13
2.1.10 QSPI_ISR_TX_THRS .. 13
2.1.11 QSPI_MIN_4_RX_DMA ... 13
2.1.12 QSPI_MIN_4_TX_DMA ... 13
2.1.13 QSPI_MIN_4_RX_ISR .. 14
2.1.14 QSPI_MIN_4_TX_ISR .. 14
2.1.15 QSPI_MAX_BUS_FREQ .. 14
2.1.16 QSPI_CMD_LOWEST_FRQ .. 14
2.1.17 QSPI_READ_ONLY .. 14
2.1.18 QSPI_KEEP_NONVOLATILE ... 14
2.1.19 QSPI_REINIT ... 15
2.1.20 QSPI_MULTICORE_ISR .. 15
2.1.21 QSPI_TOUT_ISR_ENB .. 15
2.1.22 QSPI_REMAP_LOG_ADDR .. 15
2.1.23 QSPI_RDDLY_#_# ... 15
2.1.24 QSPI_XTRA_PARTS ... 16
2.1.25 QSPI_ARG_CHECK ... 16
2.1.26 QSPI_DEBUG .. 16
2.1.27 QSPI_ID_ONLY .. 16
2.1.28 QSPI_MX25R_LOW_POW ... 16

3 OPERATION .. 17
3.1 PART TABLE ... 17

3.1.1 DevID .. 17
3.1.2 Size .. 18
3.1.3 EraseCap... 18
3.1.4 EraseTime ... 19
3.1.5 OpRd ... 19
3.1.6 ModeRd ... 19
3.1.7 OpWrt .. 20
3.1.8 RdDly .. 20
3.1.9 Delay ... 20
3.1.10 DumClkR ... 21

3.2 GENERAL INFORMATION ... 21
3.3 INITIALIZATION ... 22

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 4

3.4 ERASING ... 22
3.5 WRITING ... 22
3.6 READING ... 23
3.7 MULTIPLE DRIVERS .. 24

4 API .. 28
4.1.1 qspi_blksize ... 29
4.1.2 qspi_cmd_read .. 30
4.1.3 qspi_cmd_write ... 31
4.1.4 qspi_erase ... 32
4.1.5 qspi_init .. 33
4.1.6 qspi_read... 34
4.1.7 qspi_size .. 35
4.1.8 qspi_write .. 36
4.1.9 QSPIintHndl_n .. 37

5 APPENDIX A .. 38
5.1 BRINGING A PART UP .. 38

6 APPENDIX B .. 40
6.1 ADDING A NEW PART .. 40

7 APPENDIX C (SUPPORTED PARTS) .. 41
7.1 MACRONIX ... 41
7.2 MICRON .. 43
7.3 CYPRESS / SPANSION (CYPRESS) .. 43
7.4 SST ... 43
7.5 WINBOND ... 44

8 APPENDIX D .. 45
8.1 QUICK TEST .. 45
8.2 REGRESSION TEST .. 46

8.2.1 Test 01 ... 46
8.2.2 Test 02 ... 46
8.2.3 Test 03 ... 46
8.2.4 Test 04 ... 46
8.2.5 Test 05 ... 46
8.2.6 Test 06 ... 46
8.2.7 Test 07 ... 46
8.2.8 Test 08 ... 47
8.2.9 Test 09 ... 47

9 REFERENCES .. 49
10 REVISION HISTORY ... 50

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 5

List of Figures

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 6

List of Tables
TABLE 1-1 DISTRIBUTION ... 7
TABLE 2-1 BUILD OPTIONS .. 9
TABLE 2-2 BUILD OPTIONS .. 11
TABLE 2-3 QSPI_OPERATION BIT DEFINITIONS .. 12
TABLE 3-1 PARTINFO_T ... 17
TABLE 3-2 BAPI REMAPPING ... 24
TABLE 3-3 MULTIPLE QSPI WRAPPER EXAMPLE (QSPI.C) .. 26
TABLE 3-4 MULTIPLE QSPI WRAPPER EXAMPLE (QSPI.H) .. 27
TABLE 7-1 MX25L DUMMY CYCLE SET-UP ... 42
TABLE 8-1 QUICK TEST OUTPUT .. 45
TABLE 8-2 REGRESSION TEST OUTPUT .. 48

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 7

1 Introduction
This document describes the QSPI flash memory driver available for Abassi1 [R1] (including mAbassi [R2]
and µAbassi [R3]). The standalone use of the QSPI driver is also described here. The QSPI driver is an
integral part of Code Time’s System Calls layer [R4] as the driver provides easy access to these mass
storage devices.

1.1 Distribution Contents
The set of files supplied with this distribution are listed in Table 1-1 below:

Table 1-1 Distribution

File Name Description

???_qspi.h Include file for the QSPI flash memory driver (??? is target
dependent)

???_qspi.c “C” file for the Abassi QSPI flash memory driver (??? is
target dependent)

Demo_30_PROC.c “C” file for testing. <PROC> is the target processor name.

SAL.h Include file for the standalone abstraction layer (supplied
with standalone package only)

SAL.c “C” file for the standalone abstraction layer (supplied with
standalone package only)

ISRhandler_???.s “ASM” add-on file for the standalone version only. It
contains support for both the driver and the demo
application.

1.2 Limitations
Ø The QSPI indirect access mode is the only access mode supported; direct and XIP access modes

are not supported.

Ø Write protection of blocks, or sectors, or memory regions are disabled, allowing programming of
the whole flash memory.

Ø When a flash memory has a One Time Programmable (OTP) area, access by reading, or
programming this memory area, is not supported by the driver.

Ø DMA transfers may not be supported for some target processors.

Ø Support for op-codes sent over 2 or 4 lanes is not supported.

Ø Only NOR serial flash are supported; serial NAND flash will be in a later release

Ø The commonly available QSPI flash memory pins HOLD and WP (Write Protect) are not controlled,
nor toggled by the driver.

Ø Zynq’s QSPI controller does not support multi-lane write operation. All multi-lane write
operations are internally remapped to QSPI_CMD_PAGE_PGM. Refer to the file xlx_lqspi.c for
more information.

1 When Abassi is mentioned in this document, unless explicitly stated, it always means Abassi, mAbassi and µAbassi.

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 8

1.3 Features
The QSPI driver API is kept the same across all target platforms. Target specific extra functionality is not
described in this document; refer to the code itself and embedded comments.

The QSPI flash memory driver can operate using polling only, and/or interrupts with semaphores, and/or
DMA transfers, and/or RTOS task sleeps.

As much as possible, the non-volatile bits in the status and configuration register(s) undergo as little
programming as possible. This is done by not programming the register if it already holds the correct
set-up. Because QSPI flash chips are typically hard-wired on the target platform, the operating conditions
are expected to always be the same after the first access.

Each QSPI flash memory part has its own specific operating conditions and custom set-up procedures. For
versatility, the QSPI driver individually identifies the parts attached to the controller using the JEDEC ID,
and from the part identification it relies on an internal hard-coded definition table to determine the
controller configuration to use for each part. The contents of this table is described in Section 3.1.

As much as possible, and depending on the target controller capabilities, the driver aborts transfers upon
encountering an error and report the issue; e.g. TX FIFO under-run or RX FIFO overrun. Also monitored
is the transfer time; if the transfer takes a time much longer than the expected exchange time then the driver
also abort the transfer and report the issue.

1.4 Requirements
When the WP (Write protect) pin on the chip is not used as an I/O lane and is driven low (or left
un-connected when the part has an internal pull-down), then it is possible some memory areas or the whole
memory could be protected against programming depending on the non-volatile setting of the protection
bits.

1.5 Nomenclature
All Code Time Technologies driver documentation uses “device” as the name for the hardware module or
controller the driver interfaces with. The same use for “device” is maintained here and it does not mean the
flash memory part connected to that hardware module, although it is common to use the expression
“memory device”. Most hardware modules can access multiple flash memory chips. These individual
chips are accessed through their “slave” number, which is the chip select line number connected to the
QSPI flash memory part.

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 9

2 Target Set-up
All there is to do to configure and enable the use of the QSPI driver in an application based on Abassi is to
include the following files in the build:

Ø ???_qspi.c (For Abassi & Standalone)

Ø SAL.c (For Standalone only)

Ø ISRhandler_???.s (For Standalone only)

and to set-up the include search directory path making sure the file ???_qspi.h is found (and SAL.h for
the standalone) and set-up build options as required.

If interrupts are used, one or multiple QSPI interrupt handlers (QSPIintHndl_n(), Section 4.1.9) must be
attached to the interrupt controller. In Abassi this is simply done using the OSisrInstall() component.

The QSPI driver may or may not, depending on the target platform, be independent from other include
files.

Before using the driver, please refer to the Appendices (Sections 5, 6, 7, and 8)

2.1 Build Options
There are a few build options that allow the QSPI driver to be configured for the requirements of the target
application. The following table lists all of them:

Table 2-1 Build Options

Token Name Default Description

OS_PLATFORM Target dependent Number indicating the target platform.
Refer to ???_qspi.h to see the list of
supported platforms and the default one.

QSPI_CLK Target dependent Clock frequency of the QSPI controller.

QSPI_MAX_DEVICES Target dependent Number of QSPI controllers(s) supported
by the target platform.

QSPI_LIST_DEVICE Target dependent Bit field selecting the QSPI controller(s) to
use. The default value is dependent on the
build option OS_PLATFORM.

QSPI_MAX_SLAVES Target dependent Number of slaves supported by the
controller(s) on the target platform.

QSPI_USE_MUTEX 1 Boolean used to activate the QSPI driver
internal protection for exclusive device
access.

QSPI_OPERATION 0x10101 Bit field defining how the QSPI driver
operates.

QSPI_DMA_DEV 0 DMA device # to use when DMA transfers
are enable with QSPI_OPERATION.

QSPI_ISR_RX_THRS 50 Threshold in percentage of the RX FIFO
size to trigger the RX interrupt.

QSPI_ISR_TX_THRS 0 Threshold in percentage of the TX FIFO
size to trigger the TX interrupt.

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 10

QSPI_MIN_4_RX_DMA 64 Minimum number of bytes to read in order
to use the DMA instead of polling or
interrupts.

QSPI_MIN_4_TX_DMA 16 Minimum number of bytes to write in order
to use the DMA instead of polling or
interrupts.

QSPI_MIN_4_RX_ISR 64 Minimum number of bytes to read in order
to use the interrupts instead of polling.

QSPI_MIN_4_TX_ISR 16 Minimum number of bytes to write in order
to use the interrupts instead of polling.

QSPI_MAX_BUS_FREQ 0 Maximum bus clock frequency to use (in
MHz)

QSPI_CMD_LOWEST_FRQ -1 Boolean to select if and how the bus
frequency is changed when issuing
commands.

QSPI_READ_ONLY 0 Boolean to disable the data writing and
erasing capabilities of the driver.

QSPI_KEEP_NONVOLATILE 0 Boolean to enable/disable the modification
of non-volatile settings in the QSPI chip.

QSPI_REINIT 1 Boolean to enable/disable a re-init of the
driver.

QSPI_MULTICORE_ISR 0 Boolean to enable/disable in the ISR
handler when multiple cores can handle the
same interrupt.

QSPI_TOUT_ISR_ENB 1 Boolean to enable/disable the interrupts
during the timeout check for transfers done
through polling

QSPI_REMAP_LOG_ADDR 1 Boolean to enable/disable the conversion
from logical to physical address with DMA
transfers

QSPI_RDDLY_#_# -1 Overloads the value of RdDly in the part
definition table. The first # is the device
number and the second # is the slave
number

QSPI_XTRA_PARTS 0 Boolean to add new part definitions, or
overload existing part defintions by
including a file with these definitions.

QSPI_ARG_CHECK 1 Boolean to enable/disable the check on the
validity of the API function arguments

QSPI_DEBUG 0 Boolean controlling the sending of
progress / debug messages to stdout.

QSPI_ID_ONLY 0 Exit from the initialization immediately
after reading the JEDEC ID.

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 11

QSPI_MX25R_LOW_POW 0 Selects if the Macronix MX25R parts
operate in low power mode or high
performance.

2.1.1 OS_PLATFORM
The build option OS_PLATFORM informs the QSPI driver about the target platform it operates on. There are
two benefits ensuing from the presence of this build option:

Ø The QSPI driver implicitly knows the total number of QSPI devices and number of slaves on the
platform.

Ø The QSPI driver is able to configure and reset the QSPI devices without application intervention.

2.1.2 QSPI_CLK
The build option QSPI_CLK defines the clock frequency the QSPI module operates with. A default value is
set according to the target platform specified by OS_PLATFORM. If the module clock frequency is different
from the default value, all there is to do is defined the build option QSPI_CLK and set it to the clock
frequency in Hz.

2.1.3 QSPI_MAX_DEVICES
The build option QSPI_MAX_DEVICES informs the QSPI driver of how many QSPI controllers (devices)
are on the target platform. If this build option is not set, then the QSPI driver will rely on the build option
QSPI_LIST_DEVICE (Section 2.1.4). If the build option QSPI_LIST_DEVICE is also not set, then the
QSPI driver will rely on the OS_PLATFORM value (Section 2.1.1).

2.1.4 QSPI_LIST_DEVICE
The build option QSPI_LIST_DEVICE informs the QSPI driver about the individual QSPI controllers
(devices) that are used by the application. When the target platform has multiple QSPI devices, enabling
only the devices used by the application offers a main benefit:

Ø Minimize the data memory required by the driver, as there is no need to reserve memory for the
queue descriptors / buffers / interrupt handlers and semaphores or optional mutexes of unused
devices.

This build option is a bit field, where the bit position represents the QSPI device number. When the
corresponding bit is cleared (reset to 0) it specifies the device is not used; when the corresponding bit is set
to 1 then the device is used. The following table shows the valid combinations for a target platform with 2
QSPI devices:

Table 2-2 Build Options

QSPI_LIST_DEVICE QSPI #0 QSPI #1

1 In use Not used

2 Not used In use

3 In use In use

If the build option QSPI_LIST_DEVICE is not externally defined, the default value will be set according to
the build option QSPI_MAX_DEVICES (Section 2.1.3). If the build option QSPI_MAX_DEVICES is also not
set, then QSPI_LIST_DEVICE will be set according to the build option OS_PLATFORM (Section 2.1.1) and
will make all the QSPI devices available on the target platform.

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 12

2.1.5 QSPI_MAX_SLAVES
The build option QSPI_MAX_SLAVES informs the QSPI driver of how many slaves can be attached to the
controllers on the target platform. The default value is target platform dependent. If a single device is
attached to the controller, it does not mean QSPI_MAX_SLAVES can be set to 1, as QSPI_MAX_SLAVES is
used to dimension internal arrays that are indexed through the slave number. For example, if the only part
attached is tied to the chip select #1 (chip select # starting at 0), then QSPI_MAX_SLAVES must be set to a
value of at least 2.

2.1.6 QSPI_USE_MUTEX
In an RTOS environment, the driver can provide exclusive access protection to the QSPI device(s) through
its internal mutex(es). By default, the build option QSPI_USE_MUTEX is set to a non-zero value, meaning
the driver uses one mutex per device as the exclusive access protection mechanism. Defining and setting
the build option QSPI_USE_MUTEX to a zero value will configure the driver to not use mutexes, therefore
the application has to enforce that there be no concurrent accesses to the same device (that’s the controller,
not the memory device).

2.1.7 QSPI_OPERATION
The build option QSPI_OPERATION is used to configure how the QSPI flash memory driver operates. This
build option is a bit field holding 5 bits. Each of the 5 bits, (bit position #0 is the LSBit), is described in the
following table:

Table 2-3 QSPI_OPERATION bit definitions

Bit # Description

0 Interrupts are disabled during a read burst.

1 Interrupts are used to empty the controller RX FIFO when performing a read.

2 DMA is used to empty the controller RX FIFO when performing a read.

8 Interrupts are disabled during a write burst.

9 Interrupts are used to send the data to the TX FIFO when performing a write.

10 DMA is used to send the data to the TX FIFO when performing a write.

16 Task sleep is used when performing an erase.

Detailed information on how the different settings of QSPI_OPERATION modify the operation of the driver
is provided in Sections 3.4, 3.5, and 0.

2.1.8 QSPI_DMA_DEV
The build options QSPI_DMA_DEV, added in the mid-2020, specifies the DMA device used when DMA
transfers are enabled with the build option QSPI_OPERATION. Code Time’s DMA driver is used for the
DMA transfers and by default the DMA device number selected is 0. To use a different device number,
define and set the build option QSPI_DEV_NMB to the desired device number.

Take not the QSPI driver does not initialize the DMA (i.e. does not call dma_init()); it is the
responsibility of the application to initialize the DMA before performing transfer operations with the QSPI
driver

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 13

2.1.9 QSPI_ISR_RX_THRS
The build option QSPI_ISR_RX_THRS is used to set the threshold, or watermark, at which the data read
interrupts are triggered. When interrupts are used to read from the QSPI flash memory (QSPI_OPERATION
bit #1 set to 1), the RX interrupt is triggered when the read FIFO holds more than a number of bytes. The
build option QSPI_ISR_RX_THRS specifies this threshold, in percentage of the FIFO size. Therefore only
values between 0 and 100 are accepted for QSPI_IS_RX_THRS.

Each application has an optimal value for the RX threshold. To maximize the performance, the interrupt
handler should ideally be entered exactly when the FIFO is full or very close to be full. As there is always
a bit of latency between the time an interrupt is raised and when the interrupt handler is entered, the optimal
threshold should be set to the number of bytes that are transferred on the QSPI bus in the latency duration.
Assuming a FIFO of 512 bytes and assuming a latency of 2 us with a QSPI bus of 50 MHz using 4 lanes for
the data transfer, then 50 bytes are read in 2 us. This optimal threshold is located at 512-50 bytes, 462
which is 90% of 512. In this example, the optimal value to set QSPI_ISR_RX_THRS is 90.

This build option is ignored if bit #1 in QSPI_OPERATION (Section 2.1.7) is reset to zero.

2.1.10 QSPI_ISR_TX_THRS
The build option QSPI_ISR_TX_THRS is used to set the threshold, or watermark, at which the data write
interrupts are triggered. When interrupts are used to write to the QSPI flash memory (QSPI_OPERATION
bit #9 set to 1), the TX interrupt is triggered when the write FIFO holds less than a number of bytes. The
build option QSPI_ISR_TX_THRS specifies this threshold, in percentage of the FIFO size. Therefore only
values between 0 and 100 are accepted for QSPI_IS_TX_THRS.

Each application has an optimal value for the TX threshold. To maximize the performance, the interrupt
handler should in theory be entered exactly when the FIFO is empty or very close to be empty. As all QSPI
flash memories have a bit of latency between the time the last byte has been sent and the write operation
terminated, plus as there is a delay from unblocking a task in an interrupt and the task being un-blocked,
these two delays should be taken into account when setting the threshold value.

This build option is ignored if bit #9 in QSPI_OPERATION (Section 2.1.7) is reset to zero.

2.1.11 QSPI_MIN_4_RX_DMA
The build option QSPI_MIN_4_RX_DMA is used to set the minimum number of byte to be read to use DMA
transfers. The whole DMA handling always involves a certain amount of CPU overhead for the
programming of the DMA and to handle the end of transfer interrupts (if interrupts are enabled). When a
small number of bytes are to be read, it is highly probable the time required to perform the read is less than
the overall DMA set-up and interrupt handling overhead. When the RX DMA transfers are enabled
through the build option QSPI_OPERATION, if the number of bytes to read is less than the value specified
by QSPI_MIN_4_RX_DMA, the read transfer is performed through polling or ISRs instead of using the
DMA.

This build option is ignored if bit #2 in QSPI_OPERATION (Section 2.1.7) is reset to zero.

2.1.12 QSPI_MIN_4_TX_DMA
The build option QSPI_MIN_4_TX_DMA is used to set the minimum number of byte to be written to use
DMA transfers. The whole DMA handling always involves a certain amount of CPU overhead for the
programming of the DMA and to handle the end of transfer interrupts (if interrupts are enabled). When a
small number of bytes are to be written, it is highly probable the time required to perform the write is less
than the overall DMA set-up and interrupts overhead. When the TX DMA transfers are enabled through
the build option QSPI_OPERATION, if the number of bytes to write is less than the value specified by
QSPI_MIN_4_TX_DMA, the write transfer is performed through polling or interrupts instead of DMA.

This build option is ignored if bit #10 in QSPI_OPERATION (Section 2.1.7) is reset to zero.

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 14

2.1.13 QSPI_MIN_4_RX_ISR
The build option QSPI_MIN_4_RX_ISR is used to set the minimum number of byte to be read to use the
interrupts. The whole interrupt handling always involves a certain amount of CPU overhead: a task
becoming blocked, interrupt handler operating, and unblocking the task. When a small number of bytes are
to be read, it is highly probable the time required to perform the read is less than the overall interrupt
overhead. When the RX interrupts are enabled through the build option QSPI_OPERATION, if the number
of bytes to read is less than the value specified by QSPI_MIN_4_RX_ISR, the read transfer is performed
through polling instead of using interrupts.

This build option is ignored if bit #1 in QSPI_OPERATION (Section 2.1.7) is reset to zero.

2.1.14 QSPI_MIN_4_TX_ISR
The build option QSPI_MIN_4_TX_ISR is used to set the minimum number of byte to be written to use the
interrupts. The whole interrupt handling always involves a certain amount of CPU overhead: a task
becoming blocked, interrupt handler operating, and unblocking the task. When a small number of bytes are
to be written, it is highly probable the time required to perform the write is less than the overall interrupt
overhead. When the TX interrupt are enabled through the build option QSPI_OPERATION, if the number of
bytes to write is less than the value specified by QSPI_MIN_4_TX_ISR, the write transfer is performed
through polling instead of using interrupts.

This build option is ignored if bit #9 in QSPI_OPERATION (Section 2.1.7) is reset to zero.

2.1.15 QSPI_MAX_BUS_FREQ
The build option QSPI_MAX_BUS_FREQ, when set to a non-zero value indicates to the driver the maximum
QSPI bus clock to use; the value indicated the maximum frequency in MHz. The limitation of the bus
clock frequency may be needed when the external hardware cannot reliably operate at the maximum
frequency a memory chip supports. The maximum frequency setting is used on all devices and all slaves.

2.1.16 QSPI_CMD_LOWEST_FRQ
Some parts can handle commands to access the chip registers at full data rate when others cannot. The
build option QSPI_CMD_LOWEST_FRQ when set to a non-zero, sets the SPI bus at it lowest possible
frequency when issuing commands (these are not the data read or write commands but typically accesses to
the chip registers). When the build option is set to a value of zero, the bus frequency remains the same as
currently sets. When sets to non-zero, a positive value disables the controller and re-enable the controller
when the bus frequency is changed, and when sets to a negative value, the controller is kept enable when
changing the bus frequency. By default, the build option is set to a negative value, meaning the lowest bus
frequency is used and the controller remains enable when changing the bus frequency.

2.1.17 QSPI_READ_ONLY
The build options QSPI_READ_ONLY controls if the driver can write or erase parts. This build option is a
Boolean; when set to a non-zero value the driver will not write data nor perform erasure.

2.1.18 QSPI_KEEP_NONVOLATILE
The build options QSPI_KEEP_NONVOLATILE, added in the mid-2020, controls if the driver can change
non-volatile settings in the part. This build option is a Boolean; when set to a non-zero value the driver will
not write data nor perform erasure. By default it is set to zero therefore the driver modifies the non-volatile
setting to achieve the fastest data transfers.

If the Abassi’s driver is the only software accessing the QSPI chip, the setting can remain to allow the
modification of non-volatile settings. If other software access the QSPI, e.g. boot loader, external
programmer, other core running an independent S/W, then it is on a case by case and the build option
should initially be set to a non-zero value to not touch the non-volatile settings.

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 15

One example where the non-volatile setting should no be changed is the Altera/Intel SocFPGA boot loader
with some Spansion parts – the boot process fails because the boot loader expect the non-volatile setting of
the number of delay cycles to be set at the factory default.

One exception is the Quad Enable bit in the non-volatile setting that will always be turned on if needed.

2.1.19 QSPI_REINIT
The build options QSPI_REINIT, added in the mid-2020, controls if the a device can be re-initialized or
not. This build option is a Boolean; when set to a non-zero value the driver will go through the whole init
sequence when qspi_init() is called; this is the default value. When cleared to zero only the first time
qspi_init() is called will the whole initialization procedure occurs; further call to qspi_init() will
immediately exit the initialization. The main purpose to only allow the initialization to occurs once is when
a file system initializes the media multiple times; one such example is FatFS.

2.1.20 QSPI_MULTICORE_ISR
This build option is only used on a multi-core application. When the interrupt controller sends or is set-up
to send the same interrupt on multiple cores, then it is necessary to perform special handling in the interrupt
handlers to make sure the same interrupt is not processed twice. When the build option
QSPI_MULTICORE_ISR is set to a non-zero value, the ISR handlers are configured to properly handle
multiple occurrences of the same interrupt. Setting this build option to non-zero in a single application or
in multi-core application where the interrupt is targeted to a single core will not cause problems other than
adding code that slows down the operation of the ISR handler.

2.1.21 QSPI_TOUT_ISR_ENB
The build option QSPI_TOUT_ISR_ENB is a Boolean controlling if interrupts are re-enable when checking
transfer timeouts during transfers through polling. When a transfer through polling is performed and the
interrupts are disabled during the burst (controlled with QPSI_OPERATION), this could make the update of
the RTOS timer tick impossible as the timer tick counter is updated through interrupts. This build option
should be set to non-zero, unless timeouts are not required (this could end up in the application lock-up), or
on a multi-core application where more than one core receives the RTOS timer tick interrupt.

The setting of QSPI_TOUT_ISR_ENB does not affect the timeout check when the transfer is interrupt or
DMA based, i.e. QSPI_OPERATION bits #1, or #2, or #9, or #10 set to 1.

2.1.22 QSPI_REMAP_LOG_ADDR
When the MMU is set-up to remap memory areas at different addresses from the physical address, it is
necessary to convert the logical address to their physical equivalents when using DMA transfers. The build
option QSPI_REMAP_LOG_ADDR is a Boolean that selects if the addresses used by the DMA are converted
from logical to physical. By default it is set to a non-zero value (enable). Although the remapping function
is a low instruction count, one may want to not perform a redundant remapping when the logical addresses
are the same as the physical. The remapping can be turned off setting the build option
QSPI_REMAP_LOG_ADDR to zero.

2.1.23 QSPI_RDDLY_#_#
The RdDly entry in the part definition table (See section 3.1.8) is target board dependent and a default
value of 10 ns is used for the RdDly of all parts. As this defines a target board specific delay, the build
options QSPI_RDDLY_#_# allows the application to ignore the value of RdDly in the part definition table
and use the one specified by QSPI_RDDLY_#_#. As for the table entry, the number specifies the number of
nanoseconds (ns) to use as the delay. If the default value from the definition table is desired, either do not
define the build option QSPI_RDDLY_#_# or define it and set it to a negative value. The devices for which
the build option applies is the number (from 0 and up) specified by the first (leftmost) # in the build option
name. The slave for which the build option applies is the number (from 0 and up) specified by the second
(rightmost) # in the build option name.

Note: these build options are only available in releases on or after 2019.

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 16

2.1.24 QSPI_XTRA_PARTS
The build option QSPI_XTRA_PARTS is a Boolean that informs the QSPI driver to include the file
QSPIxtraParts.h as an add-on to the internal part definition table. If the build option is not defined or if
it is defined with a value of 0, the file QSPIxtraParts.h is not included in the part definition table. If
QSPI_XTRA_PARTS is defined and set to a non-zero value then the file QSPIxtraParts.h is included. A
template file QSPIxtraPart.s is provided in the “include” directory of the drivers.

It is preferable to add parts using the included file instead of modifying the driver internal part table
because it leaves the QSPI driver intact and simplify updating the driver for a new release.

Note: this build option is only available in releases on or after 2019.

2.1.25 QSPI_ARG_CHECK
The build options QSPI_ARG_CHECK controls if the driver checks the validity of the API function
arguments or not. This build option is a Boolean; when set to a non-zero value, the driver checks the
validity of the arguments, when set to a zero value, it does not check the validity of the arguments.

2.1.26 QSPI_DEBUG
The build options QSPI_DEBUG controls the printout of progress and error messages to stdout. This build
option is a Boolean; when set to a non-zero value the driver will send the messages to stdout and when
set to a value of zero, it will not send messages to stdout. When QSPI_DEBUG is set to a value of one (1),
only the initialization information is printed out. When QSPI_DEBUG is set to a value greater than one (1),
all information is printed out.

2.1.27 QSPI_ID_ONLY
The build options QSPI_ID_ONLY modifies the driver to exit the initialization (when qspi_init() is
called) after the part identification sequence. It provides a safe way to slowly bring up the access to a new
part. By default, the build option QSPI_ID_ONLY is set to 0, letting the driver operate normally. When
defined and set to a non-zero value, information will be printed on stdout and qspi_init() will exit
with an error after the part discovery operation.

2.1.28 QSPI_MX25R_LOW_POW
The build options QSPI_MX25R_LOW_POW selects if the parts from Macronix’s MX25R series operate in
low power mode or in high performance mode. By default, they are set to operate in high performance
mode. If the low power mode is desired, the build option QSPI_MX25R_LOW_POW must be defined and set
it to a non-zero value.

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 17

3 Operation
This section describes how the QSPI flash memory driver operates and the internal resources it utilizes.
One characteristic of the driver is that although many slaves can be attached to a device, the slaves can be
different QSPI flash memory parts, as the controller is always configured specifically for the target slave it
has to access when either performing a read, a write, or an erase. By using individual configurations for
each slave, it maximizes the data transfer performances for all slaves.

Internally, the driver maintains individual descriptors for each device validated in the build option
QSPI_LIST_DEVICE (See Section 2.1.4). In each device descriptor there is room to hold the controller
configuration for QSPI_MAX_SLAVES (See Section 2.1.5) individual slaves attached to the device.

3.1 Part Table
Each QSPI flash part or parts family has many specific non-uniform features. To handle as many parts as
possible a hard-coded definition table is used internally by the QSPI flash memory driver. This table holds
information like the page and sector sizes, the maximum read and write clock frequency, etc. The driver is
provided with the table already set-up for many parts. Refer to Appendix C (Section 7) for a list of the
parts that are already supported.

The following table shows the “C” data structure used by the part definition table to hold all the required
information for the handling of many types of parts by the QSPI driver:

Table 3-1 PartInfo_t

typedef struct {
 uint32_t DevID; /* Device ID: 0xXXSSPPMM */
 uint32_t Size[6]; /* Page, sub-sect, sect, die, device */
 uint8_t EraseCap[5]; /* Erase capabilities (if != 0, opcode) */
 uint32_t EraseTime[5]; /* Erase time in ms */
 uint32_t OpRd; /* Read op-code to use */
 uint32_t ModeRd; /* Mode byte, when required for read operation */
 uint32_t OpWrt; /* Write op-code to use */
 uint8_t WrtMaxFrq; /* Maximum SPI clock frequency for write */
 uint8_t RdDly; /* Read logic delay (in ns) */
 int Delay[4]; /* Timing needed to comply with the part timing */
 uint8_t DumClkR[16]; /* Max Frequency for #Index Rd dummy clock */
} Pinfo_t;

3.1.1 DevID
The uint32_t entry DevID is the 3 bytes JEDEC ID of the QSPI flash memory part. The 3 byte positions
in the 32 bit integer are as follows:
 0xXXSSPPMM

where: MM is the manufacturer

 PP is the part identifier

 SS is the part size

 XX is most of the time 0x00, but may be different depending on the part. For example, Spansion’s
S25FL256 is offered in two variants: one with 64KBytes sectors and the other with 256KBytes
sectors. One extra byte (the fifth in the device ID and common interface register) must also be
read to discriminate between the two parts, and it is that byte that is added in the MSByte of
DevID. Another case when XX is not 0x00 is when there are conflicts due to the manufacturer
re-using the same JEDEC ID for parts with different functionality; what is called here “part
variants”. One such case is Macronix’s MX25L series (refer to Section 7.1 for more details).

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 18

3.1.2 Size
The field Size is an array of 5 uint32_t entries. It holds the size of the different blocks on which
operations can be performed on the part. The values specify the page, sub-sector, sector, die and full part
sizes.

Size[0]: Size in bytes of a page. When a write is performed on a QSPI flash memory, a page is the
size area and boundaries limits that can be written in a single write burst. QSPI flash
memory pages are typically 256 bytes, and a few rare ones have pages of 512 bytes.

Size[1]: Size in bytes of a sub-sector. When a part supports sub-sectors, it is the smallest block size
that can be erased when a page (entry #0) cannot be erased. If a part does not support
sub-sectors, then the smallest erase block size is a sector and the value in Size[1] is a don’t
care.

Size[2]: Size in bytes of a sector. All parts can erase sectors.

Size[3]: Size in bytes of a die. Some large size parts are composed of multiple dies, or are subdivided
in blocks that a single read command cannot cross. A part with multiple dies has some
restrictions on the reading and the erasing operations. When a part is single die, the die size
Size[3] must be set to the same value as the part size (Size[4]).

Size[4]: Size in bytes of the part; this is the total size of the part.

3.1.3 EraseCap
The field EraseCap is an array of 5 uint8_t entries. It holds the op-code for erasing the associated block
size set in the field Size[]. When the part does not support the erasure of the related block size, a value of
zero must be used in associated EraseCap[] entry.

EraseCap[0]: Op-code to erase a page; most likely zero as very few parts support page erase.

EraseCap[1]: Op-code to erase a sub-sector. When erasure of sub-sector is not supported by the part,
a value of zero must be specified.

EraseCap[2]: Op-code to erase a sector. As a sector is a standard block size that can be erased, a
value of zero should never be used.

EraseCap[3]: Op-code to erase a die. When a part is a single die, a value of zero must be specified.

EraseCap[4]: Op-code for bulk erase of the part. This is to erase the whole memory in the part and
should never be zero.

There are definitions (QSPI_CMD_ERASE_4K, QSPI_CMD_ERASE_SECT, QSPI_CMD_ERASE_CHIP) for the
“standard” op-codes (supported by Cypress/Spansion, Micron and Winbond) in the file ???_qspi.c.

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 19

3.1.4 EraseTime
The field EraseTime is an array of 5 uint32_t entries. It holds the erase time, in ms, of the related block
size indicated in the field Size[]. The value set in the table is 90% of the typical erase time specified by
the manufacturer. When the part does not support the erasure of the related block size (as indicated by
EraseCap[]), the value is ignored. The erasure time is only used when the driver is used with Abassi and
is set-up (see build option QSPI_OPERATION, Section 2.1.7) to put the task to sleep when waiting for the
completion of the erasure.

EraseTime[0]: Erase time for a page. The value is most likely a don’t care as very few parts support a
page erase.

EraseTime[1]: Erase time for a sub-sector; value is a don’t care if the part does not support
sub-sectors.

EraseTime[2]: Erase time for a sector.

EraseTime[3]: Erase time for a die; value is a don’t care if the part is a single die.

EraseTime[4]: Erase time for the bulk erase of the part (full memory erase).

Refer to Section 3.4 for more information on how the entries in EraseTime[] are used.

3.1.5 OpRd
The field OpRd is a uint32_t entry specifying the read op-code to use with the part. It holds more
information than the read op-code itself. The LSByte of OpRd is the read op-code itself and the next 3
nibbles provide the information about the bus width used by the op-code, the address, and the data. The
bus width is specified with 3 values because depending on the read op-code used, the op-code, the address,
and the data can be transferred over 1 lane, 2 lanes, or 4 lanes, and the transfer width can be different
between the op-code, the address, and the data:

 0 : the exchange uses 1 lane (in reality 2 unidirectional lanes: SI / SO)

 1 : the exchange uses 2 lanes

 2 : the exchange uses 4 lanes

Considering the following 32 bit number:
0x000DAIRR

RR: Read op-code byte

I: Op-code bus width (0,1,2)

A: Address bus width (0,1,2)

D: Data bus width (0,1,2)

There are definitions, prefixed with QSPI_CMD_READ, for the “standard” read op-codes (supported by
Cypress/Spansion, Micron and Winbond) in the file ???_qspi.c.

IMPORTANT: Do not forget the 3 nibbles when hand coding the op-code in hex!!!

3.1.6 ModeRd
The field ModeRd is a uint32_t entry specifying if a mode byte is used when initiating a read operation
and, if it is needed, what is the value of the mode byte to send to the part. When ModeRd is a non-zero
value, the LSByte of ModeRd is sent out as the mode byte when performing a read operation. If the mode
byte to transfer is zero, then at least one bit in the 32 bit ModeRd (other than the in the LSByte) must be set
to a non-zero value. If ModeRd is 0, then no mode byte is sent out when performing a read transfer.

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 20

3.1.7 OpWrt
The field OpWrt is a uint32_t entry specifying the write op-code to use with the part. It holds more
information than the op-code itself. The LSByte of OpWrt is the write op-code itself and the next 3 nibbles
provide the information about the bus width used by the op-code, the address, and the data. The bus width
is specified with 3 values:

 0 : the exchange uses 1 lane (in reality 2 unidirectional lanes: SI / SO)

 1 : the exchange uses 2 lanes

 2 : the exchange uses 4 lanes

Considering the following:
0x000DAIWW

WW: Write op-code byte

I: Op-code bus width (0, 1, 2)

A: Address bus width (0, 1, 2)

D: Data bus width (0, 1, 2)

There are definitions (QSPI_CMD_PAGE_PGM, QSPI_CMD_2PAGE_PGM, QSPI_CMD_4PAGE_CMD) for the
“standard” write (programming) op-codes (supported by Cypress/Spansion, Micron and Winbond) in the
file ???_qspi.c.

IMPORTANT: Do not forget the 3 nibbles when hand coding the op-code in hex!!!

WrtMaxFrq

The field WrtMaxFrq is a uint8_t entry specifying the maximum frequency that can be used when
writing to the part. This maximum frequency is in MHz units, and applies to the write op-code selected in
the field OpWrt.

3.1.8 RdDly
The field RdDly is only used with the Cadence QSPI controller. It specifies the delay in ns to apply in the
controller internal read logic. Empirically, 10 ns is the best value to use found for all development boards
Code Time used to test the QSPI driver.

IMPORTANT: The optimal delay to use is target board dependent. The default delay of 10 ns is likely
either non-optimal or simply wrong for some target boards. The build option
QSPI_RDDLY_#_# (See section 2.1.23) should be used to overload the value in the part
definition table.

3.1.9 Delay
The field Delay is an array of 4 uint32_t entries, used to make the controller comply with the part timing
characteristics when performing transactions with the attached part.

Delay[0]: Delay in ns from the validation of the chip select and the first bit exchanged. This first
bit is always an op-code bit.

Delay[1]: Delay in ns from the last bit exchanged and the invalidation of the chip select.

Delay[2]: Delay in ns between a chip select invalid and the chip select being valid again.

Delay[3]: Delay in ns between two transactions

Most of the time, the values set-up are much larger than the chip minimal requirements. This was chosen
to keep a large margin of safety.

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 21

3.1.10 DumClkR
The field DumClkR is an array of 16 uint8_t entries, holding the information about the required number
of dummy clocks according to the bus frequency, when performing the type of read operation using the
op-code specified in the field OpRd. The values in the array represent the maximum frequency, in MHz, for
0 to 15 dummy cycles. The first entry, index #0 is the maximum frequency up to which no dummy cycles
are needed. The second entry, index #1, is the maximum frequency up to which 1 dummy cycle can be
used. The third entry, index #2, is the maximum frequency up to which 2 dummy cycle can be used… etc.
If a part requires to have a minimum of X dummy cycles, no matter the bus frequency, then all entries from
index #0 to index #X-1 must be set to a value of zero. The DumClkR[] array must be fully initialized: all
entries past the maximum frequency must be filled with the maximum frequency value, and when a jump in
the number of dummy cycle occurs, the lower value must be duplicated (see example below with 5 to 7
dummy cycles).

For example, let’s assume a part that always requires 2 dummy cycles up to 50 MHz, then it requires 3
dummy cycles up to 60 MHz, 4 up to 70 MHz, 5 up to 80 MHz, 7 up to 90 MHz, and 8 at 100 MHz, the
maximum of its operations. The DumClkR[] array is initialized with the following values:

{ 0, 0, 50, 60, 70, 80, 80, 90, 100, 100, 100, 100, 100, 100, 100, 100 }

The value 80 is duplicate for 5 and 6 dummy cycles as there is a jump from 5 dummy cycles (80 MHz) to 7
dummy cycles (90 MHz) and all values above 8 dummy cycles are set to the maximum value of 100 MHz.

It is important to remember the values that are set in the DumClkR[] fields are most of the time only valid
for the read op-code in the field OpRd. If the read op-code is changed, it is highly probable the values in
the array DumClkR[] will not be correct unless they are updated for the new read op-code.

TRICK: The last entry in DumClkR, index 15, is the entry used to set the bus frequency for read operations.
Changing only the last entry makes it possible to lower the bus frequency without updating the whole array.

3.2 General Information
Depending on the driver, when a part requires more than 3 bytes for the addressing, the read / write, and
erase operation (a flash memory with more than 128 Mbit or 16 Mbytes), the part will be used either by
writing the 4th byte or MSByte in the appropriate register or by configuring the part to convert all 3 byte
address instructions into 4 byte address instructions (what Micron calls the “Enhanced SPI protocol”). The
use of 4 bytes vs programming the 4th byte depends on the controller capabilities and is purely target
dependent.

The driver never configures, nor uses the part in the mode where the command byte is transferred on 2 or 4
lanes. This was chosen as most of the time when a part is configured in this mode the information is held
in non-volatile configuration bits. This means upon power-up, the part would immediately operate in this
mode and this would make the initialization more complex because the driver’s first step is to identify the
part it has to initialize. If the 2 or 4 lane op-codes were used, the identification would fail using a single
lane. As the part is not yet identified, it would be difficult to know what bit to modify to set-up the part to
use a single lane. So the controller would need to be set-up to use 2 lane op-codes and try again to identify
the part. If that failed too, then the controller would need to be set-up to use 4 lane op-codes. After
identification, then all set-up commands would need to be different from the ones used, as the op-code
would require 2 or 4 lanes. As one can see, this adds a fair amount of complexity in the driver for a mere
saving of 4 or 6 clock cycles.

When a part requires a mode byte on read operations, the read operations should never set for continuous
read mode, as this feature cannot be used due to the way the driver is operating.

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 22

3.3 Initialization
The initialization is done through the component qspi_init() (See Section 4.1.5). As most QSPI
controllers support multiple slaves, which may be different parts, it is necessary to call qspi_init() for
each of the slaves attached to the device. The initialization is fairly straightforward. First the JEDEC ID of
the part is retrieved using the lowest QSPI bus clock frequency. If the JEDEC ID is found in the part
definition table, the per-device/slave descriptor is set-up according to the information in the part definition
table, and the part is configured to operate according to the descriptor set-up. If the part is not found in the
part definition table, qspi_init() exits and reports the error.

3.4 Erasing
QSPI flash memory erasing can only be performed over a minimum block size, being the page, sub-sector,
or the sector size of the part. As this is a characteristic of the QSPI flash memories, the driver can only
erase memory in block sizes that are multiple of the smallest erase block size and with the erasing starting
at addresses aligned with that minimal block size. The component qspi_blksize() (See Section 4.1.1)
can be used to retrieve the minimum erase block size of the part attached to a device and slave number. As
long as the erase size is a multiple of the minimum block and the start address is also aligned, the driver
will always erase the required memory area and will do so by minimizing the number of erasure requests to
the part. This is to say the driver always use the largest block size available for erasing. For example,
considering a part with 4K sub-sectors and 64K sectors, if an erase is requested for a memory area of
0x00020000 bytes starting at address 0x00008000, then there will be 8 sub-sector erases (blocks of 4KB at
addresses between 0x00008000 and 0x0000FFFF), one erase of a sector (blocks of 64KB at addresses
between 0x00010000 and 0x0001FFFFF) and 8 sub-sector erases (blocks 4 KB at addresses from
0x00020000 to 0x00027FFF).

When an erase request is sent to a QSPI flash memory, it takes some time for the erasure to be completed.
Depending on the erasure size, the erasure time can take from a fraction of a second to a many minutes
(some 1 Gb parts typically take 10 to 12 minutes for a full erasure). Instead of continuously poll until the
erasure is completed, the driver can be configured to put the task to sleep for the time indicated in the field
EraseTime[] in the part definition table. When bit #16 of the build option QSPI_OPERATION (See 2.1.7)
is set to 1, the driver will go to sleep. If the bit is reset to 0, the driver will continuously poll until the part
reports the completion of the erasure. When the driver puts the task to sleep, it will do so at first for the
time from the part definition table. After this sleep time, if the erasure is not completed, then the task will
continuously be put to sleep for 1/32 of the first sleep time until the erasure is completed.

3.5 Writing
The driver does not have any restriction when requested to write data to a QSPI flash memory. That is,
although a write operation on QSPI flash memories is restricted to a page size and bounded by the page
size, the driver, when needed, performs multiple writes requests. Another characteristics of the driver is
that although some controllers can only perform a write in multiple of 2 or 4 bytes, when operating in an
application with these controllers and a write request is not a multiple of 2 or 4 bytes, the driver fills the
remainder with 0xFF as writing 0xFF is a do-nothing on NOR QSPI flash memories.

The build option QSPI_OPERATION (See Section 2.1.7) bit #8, bit #9, and bit #10 settings are used to
control how the driver operates when performing a write. When bit #8 is set to 1, it configures the driver to
disable the interrupts when performing a write burst. The interrupts are disabled as long as the data burst,
which is the data to write within a page, hasn’t been fully transferred to the TX FIFO of the controller. If
bit #8 in QSPI_OPERATION is instead reset to zero, the interrupts are never disabled when performing a
write.

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 23

Bit #9 in the build option QSPI_OPERATION, when set to 1, configures the driver to operate using
interrupts when performing a write operation. The way the interrupts are handled is as follows: first the
data for the burst is fully written into the TX FIFO of the controller. Once all the data burst has been
transferred, the driver then blocks the task by waiting on a semaphore. The interrupt is triggered when the
TX FIFO contains less data than a preset threshold (typically when empty or very close to). In the
interrupt, the semaphore the task is blocked on is posted. The last write performed in the interrupt is
always done with a number of bytes that matches the threshold. This guarantees all data is transferred in the
interrupt and no residual polling is requires. The verification for the part having completed the write
operation cannot be used as the source of interrupt as this information must be extracted from the QSPI
flash memory part. When the semaphore is posted, the task gets unblocked and polling is done to make
sure the write operation has been completed by the part. The next transfer is then started and the sequence
repeated. If lucky, the time taken from when the interrupt is raised to when the code start the check if the
write is done will be the same as required by the part to complete the write.

Bit #10 in the build option QSPI_OPERATION, when set to 1, configures the driver to operate using DMA
transfers when performing a write operation. The DMA is set-up for the transfer using an optimal TX FIFO
threshold, the transfer is launched, and the end of transfer is waited for. The verification for the part having
completed the write operation cannot be used as the source of interrupt as this information must be
extracted from the QSPI flash memory part. When the semaphore is posted, the task gets unblocked and
polling is done to make sure the write operation has been completed by the part. The next transfer is then
started and the sequence repeated. If lucky, the time taken from when the interrupt is raised to when the
code start the check if the write is done will be the same as required by the part to complete the write.

One should be aware when using interrupts or DMA that the task blocking may not free much CPU. If the
TX FIFO of the controller is much smaller than the size of the part’s page, then the blocking, interrupt
overhead, and unblocking of the task may take longer than waiting for the small TX FIFO content to be
sent to the memory and the write to be completed by the part.

Depending on the setting of the QSPI_OPERATION bits #9 and #10, polling, ISR of DMA transfer will be
selected according to:

- Assume doing polling

- If QSPI_OPERATION bit #9 is non-zero and # bytes to write > QSPI_MIN_4_TX_ISR then use ISRs

- If QSPI_OPERATION bit #10 is non-zero and # bytes to write > QSPI_MIN_4_TX_DMA then use DMA

- If QSPI_OPERATION bit #9 is non-zero, the end of transfer waiting is done blocking on a semaphore
posted by the ISR handler.

3.6 Reading
The driver does not have any restrictions when requested to read data from a QSPI flash memory.
Although some controllers can only read multiples of 2 or 4 bytes, when the read request is not a multiple
of 2 or 4 the driver will drop the extra bytes. Also, some controllers (e.g. Xilinx Zynq’s2) can only be
configured to use dummy bytes and not dummy cycles. So depending on the number of lanes used for the
reading, this type of controller limitation can only operate with dummy cycles in multiples of 2, 4 or 8.
With this kind of controller, the QSPI driver does not rely on the controller’s dummy byte capabilities as it
sets-up the controller to never use dummy byte. Instead, the driver performs the reading of these dummy
data bits and shifts the overall data read according to the required optimal number of dummy cycles.

Read operations on QSPI flash memories can be continuous, no matter the number of bytes to read, except
when a part has multiple dies. When a part has multiple dies, and the read request crosses die boundaries,
the driver performs individual read bursts for each dies.

2 This limitation of the controller is such that on the Zedboard and its Spansion part, the maximum usable QSPI bus
frequency for the read is 50 MHz. By making the driver handle the dummy cycles, the maximum bus frequency goes
up to 100 MHz, close to the 104 MHz maximum of the part.

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 24

The build option QSPI_OPERATION (See Section 2.1.7) bit #0, bit #1, and bit #2 settings are used to
control how the driver operates when performing a read. Bit #0 in QSPI_OPERATION, when set to 1,
configures the driver to disable the interrupts when performing a read burst. The interrupt disabling lasts as
long as the data burst, which is the data to read, hasn’t been fully transferred from the RX FIFO of the
controller.

Bit #1 in the build option QSPI_OPERATION, when set to 1, configures the driver to use interrupts. The
way the interrupts are used is as follows: the driver makes the task block on a semaphore that will be posted
in the interrupt when all the data of the burst has been read. When the RX FIFO contains more data than a
preset threshold, which is typically around 75% the size of the RX FIFO, an interrupt is generated by the
controller. In the interrupt handler, the RX FIFO is completely emptied and when all the bytes in the data
burst have been read, the interrupt generation is turned off and the semaphore the task was blocked on is
posted. There are no conflict with having both bit #0 and #1 being set. When the interrupts are used (bit
#1 set to 1), the interrupts are not disabled even if bit #0 is set to 1.

Bit #2 in the build option QSPI_OPERATION, when set to 1, configures the driver to operate using DMA
transfers when performing a read operation. The DMA is set-up for the transfer using an optimal RX FIFO
threshold, the transfer is launched, and the end of transfer is waited for.

One should be aware that using interrupts or the DMA when reading data makes the task block and this
might not free much CPU. This is because, depending on the controller’s RX FIFO size, it is quite possible
to fill the RX FIFO faster than the overall time required to enter the interrupt, copy the data, and exit the
interrupt, or to set-up the DMA transfer. For example, a part capable of reading at 100 MHz will fill a 128
byte FIFO in 2.5µs when using 4 lanes to transfer the data. When the read request is less than 64 bytes, the
interrupts are not used even if bit #1 is set. This overriding is done as most of the time the part is read in
the neighborhood of 100 MHz and 64 bytes or less will be read around less than 1 µs.

- Assume doing polling

- If QSPI_OPERATION bit #1 is non-zero and # bytes to write > QSPI_MIN_4_RX_ISR then use ISRs

- If QSPI_OPERATION bit #2 is non-zero and # bytes to write > QSPI_MIN_4_RX_DMA then use DMA

- If QSPI_OPERATION bit #1 is non-zero, the end of transfer waiting is done blocking on a semaphore
posted by the ISR handler.

3.7 Multiple Drivers
It is possible to use 2 or more drivers for different QSPI controllers. Example of the need for this is a
processor with on-chip QSPI(s) on a board with different type of QSPI controller or a SocFPGA with added
QSPI controller in the FPGA fabrics that are of different type than the processor system QSPI contoller. To
use multiple drivers the build option QSPI_MULTIPLE_DRIVER must be defined and set to a non-zero
value. This changes the API names of the driver by pre-pending the QSPI type to the function names. For
example, if cd_qspi.c is used, the APIs are named as following:

Table 3-2 BAPI remapping

Original Multiple

qspi_blksize() cd_qspi_blksize()

qspi_cmd_read() cd_qspi_cmd_read()

qspi_cmd_write() cd_qspi_cmd_write()

qspi_erase() cd_qspi_erase()

qspi_init() cd_qspi_int()

qspi_read() cd_qspi_read()

qspi_size() cd_qspi_size()

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 25

The prefix is always the prefix in the file name; e.g. dw_qspi.c prefix is dw and cd_qspi.c is cd.

All build options if not prefixed apply to all the drivers. To set build options on a per-driver basic al there
is to do is used the build option that has been pre-fixed with the same prefix used in the API but in
uppercase. For example to set each of the multiple drivers to support 3 devices each, the build option
QSPI_MAX_DEVICES should defined and set to 3. If the cd_qspi and the dw_qspi drivers are use
together and, as for the example below, there are 1 devices for the cd and 2 for the dw, then
cd_QSPI_MAX_DEVICES should defined and set to q and DW_QSPI_MAX_DEVICES should defined and set
to 2.

A custom wrapper must be provided. The following code shows such a driver for the cd_qspi (1
controller accessed as device #0) and the dw_qspi (1 QSPI controllers accessed as device #1 and #2):

qspi_write() cd_qspi_write()

QSPIintHndl_#() cd_QSPIintHndl_#()

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 26

Table 3-3 Multiple QSPI wrapper example (QSPI.c)

#include "qspi.h"

/* --- */

int qspi_init(int Dev, int Slv, int Mode)
{
int RetVal;

 RetVal = (Dev == 0)
 ? cd_qspi_init(Dev, Slv, Mode)
 : dw_qspi_init(Dev-1, Slv, Mode);

 return(RetVal);
}

/* --- */

int qspi_erase(int Dev, int Slv, unint32_t Addr, uint32_t Len)
{
int RetVal;

 RetVal = (Dev == 0)
 ? cd_qspi_erase(Dev, Slv, Addr, Len)
 : dw_qspi_erase(Dev-1, Slv, Addr, Len);

 return(RetVal);
}

/* --- */

int qspi_read(int Dev, int Slv, unint32_t Addr, void *Buf, uint32_t Len)
{
int RetVal;

 RetVal = (Dev == 0)
 ? cd_qspi_read(Dev, Slv, Addr, Buf, Len)
 : dw_qspi_read(Dev-1, Slv, Addr, Buf, Len);

 return(RetVal);
}

/* --- */

int qspi_write(int Dev, int Slv, unint32_t Addr, const void *Buf, uint32_t Len)
{
int RetVal;

 RetVal = (Dev == 0)
 ? cd_qspi_write(Dev, Slv, Addr, Buf, Len)
 : dw_qspi_write(Dev-1, Slv, Addr, Buf, Len);

 return(RetVal);
}

... and on

/* --- */

void QSPIintHndl_0(void) { cd_QSPIintHndl_0(); }
void QSPIintHndl_1(void) { dw_QSPIintHndl_1(); }

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 27

void QSPIintHndl_2(void) { dw_QSPIintHndl_2(); }

/* EOF */

Table 3-4 Multiple QSPI wrapper example (QSPI.h)

#ifndef __QSPI_H__
#define __QSPI_H__ 1

#include "cd_QSPI.h" /* CD QSPI driver */
#include "dw_QSPI.h" /* DW QSPI driver */

#ifndef QSPI_MULTI_DRIVER /* It must be defined and set to !=0 */
 #define QSPI_MULTI_DRIVER 0 /* Set 0 to trigger the error message */
#endif

#if ((QSPI_MULTI_DRIVER) == 0)
 #error "QSPI_MULTI_DRIVER must be defined and set to a non-zero value"
#endif

#define QSPI_MAX_DEVICES ((CD_QSPI_MAX_DEVICES)+(DW_QSPI_MAX_DEVICES))
#define QSPI_LIST_DEVICE ((CD_QSPI_LIST_DEVICE)|((DW_QSPI_LIST_DEVICE)<<2))

/* --- */

int32_t qspi_blksize (int Dev, int Slv);
int qspi_cmd_read (int Dev, int Slv, int Cmd, uint8_t *Buf, int Nbytes);
int qspi_cmd_write(int Dev, int Slv, int Cmd, uint8_t *Buf, int Nbytes);
int qspi_erase (int Dev, int Slv, uint32_t Addr, uint32_t Len);
int qspi_init (int Dev, int Slv, uint32_t Mode);
int qspi_read (int Dev, int Slv, uint32_t Addr, void *Buf, uint32_t Len);
int64_t qspi_size (int Dev, int Slv);
int qspi_write (int Dev, int Slv, uint32_t Addr, const void *Buf, \
 uint32_t Len);

/* --- */

extern void QSPIintHndl_0(void);
extern void QSPIintHndl_1(void);
extern void QSPIintHndl_2(void);

#endif

/* EOF */

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 28

4 API
In this section, the API of all common QSPI driver functions is provided. The next section gives examples
on how to use the QSPI.

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 29

4.1.1 qspi_blksize

Synopsis
#include “???_qspi.h”

int32_t qspi_blksize(int Dev, int Slv);

Description

qspi_blksize() is a component that reports the minimum block size in bytes of the flash
memory part attached to device Dev on the port Slv. The QSPI minimum block size is the
smallest block size that can be erased.

Arguments

Dev Device number (Number starting at 0)
Slv Slave number (Number starting at 0)

Returns

int32_t > 0 Block size in bytes of the flash memory part
<= 0 Error

Component type

Function

Options

Notes

qspi_blksize() will return an error if the device / slave access hasn’t been initialized
through qspi_init().

See Also
qspi_init (Section 4.1.5)
qspi_ection 4.1.7)

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 30

4.1.2 qspi_cmd_read

Synopsis

#include “???_qspi.h”

int qspi_cmd_read(int Dev, int Slv, int Cmd, uint8_t *Buf,
 int Nbytes);

Description

qspi_cmd_read() is a component to send a command to read Nbytes from the chip
located at the port Slv on device Dev. This is not the memory read command; the
component to read the memory is qspi_read(). It is a portal to send commands directly to
the chip, alike reading the status register.

Arguments

Dev Device number (Number starting at 0)
Slv Slave number (Number starting at 0)
Cmd Command op-code to send to the device
Buf Buffer that will receive the data sent out by the chip
Nbytes Number of bytes to read from the chip

Returns

int32 == 0 Success
<= 0 Error

Component type

Function

Options

Notes

qspi_cmd_read() will return an error if the device / slave access hasn’t been initialized
through qspi_init().

See Also
qspi_init (Section 4.1.5)
qspi_cmd_write (Section 4.1.3)

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 31

4.1.3 qspi_cmd_write

Synopsis

#include “???_qspi.h”

int qspi_cmd_write(int Dev, int Slv, int Cmd, uint8_t *Buf,
 int Nbytes);

Description

qspi_cmd_write() is a component to send a command to write Nbytes to the chip located
at the port Slv on device Dev. This is not the memory write command; the component to
write to the memory is qspi_write(). It is a portal to send commands directly to the chip,
alike writing the configuration register.

Arguments

Dev Device number (Number starting at 0)
Slv Slave number (Number starting at 0)
Cmd Command op-code to sent to the device
Buf Buffer that holds the data to send to the chip
Nbytes nNumber of bytes to write to the chip

Returns

int == 0 Success
<= 0 Error

Component type

Function

Options

Notes

qspi_cmd_write() will return an error if the device / slave access hasn’t been initialized
through qspi_init().

See Also
qspi_init (Section 4.1.5)
qspi_cmd_read (Section 4.1.2)

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 32

4.1.4 qspi_erase

Synopsis
#include “???_qspi.h”

int qspi_erase(int Dev, int Slv, uint32_t Addr, uint32_t Len);

Description

qspi_erase() is the component used to erase an area, or the whole memory, of a QSPI
flash memory. The part is accessed according to the device indicated by the argument Dev,
and the slave number Slv on that device. The starting address of the memory area to erase is
indicated with the argument Addr, and the number of bytes to erase is indicated by the
argument Len.

Arguments

Dev Device number (Number starting at 0)
Slv Slave to erase (Number starting at 0)
Addr Base address of the memory area to erase
Len Number of bytes to erase

Returns

int == 0 : success
 != 0 : error

Component type

Function

Options

The build option QSPI_OPERATION (See Section 2.1.7 and 3.4) controls the behavior of the
driver when a read operation is requested. When QSPI_OPERATION bit #16 is set to 1, the
driver puts the task to sleep for an amount of time extracted from the part definition table.

Notes

When erasing a block of memory in a QSPI flash memory, the minimum block size that can
be erased can be obtained through the component qspi_blksize() (See Section 4.1.1).
The number of bytes to erase must be an exact multiple of the minimal block size, and the
start address must be aligned on the block size. A shortcut is available to perform a bulk
erase, instead of having to rely on qspi_size(); that is to erase the all the memory of the
part by specifying a start address of 0xFFFFFFFF and a memory block of 0 bytes:

qspi_erase(Dev, Slv, 0xFFFFFFFF, 0);

See Also

qspi_read (Section 4.1.6)
qspi_write (Section 4.1.8)

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 33

4.1.5 qspi_init

Synopsis
#include “???_qspi.h”

int qspi_init(int Dev, int Slv);

Description

qspi_init() is the component used to initialize a QSPI device, specified with the device
indicated by the argument Dev, and one slave on that device; the slave is identified with the
argument Slv.

Arguments

Dev Device to initialize (Number starting at 0)
Slv Slave to initialize (Number starting at 0)

Returns

int == 0 : success
 != 0 : error

Component type

Function

Options

Notes

When multiple slaves are connected on a device, qspi_init() must be called using the
same device number but setting the slave number to initialize according to the slave on that
device.
When qspi_init() is used on a slave, the QSPI flash memory part ID is read from the part
and from the unique ID, using the information held in the device table.

See Also

qspi_erase (Section 4.1.4)
qspi_init (Section 4.1.5)
qspi_read (Section 4.1.6)
qspi_write (Section 4.1.8)

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 34

4.1.6 qspi_read

Synopsis
#include “???_qspi.h”

int qspi_read(int Dev, int Slv, uint32_t Addr, void *Buf,
 uint32_t Len);

Description

qspi_read() is the component used to read data from a QSPI flash memory. The part is
accessed according to the device indicated by the argument Dev, and the slave number on
that device; the slave number is identified with the argument Slv. The starting address of the
block of data to read is indicated with the argument Addr, and the number of bytes to read is
indicated by the argument Len.

Arguments

Dev Device number (Number starting at 0)
Slv Slave to read from (Number starting at 0)
Addr Base address of the block of data to read
Buf Buffer that will receive the data
Len Number of bytes to read

Returns

int == 0 : success
 != 0 : error

Component type

Function

Options

The build option QSPI_OPERATION (See Section 2.1.7 and 0) controls the behavior of the
driver when a read operation is requested. When QSPI_OPERATION bit #0 is set to 1,
interrupts are disabled during each read burst. When bit #1 is set to 1, interrupts are used to
transfer the data from the application memory to the TX FIFO of the controller.

Notes

See Also
qspi_erase (Section 4.1.4)
qspi_write (Section 4.1.8)

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 35

4.1.7 qspi_size

Synopsis
#include “???_qspi.h”

int64_t qspi_size(int Dev, int Slv);

Description

qspi_size() is a component that reports the size in bytes of the flash memory part attached
to device Dev on the port Slv; the return value is the total number of bytes of the part.

Arguments

Dev Device number (Number starting at 0)
Slv Slave number (Number starting at 0)

Returns

Int64_t > 0 Block size in bytes of the flash memory part
<= 0 Error

Component type

Function

Options

Notes

qspi_blksize() will return an error if the device / slave access hasn’t been initialized
through qspi_init().

See Also
qspi_blksize (Section 4.1.1)
qspi_init (Section 4.1.5)

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 36

4.1.8 qspi_write

Synopsis
#include “???_qspi.h”

int qspi_write(int Dev, int Slv, uint32_t Addr, const void *Buf,
 uint32_t Len);

Description

qspi_write() is the component used to write data to a QSPI flash memory. The part is
accessed according to the argument Dev, and the slave number on that device; the slave
number is identified with the argument Slv. The starting address of the block of data to
write is indicated with the argument Addr, and the number of bytes to write is indicated by
the argument Len.

Arguments

Dev Device number (Number starting at 0)
Slv Slave to write to (Number starting at 0)
Addr Base address of the block of data to write
Len Number of bytes to write

Returns

int == 0 : success
 != 0 : error

Component type

Function

Options

The build option QSPI_OPERATION (See 2.1.7 and 3.5) controls the behavior of the driver
when a write operation is requested. When QSPI_OPERATION bit #8 is set to 1, interrupts are
disabled during each write bursts. When bit #9 is set to 1, interrupts are used upon
completion of the data transfer to the part.

Notes

See Also
qspi_erase (Section 4.1.4)
qspi_read (Section 4.1.6)

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 37

4.1.9 QSPIintHndl_n

Synopsis
#include “???_qspi.h”

void QSPIintHndl_n(void);

Description

QSPIintHndl_n() is the interrupt handler for the QSPI driver. The n in the name is a
numerical value that specifies the device number the interrupt handler is for.

Arguments
void

Returns
void

Component type

Function

Options

The QSPI interrupt handler is not used, therefore not needed, if bit #1 and bit #9 of the build
option QSPI_OPERATION are both set to 0 (See Section 2.1.7). Interrupt handlers are only
available for the QSPI devices validated by the build option QSPI_LIST_DEVICE.

Notes

The interrupt handler should always be attached to the targeted QSPI device interrupt and the
number of the interrupt handler MUST match the device number. If there is a mismatch, then
the application will most likely freeze or even crash. If the interrupt handler is not attached
and the related interrupt enabled, the QSPI driver for this device will not operate.

See Also
qspi_read (Section 4.1.6)
qspi_write (Section 4.1.8)

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 38

5 Appendix A

5.1 Bringing a part up
Before using the QSPI driver, the following should be performed, assuming the set-up has an operational
stdout device:

1) Set the build option QSPI_ID_ONLY to a non-zero value and rebuild the application.

2) Perform a call to qspi_init() with the appropriate device controller number and slave. Run the
application, and if the stdout display reports the following:

This JEDEC ID is available in the part definition table

 Then the part has already an entry in the part definition table, which means you can proceed to step
3)

 If instead the stdout display reports the following:
This JEDEC ID is NOT in the part definition table

 Then it is necessary to add a new entry in the part definition table, which means you must proceed
according to the next section (Section 6).

3) As the part is already in the part definition table, it will most likely operate properly “out of the
box”. The supported parts are listed in Section 7: parts in bold have been physically verified and as
such the table entry is correct. Parts not in bold haven’t been physically verified meaning the table
entry may have errors; please double check these.

Un-define, or set the option QSPI_ID_ONLY to zero. Then set to one (1) the build option
QSPI_QUICK_CHECK for the test file QSPI_<TOOL>_<HW>.c and build a test application based on
this file.

4) The 256-byte dump on stdout, when running the test application, should be exactly like Table 8-1.
If it is, you should run the full regression test by setting the build option QSPI_QUICK_CHECK to
zero and make sure the results are all OK. If the quick test result is not OK, there are a few possible
reasons:

 a) QSPI bus clock for write is too high

 b) QSPI bus clock for read is too high

 c) Number of lanes for write is wrong

 d) Number of lanes for read is wrong

 If the regression test is not OK, then only a) and b) may be at fault.

5) To reduce the QSPI bus clock, these are the 2 fields in the part definition table that should be
modified:

 WrtMaxFrq

 DumClkRd[15]

 Set both fields to 1 (meaning a bus of around 1 MHz) and re-test. If the test passes, then adjust these
values for the maximum frequency your target hardware supports.

6) If reducing the bus clock frequency did not solve the problem, it is quite possible it is necessary to
reduce the number of lanes used for the transfers. Keeping the maximum clock to 1 MHz set in 5),
change the contents of these two fields to set them to the op-codes that use the most basic transfers:

 OpWrt set to QSPI_CMD_PAGE_PGM

 OpRD set to QSPI_CMD_READ

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 39

 Changing OpRd most likely invalidates the DumClkR array. Replace the whole DumClkR[] array
with an array of 16 ones:

 { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

 With these modifications, the QSPI transfers are performed at around 1 MHz with the most basic
operations. Unless there is a hardware issue, this should work.

7) Upon success, slowly go back increasing the # lanes and the maximum QSPI bus clock.

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 40

6 Appendix B

6.1 Adding a new part
When a new entry must be added in the part definition table, it is most likely that there is more to do than
simply adding the part definition table entry. As the part is not in the table, this also means the part family
is not in the part definition table. Because of that, initialization code must be added. Areas where custom
code must be added for a new part family are always located between these two comments (there are more
than one location for code to be added:

 +++++ PART ADD START +++++++++++++++++++++++

 and
+++++ PART ADD END +++++++++++++++++++++++++

Carefully looking at the existing code in-between these comment should provide enough information on
how to add the required code.

Adding new code and filling the new table entry always require a lot of care and full understanding of the
capabilities and limitation of the part to add.

In case of doubt, do not hesitate to contact Code Time.

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 41

7 Appendix C (Supported Parts)
This appendix lists all the parts described in the part definition table. The parts are grouped by
manufacturer and then by part family. The parts in bold letters are the parts that have been verified to
operate correctly with the driver. The table entries of the parts not in bold letters are derived from the parts
that have been verified and the table filled with care. Most of the times the only changes from the tested
part are the JEDEC ID, sizes, and erase time. But as they haven’t been verified with a physical part, these
entries are not guaranteed to be correct.

The information on the parts that are in the default table are always for 3V parts. Some parts can operate at
much lower voltage, many with different characteristics than the ones when operated at 3V. There are also
speed variants for the same part, therefore before using the driver a check on the maximum speed must be
performed to make sure it matches the target device.

7.1 Macronix
Macronix offers a full rainbow of variants for their QSPI flash memory parts. The variations are specified
with the last 2 digits in the part number, and from the driver perspective, affect the number of lanes (and
read-write op-code), dummy cycle when reading, and the write protection.

One specific variant is the one with #73 for which the QUAD I/O (QPI) is permanently enabled. As the
driver does not support the 4-4-4 mode during the part initialization, this variant is not supported by the
driver.

In the following list, the first line for each series enumerates the parts that have been verified. The two
dashes (--) after the part numbers are the variant numbers:

MX25L series: MX25L1006E MX25L6406E MX25L6445E

MX25L512- MX25L10-- MX25L20— MX25L40—

 MX25L80-- MX25L16-- MX25L32-- MX25L64—

 MX25L128-- MX25L256-- MX25L512--

MX25R series: MX25R512F MX25R2035F MX25R6435F

MX25R512 MX25R10-- MX25R20-- MX25R40--

MX25R80-- MX25R16-- MX25R32— MX25R64--

MX25V series: MX25V8006E MX25V1635F

MX25V512 MX25V10-- MX25V20-- MX25V40--

MX25V80--

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 42

Note: The MX25L series is the family with the highest number of part variants, and with many parts sharing
the same JEDEC ID, there are lots of incompatibilities. The main two incompatibilities are a non-
standard support of reading op-codes. The only common read modes are the basic mode and the fast
mode. As such, all the part definition table entries for Macronix’s MX25L series are set to the fast
read mode. The other major incompatibility is that some part have one or more configuration bits to
program the part for the number of dummy cycles to use during a 2 I/O or 4 I/O read. Not only do
many variants not have the configuration register to set this up, but the one with this set-up
capabilities does not have the bit at the same position in the register, when they have a configuration
register, depending on the memory size of the part, this set-up uses 1, 2 or 3 bits. The set-up for the
dummy cycle control must be provided through the MSByte of the part identification filed DevID.
This upper byte holds the information on the LSbit position of the bits to set-up in the configuration
register and the bits themselves the set in the register. The upper nibble holds the LSBit position to
align to, i.e. the position (from 0 to 7) of dummy cycle configuration LSBit. The lower nibble holds
the value to write in the dummy cycle configuration bit(s). Take note that all parts of size 128Mb
and larger must use a bit position of 4 due to the possible presence of the “preamble bit enable” in
the configuration register. The internal operations performed to insert the bits in the configuration
register are the following:

Table 7-1 MX25L Dummy Cycle set-up

Bits = (Part->DevID >> 24) & 0xF; /* Isolate the bits to insert */
Shift = (Part->DevID >> 28) & 0xF; /* Isolate the shift to apply */
if (PartSize >= 0x01000000) { /* When the part is 128Mb or more */
 Mask = ~(0x0B << Shift); /* Mask to zero the bits to insert */
}
else {
 Mask = ~(0x01 << Shift); /* Mask to zero the bit to insert */
}
CfgReg &= Mask; /* Zero the all bits to set-up */
CfgReg |= Bits << Shift; /* Insert the desired bits */

Here are three examples:

Ø The MX25L6436 has 1 bit to set-up the dummy cycle count in the configuration register. This
bit is located at position #6 in the configuration register. Therefore, to set the bit in the register,
the DevID field for that part should be set to 0x611720C2; that is, the upper byte set to 0x61,
indicating the bit is at position #6 and the value of the bit to put in the register is 1. To clear the
bit, DevID should be set to 0x601720C2.

Ø The MX25L25645 has 3 bits to set-up the dummy cycle count and preamble bits in the
configuration register. These bits are located at position #4, #6 and #7 in the configuration
register. Therefore, to set bit #4 to 1 (enable the preamble) and set bits #6 and #7 respectively
to 1 and 0, the DevID field for that part should be set to 0x491920C2; that is, the upper byte set
to 0x49, indicating the LSBit is at position #4 and the value of the 3 bits to put in the register is
9 (10X1b). To clear all three bits, DevID should be set to 0x401920C2.

Ø The MX25L25735 has 2 bits to set-up the dummy cycle count in the configuration register (it
does not have a preamble bit enable, instead it is a don’t care bit). Notice the JEDEC ID of the
MX25L25735 is the same as the MX25L25645 used above. These 2 bits are located at position
#6 and # 7, but as the part size is larger or equal to 128Mbit, the bit position that must be used is
4. To set the two bits to a value of 2 (10b) in the register, the DevID field for that part should
be set to 0x481920C2; that is, the upper byte set to 0x48, indicating the LSBit is at position #4
and the value of the 2 bits to put in the register is 8 (10XXb). To clear the two bits, DevID
should be set to to 0x601920C2.

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 43

Note: The MX25R series parts can be set-up for an ultra low power mode or a high performance mode. The
table entries for the parts of the MX25R series are by default set-up for the high performance mode.
To set-up the table entries for the MX25R parts in the ultra low power mode, define the build option
QSPI_MX25R_LOW_POW and set it to a non-zero value (Section 2.1.28).

7.2 Micron
Micron series N25Q uses a different JEDEC ID for some of their 1.8V vs. 3.0V devices. Both variants are
recognized.

M25P series M25P05A M25P10A M25P20 M25P40

 M25P80 M25P16 M25P32 M25P64

 M25P128

M25PE series MSP25PE10 MSP25PE20 MSP25PE40 MSP25PE80

 MSP25PE16

M25PX series M25PX80 M25PX16 M25PX32

M45PE series M45PE10 M45PE20 M45PE40 M45PE80

 M45PE16

N25Q series: N25Q032A N25Q064A N25Q128A N25Q256A

 N25Q512A N25Q00AA

7.3 Cypress / Spansion (Cypress)

FL-P series S25FL128P

FL-S series: S25FL127S S25FL128S S25FL256S S25FL512S

FL-1K series: S25FL116K S25FL132K S25FL164K

FL-2K series: S25FL208K

Note: S25FL127S has the same JEDEC ID as the S25FL128S. There is a functional difference between
the two: when using the dual I/O mode, the S25FL127S requires a mode byte when the S25FL128S
does not need one. Although the resulting number of cycles between the last address bit and the first
data bit read is the same for the 2 devices, the driver uses the information if a mode byte is sent out
when in the dual I/O in order to select the correct number of dummy cycles to program the device.
Therefore it is very important in the dual I/O mode to use a mode byte for the S25FL127S and to not
use a mode byte for the S25FL128S.

Note: The S25FL-P series parts have the same JEDEC ID as the S25FL-S series. The key differences are
the number of lanes supported, the register set, and the instruction set. As the 25FL-P series is now
“Not For New Design”, the default table definitions and set-up of the parts are for the S25FL-P. If a
S25FL-P part is to be supported, the table entry DevID field must have its most significant nibble
(bit 31:28) set to a non-zero value. This will inform the driver about the part being a S25FL-P part
and it will perform the set-up accordingly. For example, if a S25FL128P (with 64 KBytes sectors)
is to be accessed, then replace the part definition table entry field DevID from 0x01182001 to
0x11182001.

7.4 SST

S25FV series: S25FV016K

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 44

7.5 Winbond

W25Q series: W25Q20 W25Q40 W25Q80 W25Q16

 W25Q32 W25Q64 W25Q128 W25Q256

 W25Q257

W25X series: W25X05 W25X10 W25X20 W25X40

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 45

8 Appendix D
The test file, Demo_30_????.c is supplied in the distribution as it greatly helps bringing up a new flash
memory part, and it also provides a full regression test of the driver and the part.

8.1 Quick Test
The quick test is enabled when the build option QSPI_QUICK_CHECK is defined and set to a non-zero
value. If the build option is not defined, or if it is defined with a value of zero, the regression test is
activated (refer to the next sub-section). The quick test involves writing 256 bytes to the target part, with
incrementing values from 0x00 up to 0xFF. This quick test verifies the capability of the driver to erase the
smallest block size, a write of 256 bytes and a read of 256 bytes. Here’s a capture of the output with the
debug option of the driver turned on (Build option QSPI_DEBUG defined and set to a non-zero value):

Table 8-1 Quick Test Output

QSPI - Initializing : Dev:0 - Slv:0
QSPI - part JEDEC ID : 0x00164001
QSPI - # part checked : 83
QSPI - CTRL clock : 370000000 Hz
QSPI - SPI clk (wrt) : 61666666 Hz [/6]
QSPI - SPI clk (read) : 61666666 Hz [/6]
QSPI - Read dummy clk : 1
QSPI - Delay register : 0x0F0F0202
QSPI - Read delay : 4
QSPI - Status reg #1 : ori=0x00 new=0x00 read=0x00
QSPI - Config reg #2 : ori=0x04 new=0x04 read=0x04
QSPI - Config reg #3 : ori=0x70 new=0x11 read=0x11

QSPI test started

QSPI flash chip size : 0x00400000
QSPI flash erase size : 0x00001000

erase result 0
Erase successful
Write result 0
read result 0
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F
80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF
F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 46

This quick test is useful for two purposes. Assuming the exchanges are operating correctly, it allows one to
immediately see if the number of dummy cycles during a read transfer is correct. If the number of dummy
cycles is wrong, the whole data will be shifted by a multiple of bits matching the number of lanes used for
the data transfer. Secondly, if the data is garbled there are a lot of chances the entry in the part definition
table for the device tested is wrong. Refer to Appendices A and B (Sections 5 and 6) for more details on
how to properly set-up a new entry in the part definition table. This is only a quick test and even though
the results may be correct, there could still issue related to bus clock or others parameters. The regression
test (next sub-section) should always be run to confirm the reliable operation of the QSPI driver with the
target part.

8.2 Regression Test
The regression test is enabled by default. To activate the quick test, refer to the previous sub-section.
When any error is detected, the test is aborted and an error message is shown to describe the error. The
regression test is quite exhaustive and goes through the following steps:

8.2.1 Test 01
First, every smallest erase block out of 13 is zeroed to make sure the chip is not blank followed by a full
chip erase is performed.

8.2.2 Test 02
Once the chip is completely erased, it is checked to be blank, meaning the test verifies all data in the chip to
be 0xFF. The reading of the flash is assumed to be operating correctly, although this will be further
verified in Tests 04 and 05.

8.2.3 Test 03
Having a blank chip, the whole chip is written with random data. The size of buffer written to the chip are
selected to be very large, and decreased in size at every write. The writing of the flash is assumed to be
operating correctly, although this will be further verified in Tests 06 and 07.

8.2.4 Test 04
The chip being written with random data, it is all read and each data location verified to hold the data that
was written to it. The size of buffer, which is the size of a read request, that is used to read from the chip
are selected to be very large, and decreased in size at every read request.

8.2.5 Test 05
This test verifies the read capabilities of the driver. Re-using the random data held in the chip, reads are
first performed doing read of 1 to 30 bytes. After these 30 read requests, read requests are performed by
size of 257, 2*257, 3*257… bytes. Each read request uses a different base address to read from.

8.2.6 Test 06
This one verifies the write capabilities of the driver. Before every write request, the area to erase is
determined and an erase is performed. Writes are first performed doing write of 1 to 30 bytes. After these
30 read requests, write requests are performed by size of 257, 2*257, 3*257… bytes. Each write request
uses a different base address to write to.

8.2.7 Test 07
This test erases the chip one block (smallest erase block size) at a time, write a random number of bytes in
that block, with random values, stating at a random offset in the block. The non-written area of the erase
block is checked to have remained at 0xFF and the written data check to be correct.

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 47

8.2.8 Test 08
Test 08 re-verifies the data written and the un-touched areas in the erased block are OK. This is done to
double check there are no address aliasing in the erase, write and read operations of the driver.

8.2.9 Test 09
This test is used to verify the erasing performed by the driver is correct. As explained in Section 3.4, the
driver minimizes the number of erase commands sent to the chip by always figuring the largest erase block
according to the start address and number of bytes left to erase. The test erases from 1 smallest erase block
to possibly 512Kbytes of data to erase (it may be less if the part has less then 512Kbytes). The erase start
address is always the middle of the memory minus the smallest erase block size.

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 48

Here’s a capture of the final output with the debug option of the driver turned on (Build option
QSPI_DEBUG defined and set to a non-zero value). Many test over-write the output line showing each time
the different parameters being used:

Table 8-2 Regression Test Output

QSPI - Initializing : Dev:0 - Slv:0
QSPI - part JEDEC ID : 0x00164001
QSPI - # part checked : 83
QSPI - CTRL clock : 370000000 Hz
QSPI - SPI clk (wrt) : 61666666 Hz [/6]
QSPI - SPI clk (read) : 61666666 Hz [/6]
QSPI - Read dummy clk : 1
QSPI - Delay register : 0x0F0F0202
QSPI - Read delay : 4
QSPI - Status reg #1 : ori=0x00 new=0x00 read=0x00
QSPI - Config reg #2 : ori=0x04 new=0x04 read=0x04
QSPI - Config reg #3 : ori=0x70 new=0x11 read=0x11

QSPI test started

QSPI flash chip size : 0x00400000
QSPI flash erase size : 0x00001000

Test 01 - Some data zeroing before erasing the chip
 Erasing the chip (This may take a while)
 Chip erased
Test 02 - Checking if all blank
 Checking 4 byte starting from address 0x003FFFFC
 Chip is blank
Test 03 - Full chip writing
 Writing 22 bytes starting at address 0x003FFFEA
 Chip all written
Test 04 - Checking if write OK
 Reading 102 bytes starting from address 0x003FFF9A
 Chip write OK
Test 05 - Checking read of 1800 bytes starting from address 0x000260F8
 Different size read OK
Test 06 - Checking write of 1800 bytes starting at address 0x000260F8
 Different size writes OK
Test 07 - Erasing, writing & checking sector #1023
 Sector erase & writing passed
Test 08 - Checking sector integrity #1023
 Sector integrity is OK
Test 09 - Erase size check
 Checking erase size of 0x00020000 starting from address 0x001ff000
 Erase size is OK

*** Test done ***

Abassi RTOS QSPI Support 2020.07.28

Rev 1.12 Page 49

9 References
[R1] Abassi RTOS – User Guide, available at http://www.code-time.com
[R2] mAbassi RTOS – User Guide, available at http://www.code-time.com
[R3] µAbassi RTOS – User Guide, available at http://www.code-time.com
[R4] Abassi RTOS – System Calls Layer, available at http://www.code-time.com

