
Copyright Information
This document is copyright Code Time Technologies Inc. ©2016-2018 All rights reserved. No part of this document may be
reproduced or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of
Code Time Technologies Inc.
Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

Abassi RTOS
SD/MMC Support

Disclaimer
Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the
document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in
the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

Abassi RTOS SD/MMC Support 2018.02.11

Rev 1.5 Page 3

Table of Contents
1 INTRODUCTION .. 6

1.1 DISTRIBUTION CONTENTS .. 6
1.2 LIMITATIONS .. 6
1.3 FEATURES ... 6

2 TARGET SET-UP .. 7
2.1 BUILD OPTIONS .. 7

2.1.1 OS_PLATFORM ... 7
2.1.2 SDMMC_CLK ... 8
2.1.3 SDMMC_BUFFER_TYPE .. 8
2.1.4 SDMMC_NUM_DMA_DESC ... 8
2.1.5 SDMMC_REMAP_LOG_ADDR ... 8
2.1.6 SDMMC_DEBUG ... 8
2.1.7 SDMMC_ARG_CHECK ... 8
2.1.8 SDMMC_USE_MUTEX .. 9

3 API .. 10
3.1.1 mmc_init .. 11
3.1.2 mmc_sendcmd ... 12
3.1.3 mmc_sendstatus .. 14
3.1.4 mmc_present ... 15
3.1.5 mmc_nowrt .. 16
3.1.6 MMCintHndl_n ... 17
3.1.7 Exported Variables ... 18

4 EXAMPLES .. 19
4.1 INITIALIZATION ... 19
4.2 SD/MMC WRITE ... 20
4.3 SD/MMC READ .. 21

5 APPENDICES ... 22
5.1 COMMANDS .. 22
5.2 EXPECTED RESPONSES .. 23

6 REFERENCES .. 24
7 REVISION HISTORY ... 25

Abassi RTOS SD/MMC Support 2018.02.11

Rev 1.5 Page 4

List of Figures

Abassi RTOS SD/MMC Support 2018.02.11

Rev 1.5 Page 5

List of Tables
TABLE 1-1 DISTRIBUTION ... 6
TABLE 2-1 BUILD OPTIONS .. 7
TABLE 2-2 BUILD OPTIONS (RTOS ONLY) ... 7
TABLE 3-1 BUILD OPTIONS .. 18
TABLE 4-1 SD/MMC INITIALIZATION .. 19
TABLE 4-2 SD/MMC WRITE ... 20
TABLE 4-3 ISD/MMC READ ... 21
TABLE 5-1 SD/MMC COMMANDS & RESPONSES ... 22
TABLE 5-2 SD/MMC EXPECTED RESPONSE TYPES ... 23

Abassi RTOS SD/MMC Support 2018.02.11

Rev 1.5 Page 6

1 Introduction
This document describes the SD/MMC driver used by Abassi1 [R1] (including mAbassi [R2] and µAbassi
[R3]). A standalone version of the SD/MMC driver is also described in here.

1.1 Distribution Contents
The set of files supplied with this distribution are listed in Table 1-1 below:

Table 1-1 Distribution

File Name Description

???_sdmmc.h Include file for the SD/MMC driver (??? is target
dependent)

???_sdmmc.c “C” file for the Abassi SD/MMC driver (??? is target
dependent)

???_sdmmc_CMSIS.c “C” file for the CMSIS RTOS API SD/MMC driver (??? is
target dependent)

SAL.h Include file for the standalone abstraction layer (supplied
with standalone package only)

SAL.c “C” file for the standalone abstraction layer (supplied with
standalone package only)

ISRhandler_???.s “ASM” add-on file for the standalone version only. It
contains support for both the driver and the demo
application.

Demo_9_<PROC>_<TOOL>.c SD/MMC small shell demo based on FatFS. <TOOL> is the
name of the build environment tool-set, <PROC> is the
processor/target.

Demo_2n_<PROC>_<TOOL>.c SD/MMC small shell demo based using the system call
layer with different files system stacks. <TOOL> is the
name of the build environment tool-set, <PROC> is the
processor/target. n is 0 to 9.

1.2 Limitations
The standalone version is the same as the RTOS version except it uses an adaptation layer to emulate the
RTOS functionality. The standalone version of the driver does not use or support interrupts. All wait
operations use polling. Please refer to the specific driver code for a description / list of these limitations;
this is described near the top of the files ??_sdmmc.h and ??_sdmmc.c.

1.3 Features
The SD/MMC driver API is kept the same across all target platforms. Target specific extra functionality is
not described in this document; refer to the code itself and embedded comments.

1 When Abassi is mentioned in this document, unless explicitly stated, it always means Abassi, mAbassi
and µAbassi.

Abassi RTOS SD/MMC Support 2018.02.11

Rev 1.5 Page 7

2 Target Set-up
All there is to do to configure and enable the use of the SD/MMC driver in an application based on Abassi
is to include the following file in the build:

Ø ???_sdmmc.c (For Abassi & standalone)

Ø ???_sdmmc_CMSIS.c (For CMSIS RTOS API)

Ø SAL.c (For Standalone)

Ø ISRhandler_???.s (For Standalone)

and set-up the include search directory order making sure the file ???_sdmmc.h is found (and SAL.h for
the standalone)

The SD/MMC driver may or may not, depending on the target platform, be independent from other include
files.

2.1 Build Options
There are a few build options that allow the SD/MMC driver to be configured for the needs of the target
application. The following table lists all of them:

Table 2-1 Build Options

File Name Default Description

OS_PLATFORM Platform specific Number indicating the target platform. Refer
to ???_sdmmc.h to see the list of supported
platforms and the default one.

SDMMC_CLK Target dependent Clock frequency of the SDMMC cotroller.

SDMMC_BUFFER_TYPE SDMMC_BUFFER_UNCACHED Type of buffering:
SDMMC_BUFFER_UNCACHED

SDMMC_BUFFER_CACHED

SDMMC_NUM_DMA_DESC Platform specific Number of DMA buffers internally used by
the SD/MMC driver

SDMMC_REMAP_LOG_ADDR 1 Boolean to enable/disable the conversion from
logical to physical address

SDMMC_DEBUG 0 Boolean controlling the sending of progress /
debug messages to stdout.

SDMMC_ARG_CHECK 1 Boolean to enable/disable the check on the
validity of the API function arguments

Table 2-2 Build Options (RTOS only)

File Name Default Description

SDMMC_USE_MUTEX 0 Boolean controlling if a dedicated mutex is
used or not for exclusive access to the driver.

2.1.1 OS_PLATFORM
The build option OS_PLATFORM informs the SD/MMC driver of which platform it is operating on. It is
used to know the base address of the SD/MMC peripheral modules and type of modules.

Abassi RTOS SD/MMC Support 2018.02.11

Rev 1.5 Page 8

2.1.2 SDMMC_CLK
The build option SDMMC_CLK defines the clock frequency the SDMMC controller operates with. A default
value is set according to the target platform specified by OS_PLATFORM. If the module clock frequency is
different from the default value, all there is to do is defined the build option SDMMC_CLK and set it to the
clock frequency in Hz.

2.1.3 SDMMC_BUFFER_TYPE
The build option SDMMC_BUFFER_TYPE sets the SD/MMC driver to either use cached buffers or
non-cached buffers. When set to SDMMC_BUFFER_UNCACHED, the internal SD/MMC DMA buffers are
located in the “.uncached” linker section and this data section must absolutely not be cached. When the
build option is set to SDMMC_BUFFER_CACHED, then the internal SD/MMC DMA buffers are located in the
default data memory, which would be typically cached but can also be uncached.

NOTE: setting SDMMC_BUFFER_TYPE does not configure the cache. It simply informs the driver to use
cache flushing and invalidation when the buffer type is set to “cached”. When the buffer type is
set to “cached”, the memory section used by the buffers is the same one used by all variables (e.g.
for GCC it’s .bss). For “un-cached” buffer, the buffers are assigned to a memory section named
“.uncached”. Therefore, the linker script file must include the section “.uncached” and that
section must be located in a memory region set by the cache configuration as an “un-cached”
memory. Not doing so will make the SD/MMC driver fails. As the operations of cache flushing
and invalidation are “do-nothing” when used on “un-cached” memory, it is safe to set
SDMMC_BUFFER_TYPE set to SDMMC_BUFFER_CACHED on “un-cached” buffers.

2.1.4 SDMMC_NUM_DMA_DESC
The SD/MMC deriver relies on internal buffers used by the SD/MMC peripheral modules. This build
option should never be modified but is necessary to be exported as it is used to inform the application about
the maximum buffer that can be transferred by the SD/MMC driver. The maximum buffer size, read or
written, is 512 * SDMMC_NUM_DMA_DESC bytes. If more than this size is requested to be read/written, the
request will be aborted with the report of an error.

2.1.5 SDMMC_REMAP_LOG_ADDR
When the MMU is set-up to remap memory areas at different addresses from the physical address, it is
necessary to convert the logical address to their physical equivalents because DMA transfers are use to
transfer the data from/to SDMMC and Memory. The build option SDMMC_REMAP_LOG_ADDR is a Boolean
that selects if the addresses used by the DMA are converted from logical to physical. By default it is set to a
non-zero value (enable). Although the remapping function is a low instruction count, one may want to not
perform a redundant remapping when the logical addresses are the same as the physical. The remapping
can be turned off setting the build option SDMMC_REMAP_LOG_ADDR to zero.

2.1.6 SDMMC_DEBUG
The build option SDMMC_DEBUG controls the printout of progress and error messages to stdout. This
build option is a Boolean; when set to a non-zero value, messages will be sent to stdout, and when set to a
value of zero, messages will not be sent to stdout.

2.1.7 SDMMC_ARG_CHECK
The build options SDMMC_ARG_CHECK controls if the driver checks the validity of the API function
arguments or not. This build option is a Boolean; when set to a non-zero value, the driver checks the
validity of the arguments and returns an error code when the arguments are invalid. When set to a zero
value, it does not check the validity of the arguments.

Abassi RTOS SD/MMC Support 2018.02.11

Rev 1.5 Page 9

2.1.8 SDMMC_USE_MUTEX
In an RTOS environment (either Abassi or the CMSIS RTOS API), the driver can internally protect access
to the SD/MMC peripheral module through a mutex, using one mutex per module. Setting the build option
SDMMC_USE_MUTEX to a non-zero value will make the driver used a dedicated internal mutex. Setting the
build option SDMMC_USE_MUTEX to a zero value will make the driver not use a dedicated internal mutex.
When set to zero, the application or file system stack must handle the exclusive access to the driver if more
than one task can access it.

Abassi RTOS SD/MMC Support 2018.02.11

Rev 1.5 Page 10

3 API
In this section, the API of all common SD/MMC driver functions is provided. The next section gives
examples on how to use the SD/MMC.

Abassi RTOS SD/MMC Support 2018.02.11

Rev 1.5 Page 11

3.1.1 mmc_init

Synopsis
#include “???_sdmmc.h”

int mmc_init(int Dev);

Description

MMCinit() is the component used to initialize the SD/MMC module driver. The device’s
controller number to initialize is indicated by the argument Dev.

Arguments

Dev Device’s controller number (Number starting at 0)

Returns

int == 0 : success
!= 0 : error

There are many scenarios that could make the SD/MMC initialization fail (return value != 0).
The return value does not indicate the cause of the failure, but turning on the debug will
provide the root cause of the failure. The possible causes of failure are:

- The reset of the peripheral module failed
- The SD/MMC module is not responding
- The SD/MMC cannot reach the Idle state
- A command prefix sent triggered an error
- The SD/MMC did not respond to the OCR request
- The SD/MMC card cannot be used

Component type

Function

Options

Notes

See Also

Abassi RTOS SD/MMC Support 2018.02.11

Rev 1.5 Page 12

3.1.2 mmc_sendcmd

Synopsis
#include “???_sdmmc.h”

int mmc_sendcmd(int Dev, unsigned int Cmd, uint32_t Arg,
 uint32_t Exp, uint32_t *Resp, MMCdata_t *Data);

Description

mmc_sendcmd() is the component used to perform all operational requests with the
SD/MMC modules. The device’s controller number is indicated by the argument Dev. The
argument Cmd is one of the standard MMC commands. Depending on the command, an
argument is most likely required. When that is the case, then the command argument is
supplied through the argument Arg. Each command has a specific type of response when
successful, and this is provided by the argument Exp. When the value of the response to the
command is needed by the application, it can be extracted from the argument Resp. Finally,
the argument Data is the buffer to hold/supply data to be exchanged with the driver or
SD/MMC card.

Arguments

Dev Device’s controller number (Number starting at 0)
Cmd Command to send to the SD/MMC card (See section 5.1)
Arg Commend specific argument
Exp Expected response (See section 5.2)
Resp Response from the card. Can use NULL if the value if not required
Data When data is exchanged with the card, pointer to the exchange buffer.
 This is the data structure of type MMCdata_t with the three following fields:
 char *Buffer : data to exchange
 unsigned int Flags : set to MMC_DATA_READ
 or to MMC_DATA_WRITE
 unsigned int Nbytes : number of bytes in Buffer

Returns

int == 0 : the command was successful
 != 0 : the command failed

Component type

Function

Options

Notes

An understanding of the SD/MMC protocol is needed to properly use the MMCsendCmd()
component. No further details are provided as this is outside the scope of this document, but
the reader can refer to section 4 for some basic usage examples. Also, the standards are
available from [R4] and [R5].
The SD/MMC drivers are always supplied with the code interfacing the FatFS file system
stack [R6] with the SD/MMC driver. This code may be used as a springboard to interface
with other file systems stacks.

Abassi RTOS SD/MMC Support 2018.02.11

Rev 1.5 Page 13

See Also

Abassi RTOS SD/MMC Support 2018.02.11

Rev 1.5 Page 14

3.1.3 mmc_sendstatus

Synopsis
#include “???_sdmmc.h”

int mmc_sendstatus(int Dev);

Description

mmc_sendstatus() is the component used to send a status request to the card. The
device’s controller number is indicated by the argument Dev.

Arguments

Dev Device’s controller number (Number starting at 0)

Returns

int == 0 : success, the card is ready to transfer new data
 != 0 : error, no reply from the card or it is not ready

Component type

Function

Options

Notes

See Also

Abassi RTOS SD/MMC Support 2018.02.11

Rev 1.5 Page 15

3.1.4 mmc_present

Synopsis
#include “???_sdmmc.h”

int mmc_present(int Dev);

Description

mmc_present() is the component that reports if a card is present in the socket. The
device’s controller number is indicated by the argument Dev.

Arguments

Dev Device’s controller number (Number starting at 0)

Returns

int == 0 : no card is inserted
 != 0 : a card is inserted

Component type

Function

Options

Notes

The return value is always non-zero (card present) for mini- and µSD cards as there is no pin
in the mini- and µSD card electrical interface for this information. Therefore for mini- and
µSD cards, it will report a card is present even if there is no card inserted.

See Also

Abassi RTOS SD/MMC Support 2018.02.11

Rev 1.5 Page 16

3.1.5 mmc_nowrt

Synopsis
#include “???_sdmmc.h”

int mmc_nowrt(int Dev);

Description

Mmc_nowrt() is the component that reports if the card inserted in the socket is write
protected. The device’s controller number is indicated by the argument Dev.

Arguments

Dev Device’s controller number (Number starting at 0)

Returns

int == 0 : the card is write protected
 != 0 : the card is write enabled

Component type

Function

Options

Notes

The return value is always zero (card is write enabled) for mini- and µSD cards as there is no
write enable/disable switch on these cards.

See Also

Abassi RTOS SD/MMC Support 2018.02.11

Rev 1.5 Page 17

3.1.6 MMCintHndl_n

Synopsis
#include “???_sdmmc.h”

void MMCintHndl_n (void);

Description

MMCintHndl_n() is the interrupt handler for the SD/MMC driver for the device controller
#n (not used by the standalone version).

Arguments
void

Returns
void

Component type

Function

Options

Notes

If the interrupt handler is not attached and the related interrupt enabled, the SD/MMC driver
will not operate at all (not applicable for the standalone version).

See Also

Abassi RTOS SD/MMC Support 2018.02.11

Rev 1.5 Page 18

3.1.7 Exported Variables

Some variables are exported by the SD/MMC driver in order to provide more information about the
inserted card. All exported variable are arrays and the array indexing is the controller device number,
therefore for device N, the associated value is located in the array at index N. The following table lists and
describes them

Table 3-1 Build Options

Variable Data Type Description

G_MMCblkLen[] unsigned int Block length (in bytes) used by the inserted card

G_MMCcapacity[] uint64_t Capacity (in bytes) of the inserted card

G_MMCcardOCR[] uint32_t Operating Condition Register (OCR) of the card. OCR
register bit position #0 of the OCR is the LSBit in
G_MMCcardOCR[].

G_MMCscr[][8] char 8 bytes holding the SD Configuration Register (SCR) of the
card. The contents of G_MMCscr[0] is SCR slice 63:56 and
G_MMCscr[7] is SCR slice 7:0.

G_MMCrca[] uint32_t Relative Card Address (RCA) used by the card

Although these exported variables are read-write, their contents should never be modified as it could lead in
the misbehavior of the SD/MMC driver. In other words, these should be used as read-only variables.

Abassi RTOS SD/MMC Support 2018.02.11

Rev 1.5 Page 19

4 Examples

4.1 Initialization
The first step required when using the SD/MMC driver is to reset and do the basic initialization of the
SD/MMC device controller; here we consider Drv1 (device #1) as the SD/MMC controller number. This
needs to be done only once and it must be performed before using any SD/MMC driver components. The
interrupt handler can only be used with Abassi, and with Abassi it must be used. With the standalone
version, do NOT attach/use the interrupt handler or enable the related interrupt.

Table 4-1 SD/MMC initialization

 …

 if (0 != mmc_init(Drv1)) {
 printf(“MMC init error\n”);
 }

 OSisrInstall(SDMMC_INT, MMCintHndl_1);/* Install SD/MMC driver interrupt handler */
 GICenable(SDMMC_INT, 128, 0); /* This is for Drv1 which is device #1 */

 …

Abassi RTOS SD/MMC Support 2018.02.11

Rev 1.5 Page 20

4.2 SD/MMC write
The following example shows how to write a buffer Buff, holding a number Nsect of 512 bytes sectors
and starting the writing at sector number SectNum. This example considers the buffer to be located in
cached memory, therefore with the build option SDMMC_BUFFER_TYPE set to SDMMC_BUFFER_CACHED:

Table 4-2 SD/MMC write

int MMCwrite(int Drv, const char *Buff, int Nsect, int SectNum)
{
int ii; /* General purpose */
MMCdata_t MMCdata; /* MMC DMA descriptor */
const char *PtrC; /* Pointer in the buffer to read */
uint32_t SectNow; /* Current sector to read */
int Size; /* Number of sectors to read */

 MMCdata.Flags = MMC_DATA_WRITE; /* Always writing to the SD/MMC */
 PtrC = Buff; /* Start at the beginning of the input buffer*/
 while (Nsect > 0) {
 Size = Nsect; /* Sectors & SDMMC blocks size are 512 bytes */
 if (Size > (SDMMC_NUM_DMA_DESC)) {/* The maximum transfer size also limited by */
 Size = (SDMMC_NUM_DMA_DESC); /* the sd/mmc driver internal number of DMA */
 } /* descriptors */
 MMCdata.Nbytes = Size<<9;
 MMCdata.Buffer = (void *)PtrC; /* Select the destination buffer */

 Nsect -= Size; /* This less number of sectors to write */
 SectNow = SectNum; /* Current sector to write */
 SectNum += Size; /* Next sector to write */

 PtrC += Size << 9; /* Adjust the pointer for the next time */

 if ((G_MMCcardOCR[Drv] & OCR_HCS) != OCR_HCS) {
 SectNow <<= 9;
 }
 /* Pre-erase would speed things up */
 ii = mmc_sendcmd(Drv, (Size > 1) ? MMC_CMD_WRITE_MULTIPLE_BLOCK
 : MMC_CMD_WRITE_SINGLE_BLOCK,
 SectNow, MMC_RSP_R1, NULL, &MMCdata);
 if (ii != 0) {
 PUTS("Failed to write data.");
 return(ERROR);
 }

 if (Size > 1) { /* Stop transmission when multi-block */
 ii = mmc_sendcmd(Drv, MMC_CMD_STOP_TRANSMISSION, 0, MMC_RSP_R1b, NULL, NULL);
 if (ii != 0) {
 PUTS("Failed to stop transmission.");
 return(ERROR);
 }
 }

 ii = mmc_sendstatus(Drv); /* Waiting for the ready status */

 if (ii != 0) { /* Needed because although the data has */
 PUTS("Could not get Status.");/* been accepted by the SD/MMC, it takes a */
 return(ERROR); /* while for the Programming to complete */
 }
 }

 return(OK);
}

Abassi RTOS SD/MMC Support 2018.02.11

Rev 1.5 Page 21

4.3 SD/MMC read
The following example shows how to read into buffer Buff, a number Nsect of 512 bytes sectors and
starting the reading at sector number SectNum. This example considers the buffer to be located in cached
memory, therefore with the build option SDMMC_BUFFER_TYPE set to SDMMC_BUFFER_CACHED:

Table 4-3 ISD/MMC read

int MMCread(int Drv, char *Buff, int Nsect, int SectNum)
{
int ii; /* General purpose */
MMCdata_t MMCdata; /* MMC DMA descriptor */
char *PtrC; /* Pointer in the buffer to fill */
uint32_t SectNow; /* Current sector to read */
int Size; /* Number of sectors to read */

 MMCdata.Flags = MMC_DATA_READ; /* Always reading from the SD/MMC */
 PtrC = buff; /* Start at beginning of the input buffer */
 while (Nsect > 0) {
 Size = Nsect; /* Sectors and SDMMC block size are 512 bytes*/
 if (Size > (SDMMC_NUM_DMA_DESC)) {/* The maximum transfer size is limited by */
 Size = (SDMMC_NUM_DMA_DESC); /* the sd/mmc driver internal number of DMA */
 } /* descriptors */
 MMCdata.Nbytes = Size<<9;
 MMCdata.Buffer = PtrC; /* Select the destination buffer */

 Nsect -= Size; /* This less number of sectors to read */
 SectNow = SectNum; /* Current sector to read */
 SectNum += Size; /* Next sector to read */

 if ((G_MMCcardOCR[Drv] & OCR_HCS) != OCR_HCS) {
 SectNow <<= 9;
 }

 ii = mmc_sendcmd(Drv, (Size > 1) ? MMC_CMD_READ_MULTIPLE_BLOCK
 : MMC_CMD_READ_SINGLE_BLOCK,
 SectNow, MMC_RSP_R1, NULL, &MMCdata);
 if (ii != 0) {
 PUTS("Failed to read data.");
 return(ERROR);
 }

 PtrC += Size << 9; /* Adjust the pointer for the next time */

 if (Size > 1) { /* Stop transmission when multi-block */
 ii = mmc_sendcmd(Drv, MMC_CMD_STOP_TRANSMISSION, 0, MMC_RSP_R1b, NULL, NULL);
 if (ii != 0) {
 PUTS("Failed to stop transmission.");
 return(ERROR);
 }
 }
 }

 return(OK);
}

Abassi RTOS SD/MMC Support 2018.02.11

Rev 1.5 Page 22

5 Appendices

5.1 Commands
The following table identifies the commands to send to the SD/MMC card. If a non-supported command
must be used, then using the numerical value of the command will most likely work perfectly.

Table 5-1 SD/MMC commands & responses

Token Value Resp Description

MMC_CMD_GO_IDLE_STATE 0 None Resets the card to Idle state

MMC_CMD_SEND_OP_COND 1 Initiate initialization process

MMC_CMD_ALL_SEND_CID 2 R2 Ask the card to report the CID numbers

MMC_CMD_SET_RELATIVE_ADDR 3 R6 Ask the card to report the relative address (RCA)

MMC_CMD_SET_DSR 4 None Program the DSR of the card

MMC_CMD_SWITCH 6 Change SD/MMC card (not used)

MMC_CMD_SELECT_CARD 7 R1b Toggle the card between stand-by and transfer
modes

MMC_CMD_SEND_EXT_CSD 8 R7 Send to the card the external interface conditions

MMC_CMD_SEND_CSD 9 R2 Send the card card-specific data (CSD)

MMC_CMD_SEND_CID 10 R2 Request the card to send its card ID on the CMD
line

MMC_CMD_STOP_TRANSMISSION 12 R1b Stop the card from transmitting

MMC_CMD_SEND_STATUS 13 R1 Request the card to report its status

MMC_CMD_SET_BLOCKLEN 16 R1 Set the block length (in bytes) for all further
transfers

MMC_CMD_READ_SINGLE_BLOCK 17 R1 Read a single block

MMC_CMD_READ_MULTIPLE_BLOCK 18 R1 Read multiple blocks

MMC_CMD_WRITE_SINGLE_BLOCK 24 R1 Write a single block

MMC_CMD_WRITE_MULTIPLE_BLOCK 25 R1 Write multiple blocks

MMC_CMD_ERASE_GROUP_START 35 R1 Set the address of the first block to erase

MMC_CMD_ERASE_GROUP_END 36 R1 Set the address of the last block to erase

MMC_CMD_ERASE 38 R1b Perform the erase operation

MMC_CMD_APP_CMD 55 R1 Inform the card the next command is an
app-specific command and not a standard one

MMC_CMD_SPI_READ_OCR 58 R3 Request the card to report the OCR

MMC_CMD_SPI_CRC_ON_OFF 59 R1 Control if CRC is checked or not

Abassi RTOS SD/MMC Support 2018.02.11

Rev 1.5 Page 23

5.2 Expected Responses
The following table identifies the expected responses:

Table 5-2 SD/MMC expected response types

Token Response

MMC_RSP_NONE None

MMC_RSP_R1 R1

MMC_RSP_R1b R1b

MMC_RSP_R2 R2

MMC_RSP_R3 R3

MMC_RSP_R4 R4

MMC_RSP_R5 R5

MMC_RSP_R6 R6

MMC_RSP_R7 R7

MMC_RSP_PRESENT Card is present

MMC_RSP_136 136 bit response

MMC_RSP_CRC Expect valid CRC

MMC_RSP_BUSY Card may send busy

MMC_RSP_OPCODE Response contains op-code

Abassi RTOS SD/MMC Support 2018.02.11

Rev 1.5 Page 24

6 References
[R1] Abassi RTOS – User Guide, available at http://www.code-time.com
[R2] mAbassi RTOS – User Guide, available at http://www.code-time.com
[R3] µAbassi RTOS – User Guide, available at http://www.code-time.com
[R4] JEDEC, documentation available at http://www.jedec.org
[R5] SD Association, documentation available at http://www.sdcard.org
[R6] FatFS open-source FAT32 stack, available at http://www.elm-chan.org

