
Copyright Information
This document is copyright Code Time Technologies Inc. ©2016-2018 All rights reserved. No part of this document may be
reproduced or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of
Code Time Technologies Inc.
Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

Abassi RTOS
SPI Support

Disclaimer
Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the
document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in
the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 3

Table of Contents
1 INTRODUCTION .. 7

1.1 DISTRIBUTION CONTENTS .. 7
1.2 FEATURES ... 7
1.3 LIMITATIONS .. 8

2 TARGET SET-UP .. 9
2.1 BUILD OPTIONS .. 9

2.1.1 OS_PLATFORM ... 11
2.1.2 SPI_CLK ... 11
2.1.3 SPI_MAX_DEVICES .. 11
2.1.4 SPI_LIST_DEVICE ... 11
2.1.5 SPI_MAX_SLAVES ... 12
2.1.6 SPI_USE_MUTEX .. 12
2.1.7 SPI_OPERATION ... 12
2.1.8 SPI_ISR_RX_THRS ... 13
2.1.9 SPI_ISR_TX_THRS ... 13
2.1.10 SPI_MIN_4_RX_DMA .. 14
2.1.11 SPI_MIN_4_TX_DMA .. 14
2.1.12 SPI_MIN_4_RX_ISR ... 14
2.1.13 SPI_MIN_4_TX_ISR ... 14
2.1.14 SPI_TOUT_ISR_ENB ... 15
2.1.15 SPI_REMAP_LOG_ADDR ... 15
2.1.16 SPI_ARG_CHECK .. 15
2.1.17 SPI_DEBUG ... 15
2.1.18 SPI_MULTIPLE_DRIVER .. 15

3 OPERATION .. 16
3.1 INITIALIZATION ... 16
3.2 SENDING ... 16
3.3 RECEIVING .. 17
3.4 SENDING AND RECEIVING ... 18
3.5 MULTIPLE DRIVERS .. 18

4 API .. 21
4.1.1 spi_init .. 22
4.1.2 spi_recv ... 25
4.1.3 spi_send... 26
4.1.4 spi_send_recv .. 27
4.1.5 SPIintHndl_n ... 29

5 APPENDIX A .. 30
5.1 5 BIT FRAME: LEFT ALIGNED NON-PACKED ... 30
5.2 11 BIT FRAME: LEFT ALIGNED NON-PACKED ... 30
5.3 5 BIT FRAME: RIGHT ALIGNED NON-PACKED ... 31
5.4 11 BIT FRAME: RIGHT ALIGNED NON-PACKED ... 31
5.5 5 BIT FRAME: LEFT ALIGNED PACKED .. 31
5.6 11 BIT FRAME: LEFT ALIGNED PACKED .. 31
5.7 5 BIT FRAME: RIGHT ALIGNED PACKED ... 32
5.8 11 BIT FRAME: RIGHT ALIGNED PACKED ... 32

6 APPENDIX B .. 33
7 REFERENCES .. 34

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 4

8 REVISION HISTORY ... 35

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 5

List of Figures

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 6

List of Tables
TABLE 1-1 DISTRIBUTION ... 7
TABLE 2-1 BUILD OPTIONS .. 9
TABLE 2-2 BUILD OPTIONS .. 11
TABLE 2-3 SPI_OPERATION BIT DEFINITIONS .. 12
TABLE 3-1 BAPI REMAPPING ... 18
TABLE 3-2 MULTIPLE SPI WRAPPER EXAMPLE (SPI.C) .. 19
TABLE 3-3 MULTIPLE SPI WRAPPER EXAMPLE (SPI.H) .. 20
TABLE 4-1 MODE OR’ED VALUES .. 23
TABLE 5-1 LEFT-ALIGNED NON-PACKED 5 BIT FRAME ... 30
TABLE 5-2 LEFT-ALIGNED NON-PACKED 11 BIT FRAME ... 30
TABLE 5-3 RIGHT-ALIGNED NON-PACKED 5 BIT FRAME ... 31
TABLE 5-4 RIGHT-ALIGNED NON-PACKED 11 BIT FRAME ... 31
TABLE 5-5 LEFT-ALIGNED PACKED 5 BIT FRAME .. 31
TABLE 5-6 LEFT-ALIGNED PACKED 11 BIT FRAME .. 31
TABLE 5-7 RIGHT-ALIGNED PACKED 5 BIT FRAME .. 32
TABLE 5-8 RIGHT-ALIGNED PACKED 11 BIT FRAME .. 32
TABLE 6-1 µWIRE CONTROL WORD ... 33

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 7

1 Introduction
This document describes the SPI driver available for Abassi1 [R1] (including mAbassi [R2] and µAbassi
[R3]). The standalone use of the SPI driver is also described here. This is not the document describing the
Quad SPI (QSPI) flash memory driver; for information on the QSPI driver refer to [R4].

1.1 Distribution Contents
The set of files supplied with this distribution are listed in Table 1-1 below:

Table 1-1 Distribution

File Name Description

???_spi.h Include file for the SPI driver (??? is target dependent)

???_spi.c “C” file for the Abassi SPI driver (??? is target dependent)

Demo_40_<PROC>_<TOOL>.c “C” file for testing. <TOOL> is the name of the build
environment tool-set, <PROC> is the processor/target.

SAL.h Include file for the standalone abstraction layer (supplied
with standalone package only)

SAL.c “C” file for the standalone abstraction layer (supplied with
standalone package only)

ISRhandler_???.s “ASM” add-on file for the standalone version only. It
contains support for both the driver and the demo
application.

1.2 Features
The SPI driver API is kept the same across all target platforms. Target / port specific extra functionality or
feature unavailability is not described in this document; refer to the code itself and embedded comments.

1 When Abassi is mentioned in this document, unless explicitly stated, it always means Abassi, mAbassi and µAbassi.

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 8

The SPI driver can operate using polling, and/or interrupts with semaphores and/or DMA transfers.
Depending on the target SPI controller the followings features could be supported:

Ø Protocols:

o Motorola SPI protocol

o Texas Instrument SSP protocol

o National Semiconductor MicroWire protocol

Ø Selectable number of bits per frames

Ø Memory data alignment

o Left aligned frames

o Right aligned frames

o Packed left aligned frames

o Packed right aligned frames

Ø Data exchanges:

o Send only

o Receive only

o Send and receive (Full-duplex)

o Send followed by receive (Half-duplex, or EEPROM type of transfer)

Ø CPHA and CPOL polarity selection

Ø Transfers:

o Using polling

o Using polling with interrupt at the end of the transfer

o Done in interrupts

o Done with DMA

Ø Error trapping:

o Transfer abort upon TX FIFO under-run

o Transfer abort upon RX FIFO overflow

o Transfer abort when the transfer time is much longer than it should be

1.3 Limitations
Some controllers cannot support some of the features listed in the previous section. Please refer to the
specific driver code for a description / list of these limitations; this is described near the top of the files
??_spi.h and ??_spi.c.

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 9

2 Target Set-up
All there is to do to configure and enable the use of the SPI driver in an application is to include the
following files in the build:

Ø ???_spi.c (For Abassi & Standalone)

Ø SAL.c (For Standalone only)

Ø ISRhandler_???.s (For Standalone only)

and to set-up the include search directory path making sure the file ???_spi.h is found (and SAL.h for
the standalone) and set-up build options as required.

If interrupts are used, one or multiple SPI interrupt handlers (SPIintHndl_n(), Section 4.1.5) must be
attached to the interrupt controller. In Abassi this is simply done using the OSisrInstall() component.

The SPI driver may or may not, depending on the target platform, be independent from other include files.

2.1 Build Options
There are build options that allow the SPI driver to be configured for the requirements of the target
application. The following table lists all of them (there is an alternate token naming, refer to section 3.5) :

Table 2-1 Build Options

Token Name Default Description

OS_PLATFORM Target dependent Number indicating the target platform.
Refer to ???_spi.h and Platform.h to
see the list of supported platforms and the
default one.

SPI_CLK Target dependent Clock frequency of the SPI module.

SPI_MAX_DEVICES Target dependent Number of SPI controllers(s) supported by
the target platform.

SPI_LIST_DEVICE Target dependent Bit field selecting the SPI controller(s) to
use. The default value is dependent on the
build option OS_PLATFORM.

SPI_MAX_SLAVES Target dependent Number of slaves supported by the
controller(s) on the target platform. The
default value is dependent on the build
option OS_PLATFORM.

SPI_USE_MUTEX 1 Boolean used to activate the SPI driver
internal protection for exclusive device
access.

SPI_OPERATION 0x10303 Bit field defining how the SPI driver
operates.

SPI_ISR_RX_THRS 50 Threshold in percentage of the RX FIFO
size to trigger the RX interrupt.

SPI_ISR_TX_THRS 50 Threshold in percentage of the TX FIFO
size to trigger the TX interrupt.

SPI_MIN_4_RX_DMA 32 Minimum number of bytes to read in order
to use the DMA instead of polling or

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 10

interrupts.

SPI_MIN_4_TX_DMA 32 Minimum number of bytes to write in order
to use the DMA instead of polling or
interrupts.

SPI_MIN_4_RX_ISR 16 Minimum number of frames to read in
order to use the interrupts instead of
polling.

SPI_MIN_4_TX_ISR 16 Minimum number of frames to write in
order to use the interrupts instead of
polling.

SPI_MULTICORE_ISR 1 Boolean to enable/disable in the ISR
handler when multiple core can handle the
same interrupt.

SPI_TOUT_ISR_ENB 1 Boolean to enable/disable the interrupts
during the timeout check for transfers done
through polling

SPI_REMAP_LOG_ADDR 1 Boolean to enable/disable the conversion
from logical to physical address with DMA
transfers

SPI_ARG_CHECK 1 Boolean to enable/disable the check on the
validity of the API function arguments

SPI_DEBUG 0 Boolean controlling the sending of
progress / debug messages to stdout.

SPI_MULTIPLE_DRIVER 0 To use drivers for different SPI controllers
at the same time.

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 11

2.1.1 OS_PLATFORM
The build option OS_PLATFORM informs the SPI driver about the target platform it operates on. There are
two benefits ensuing from the presence of this build option:

Ø The SPI driver implicitly knows the total number of SPI devices and number of slaves on the
platform.

Ø The SPI driver is able to configure and reset the SPI devices without application intervention.

The information on the numbering used for OS_PLATFORM is available in the Platform.txt and
Platform.h files also supplied as part of the distribution.

2.1.2 SPI_CLK
The build option SPI_CLK defines the clock frequency the SPI module operates with. A default value is set
according to the target platform specified by OS_PLATFORM. If the module clock frequency is different
from the default value, all there is to do is defined the build option SPI_CLK and set it to the clock
frequency in Hz.

2.1.3 SPI_MAX_DEVICES
The build option SPI_MAX_DEVICES informs the SPI driver of how many SPI controllers (devices) are on
the target platform. If this build option is not set, then the SPI driver will rely on the build option
SPI_LIST_DEVICE (Section 2.1.4). If the build option SPI_LIST_DEVICE is also not set, then the SPI
driver will rely on the OS_PLATFORM value (Section 2.1.1).

2.1.4 SPI_LIST_DEVICE
The build option SPI_LIST_DEVICE informs the SPI driver about the individual SPI controllers (devices)
that are used by the application. When the target platform has multiple SPI devices, enabling only the
devices used by the application offers a main benefit:

Ø Minimize the data memory required by the driver, as there is no need to reserve memory for the
queue descriptors / buffers / interrupt handlers and semaphores or optional mutexes of unused
devices.

This build option is a bit field, where the bit position represents the SPI device number. When the
corresponding bit is cleared (reset to 0) it specifies the device is not used; when the corresponding bit is set
to 1 then the device is used. The following table shows the valid combinations for a target platform with 2
SPI devices:

Table 2-2 Build Options

SPI_LIST_DEVICE SPI #0 SPI #1

1 In use Not used

2 Not used In use

3 In use In use

If the build option SPI_LIST_DEVICE is not externally defined, the default value will be set according to
the build option SPI_MAX_DEVICES (Section 2.1.3). If the build option SPI_MAX_DEVICES is also not set,
then SPI_LIST_DEVICE will be set according to the build option OS_PLATFORM (Section 2.1.1) and will
make all the SPI devices available on the target platform.

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 12

2.1.5 SPI_MAX_SLAVES
The build option SPI_MAX_SLAVES informs the SPI driver of how many slaves can be attached to the
controllers on the target platform. The default value is target platform dependent. If a single device is
attached to the controller, it does not mean SPI_MAX_SLAVES can be set to 1, as SPI_MAX_SLAVES is used
to dimension internal arrays that are indexed through the slave number. For example, if the only part
attached is tied to the chip select #1 (chip select # starting at 0), then SPI_MAX_SLAVES must be set to a
value of 2 or more.

2.1.6 SPI_USE_MUTEX
In an RTOS environment, the driver can provide exclusive access protection to the SPI device(s) through
its internal mutex(es). By default, the build option SPI_USE_MUTEX is set to a non-zero value, meaning the
driver uses one mutex per device as the exclusive access protection mechanism. Defining and setting the
build option SPI_USE_MUTEX to a zero value will configure the driver to not use mutexes, therefore the
application has to enforce there be no concurrent accesses to the same device.

2.1.7 SPI_OPERATION
The build option SPI_OPERATION is used to configure how the SPI driver operates. This build option is a
bit field holding 5 bits. Each of the 5 bits, (bit position #0 is the LSBit), is described in the following table:

Table 2-3 SPI_OPERATION bit definitions

Bit # Description

0 Interrupts are disabled during a read (receive) burst. To not disable the interrupts
during a read burst, bit #0 must be reset to zero. To disable the interrupts during a
read burst, bit #0 must be set to 1.

1 Interrupts are used to empty the controller RX FIFO when performing a read
(receive) operation and/or interrupts are used to report the end of transmission. To
not allow the use of interrupts when reading the RX FIFO, bit #1 must be reset to
zero. To allow use of interrupts when reading RX FIFO, bit #1 must be set to 1.

2 DMA is used to empty the controller RX FIFO when performing a read (receive)
operation. To not allow the use of the DMA to read the RX FIFO, bit #2 must be
reset to zero. To allow the use of the DMA to read the RX FIFO, bit #2 must be set
to 1. The end of the transfer can be polled or blocked on an interrupt depending on
the setting of bit #1.

8 Interrupts are disabled during a write (send) burst. To not disable the interrupts
during a write burst, bit #8 must be reset to zero. To disable the interrupts during a
write burst, bit #8 must be set to 1.

9 Interrupts are used to fill the controller TX FIFO when performing a write (send)
operation and/or interrupts are used to report the end of transmission. To not allow
the use of interrupts when filling the TX FIFO, bit #9 must be reset to zero. To allow
the use of interrupts when filling TX FIFO, bit #9 must be set to 1.

10 DMA is used to fill the controller TX FIFO when performing a write (send)
operation. To not allow the use of the DMA to fill the TX FIFO, bit #9 must be reset
to zero. To allow the use of the DMA to fill the TX FIFO, bit #9 must be set to 1.
The end of transfer can be polled or blocked on an interrupt depending on the setting
of bit #9.

16 When bit #16 is reset to zero, it removes the code performing the packing and
unpacking of the frames. If packed data is not used in the application, removing the
packing code reduce the code size and slightly improve the real-time performance of
the SPI driver. To keep the packing code, set bit #16 to 1.

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 13

Detailed information on how the different settings of SPI_OPERATION modify the operation of the driver is
provided in Sections 3.2, 3.3, and 3.4.

The use of interrupts is controlled by two methods: the bits in the build option SPI_OPERATION and when
a slave is initialized, the use of SPI_XFER_POLLING / SPI_XFER_ISR and SPI_EOT_POLLING /
SPI_EOT_ISR in the Mode argument of spi_init(). This may seems a redundant way to configure the
SPI driver but it allows optimal transfer when multiple and different slaves can be attached to the
controller(s). Take the example of an application that needs to communicate with a DAC and an
EEPROM. The DAC may only need 4 bytes, therefore using ISRs for the transfer is overkill and CPU
inefficient, but the EEPROM may be read by blocks of 512 or 1024 bytes, for which ISRs are the most
CPU efficient transfer method. The configuration in SPI_OPERATION is used to either include or exclude
the code for the ISR and the spi_init() configuration is used to select if ISRs are the transfer method
with a slave or not, when the code is included through SPI_OPERATION.

As for the interrupts, the use of DMA transfers is controlled by two methods: the bits in the build option
SPI_OPERATION and when a slave is initialized, the use of SPI_XFER_POLLING / SPI_XFER_ISR /
SPI_XFER_DMA.

2.1.8 SPI_ISR_RX_THRS
The build option SPI_ISR_RX_THRS is used to set the threshold, or watermark, at which the data receive
interrupts are triggered. When interrupts are used to read from the SPI (SPI_OPERATION bit #1 set to 1),
the RX interrupt is triggered when the RX FIFO holds more than a preset number of frames. The build
option SPI_ISR_RX_THRS specifies this threshold, in percentage of the FIFO size. Therefore only values
between 0 and 100 are accepted for SPI_ISR_RX_THRS.

Each application has an optimal value for the RX threshold. To maximize the performance, the interrupt
handler should ideally be entered exactly when the FIFO is full or very close to be full. As there is always
a bit of latency between the time an interrupt is raised and when the interrupt handler is entered, the optimal
threshold should be set to the number of frames that are transferred on the SPI bus in the latency duration.
Assuming a FIFO of 512 bytes with 8-bit frames and assuming an interrupt latency of 2 us with a SPI bus
of 80 MHz, then 20 frames are read in 2 us. This optimal threshold is located at 512-20 frames, which is
492 or 96% of 512. In this example, the optimal value to set SPI_ISR_RX_THRS is 96.

Setting this threshold too low has the effect of increasing the number of interrupts and setting it too high
will or could provoke overflows of RX FIFO, therefore loss of received frames. Most controller don’t offer
back-pressure, therefore if the RX FIFO overflows, frames will most likely be lost and the driver will abort
transfer.

This build option is ignored if bit #1 in SPI_OPERATION (Section 0) is reset to zero.

2.1.9 SPI_ISR_TX_THRS
The build option SPI_ISR_TX_THRS is used to set the threshold, or watermark, at which the data write
interrupt is triggered. When interrupts are used to write to the SPI (SPI_OPERATION bit #9 set to 1), the
TX interrupt is triggered when the write FIFO holds less than a preset number of frames. The build option
SPI_ISR_TX_THRS specifies this threshold, in percentage of the FIFO size. Therefore only values
between 0 and 100 are accepted for SPI_ISR_TX_THRS.

Each application has an optimal value for the TX threshold. To maximize the performance, the interrupt
handler should in theory be entered exactly when the FIFO is empty or very close to be empty. As all SPI
flash memories have a bit of latency between the time the last frame has been sent and the write operation
terminated, plus as there is a delay from unblocking a task in an interrupt and the task being un-blocked,
these two delays should be taken into account when setting the threshold value.

Setting this threshold too high has the effect of increasing the number of interrupts and setting it too low
will or could provoke under-runs of TX FIFO, therefore loss of transmitted frames. Most controller don’t
offer back-pressure, therefore if the TX FIFO under-runs, the bus transaction will most likely show the end
of transfer conditions; due to that, the driver will abort transfer.

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 14

This build option is ignored if bit #9 in SPI_OPERATION (Section 0) is reset to zero.

2.1.10 SPI_MIN_4_RX_DMA
The build option SPI_MIN_4_RX_DMA is used to set the minimum number of byte to be read to use DMA
transfers. The whole DMA handling always involves a certain amount of CPU overhead for the
programming of the DMA and to handle the end of transfer interrupts (if interrupts are enabled). When a
small number of frames are to be read, it is highly probable the time required to perform the read is less
than the overall DMA set-up and interrupt handling overhead. When the RX DMA transfers are enabled
through the build option SPI_OPERATION, if the number of bytes to read is less than the value specified by
SPI_MIN_4_RX_DMA, the read transfer is performed through polling or ISRs instead of using the DMA.

This build option is ignored if bit #2 in SPI_OPERATION (Section 0) is reset to zero.

NOTE: DMAs can only perform 8 bit of 16 bit transfers, therefore packed data cannot be used with DMA
transfers. The driver ignores the setting for packing when DMA transfers are used

2.1.11 SPI_MIN_4_TX_DMA
DMA transfers. The whole DMA handling always involves a certain amount of CPU overhead for the
programming of the DMA and to handle the end of transfer interrupts (if interrupts are enabled). When a
small number of bytes are to be written, it is highly probable the time required to perform the write is less
than the overall DMA set-up and interrupts overhead. When the TX DMA transfers are enabled through
the build option SPI_OPERATION, if the number of bytes to write is less than the value specified by
SPI_MIN_4_TX_DMA, the write transfer is performed through polling or interrupts instead of DMA.

This build option is ignored if bit #10 in SPI_OPERATION (Section 0) is reset to zero.

NOTE: DMAs can only perform 8 bit of 16 bit transfers, therefore packed data cannot be used with DMA
transfers. The driver ignores the setting for packing when DMA transfers are used

2.1.12 SPI_MIN_4_RX_ISR
The build option SPI_MIN_4_RX_ISR is used to set the minimum number of frames to be read for using
the interrupts. The whole interrupt handling always involves a certain amount of CPU overhead: a task
becoming blocked, interrupt handler operating, and unblocking the task. When a small number of frames
are to be read, it is highly probable the time required to perform the read itself is less than the overall
interrupt overhead. When the RX interrupts are enabled through the build option SPI_OPERATION, if the
number of frames to read is less than the value specified by SPI_MIN_4_RX_ISR, the read transfer is
performed through polling instead of using interrupts.

This build option is ignored if bit #1 in SPI_OPERATION (Section 0) is reset to zero.

2.1.13 SPI_MIN_4_TX_ISR
The build option SPI_MIN_4_TX_ISR is used to set the minimum number of frames to be written for using
the interrupts. The whole interrupt handling always involves a certain amount of CPU overhead: a task
becoming blocked, interrupt handler operating, and unblocking the task. When a small number of frames
are to be written, it is highly probable the time required to perform the write itself is less than the overall
interrupt overhead. When the TX interrupt are enabled through the build option SPI_OPERATION, if the
number of frames to write is less than the value specified by SPI_MIN_4_TX_ISR, the write transfer is
performed through polling instead of using interrupts.

This build option is ignored if bit #9 in SPI_OPERATION (Section 0) is reset to zero.

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 15

2.1.14 SPI_TOUT_ISR_ENB
The build option SPI_TOUT_ISR_ENB is a Boolean controlling if interrupts are shortly re-enabled when
checking for timeouts when performing a transfer through polling. When a transfer through polling is
performed and the interrupts are disabled during the burst (controlled with SPI_OPERATION), this could
makes the update of the RTOS timer tick impossible as the timer tick counter is updated through interrupts.
The RTOS timer tick won’t get updated is the interrupts are disabled on a single core target or when on a
multicore target if the core where the driver is operating is the only one handling the RTOS timer tick
interrupts. This is one case on a multi-core where it would be advisable to interrupt all core for the RTOS
timer tick update.

The setting of SPI_TOUT_ISR_ENB does not affect the timeout check when the transfer is interrupt based
or DMA based.

2.1.15 SPI_REMAP_LOG_ADDR
When the MMU is set-up to remap memory areas at different addresses from the physical address, it is
necessary to convert the logical address to their physical equivalents when using DMA transfers. The build
option SPI_REMAP_LOG_ADDR is a Boolean that selects if the addresses used by the DMA are converted
from logical to physical. By default it is set to a non-zero value (enable). Although the remapping function
is a low instruction count, one may want to not perform a redundant remapping when the logical addresses
are the same as the physical. The remapping can be turned off setting the build option
SPI_REMAP_LOG_ADDR to zero.

2.1.16 SPI_ARG_CHECK
The build options SPI_ARG_CHECK controls if the driver checks the validity of the API function arguments
or not. This build option is a Boolean; when set to a non-zero value, the driver checks the validity of the
arguments and returns an error code when the arguments are invalid. When set to a zero value, it does not
check the validity of the arguments.

2.1.17 SPI_DEBUG
The build options SPI_DEBUG controls the printout of progress and error messages to stdout. This build
option can have three set-ups; when set to a value of zero or less, no messages are sent to stdout. When
set 1, it sends over stdout the set-up information used during initialization and causes of error during the
operation. When set to a value greater than 1, it prints on stdout all operations and causes of errors.

2.1.18 SPI_MULTIPLE_DRIVER
See section 3.5.

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 16

3 Operation
This section describes how the SPI driver operates and the internal resources it utilizes. One characteristic
of the driver is that although many slaves can be attached to a device, the slaves can be different SPI parts.
The controller is always configured specifically for the target slave it has to access when performing either
a receive, a send, or a combined send and receive. By using individual configurations for the slaves, it
provides a way to maximize the data transfer performances for all slaves.

Internally, the driver maintains individual descriptors for each device validated in the build option
SPI_LIST_DEVICE (See Section 2.1.4). In each device descriptor there is room to hold the controller
configuration for SPI_MAX_SLAVES (See Section 2.1.5) individual slaves attached to the device.

3.1 Initialization
The initialization is done through the component spi_init() (See Section 4.1.1). As most SPI
controllers support multiple slaves, which may be different parts, it is necessary to call spi_init() for
each of the slaves attached to the device. The initialization is fairly straightforward as it simply sets-up the
internal device/slave descriptor according to the functionality specified by the arguments to the
initialization API. There is a lot of information to specify through the arguments, alike the SPI bus
frequency, or the protocol SPI, SSP, µWire, or CPHA and CPOL, etc. Refer to section 4.1.1 for a detailed
description on how to use the SPI initialization API.

3.2 Sending
The driver itself does not have any restriction when requested to send frames to a slave on the SPI bus. The
send operation is performed using the spi_send() component (Section 4.1.3). The port / target controller
may have its own limitation, therefore refer to the code for this information. The SPI driver accepts buffers
containing the frames to transmit with either one frame per byte/16 bit word, or fully packed data, and the
frames can be left or right aligned in the buffer; all this frame formatting is selectable upon initialization for
each ones of the controller / slave pairs.

The build option SPI_OPERATION (See Section 0) bit #8, bit #9, and bit #10 settings are used to control
how the driver operates when sending frames. When bit #8 is set to 1, it configures the driver to disable the
interrupts when sending frames. The interrupts are disabled as long as the frame burst hasn’t been fully
transferred to the TX FIFO of the controller. If bit #8 in SPI_OPERATION is instead reset to zero, the
interrupts are never disabled when sending the frames. The disabling of the interrupts may be necessary
when a controller does not support backpressure, as interrupts and task switching could starve the feeding
of the TX FIFO, triggering an abort by the SPI driver of the transfer.

Bit #9 in the build option SPI_OPERATION, when set to 1, configures the driver to operate using interrupts
when performing a transmit operation. The way the interrupts are handled is as follows: first the data for
the burst is fully written into the TX FIFO of the controller. Once all the data burst has been transferred,
the driver then blocks the task by waiting on a semaphore. The interrupt is triggered when the TX FIFO
contains less data than a preset threshold (typically when empty or very close to). In the interrupt, the
semaphore the task is blocked on is posted. The last write performed in the interrupt is always done with a
number of bytes that matches the threshold. This guarantees all data is transferred in the interrupt and no
residual polling is requires.

Bit #10 in the build option SPI_OPERATION, when set to 1, configures the driver to operate using DMA
transfers when performing a transmit operation. The DMA is set-up for the transfer using an optimal TX
FIFO threshold, the transfer is launched, and the end of transfer is waited for.

One should be aware when using interrupts or DMA that the task blocking may not free much CPU. If the
TX FIFO of the controller is much smaller than the size of the part’s page, then the blocking, interrupt
overhead, and unblocking of the task may take longer than waiting for the small TX FIFO content to be
sent to the memory and the write to be completed by the part.

Depending on the setting of the SPI_OPERATION bits #9 and #10, polling, ISR of DMA transfer will be
selected according to:

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 17

- Assume doing polling

- If SPI_OPERATION bit #9 is non-zero and # bytes to write > SPI_MIN_4_TX_ISR then use ISRs

- If SPI_OPERATION bit #10 is non-zero and # bytes to write > SPI_MIN_4_TX_DMA then use DMA

- If SPI_OPERATION bit #9 is non-zero, the end of transfer waiting is done blocking on a semaphore
posted by the ISR handler.

When the slave to send frames to is a µWire device, the control word must be sent before sending the
frames. The information about the control word is located in the buffer holding the frames to send. Refer
to Appendix B.

3.3 Receiving
The driver itself does not have any restriction when requested to receive frames from a slave on the SPI
bus. The receive operation is performed using the spi_recv() component (Section 4.1.2). The port /
target controller may have its own limitation, therefore refer to the code for this information. The SPI
driver puts the received data in buffers formatted either as one frame per byte/16 bit word, or fully packed
data, and the frames can be left or right aligned in the buffer; all this frame formatting is selectable upon
initialization for each ones of the controller / slave pairs.

The build option SPI_OPERATION (See Section 0) bit #0, bit #1, and bit #2 settings are used to control
how the driver operates when performing a read. Bit #0 in SPI_OPERATION, when set to 1, configures the
driver to disable the interrupts when performing a read (receive) burst. The interrupt disabling lasts as long
as the frame burst, which is the data to read, hasn’t been fully transferred from the RX FIFO of the
controller. Bit #1 in the build option SPI_OPERATION, when set to 1, configures the driver to use
interrupts. The way the interrupts are used is as follows: the driver makes the task block on a semaphore
that will be posted in the interrupt when all the data of the burst has been read. When the RX FIFO
contains more data than the preset threshold indicated by build option SPI_ISR_RX_THRS (Section 2.1.8),
an interrupt is generated by the controller. In the interrupt handler, the RX FIFO is completely emptied and
when all the frames in the data burst have been read, the interrupt generation is turned off and the
semaphore the task was blocked on is posted. There is no conflict with having both bit #0 and #1 being set.
When the interrupts are used (bit #1 set to 1), the interrupts are not disabled even if bit #0 is set to 1. If the
receive watermark (preset threshold) cannot be modified once the transfer has been initiated, then the
interrupt posts the semaphore when there is less than the preset threshold of frames left to be received.
This is necessary, as the SPI controller will not interrupt the processor due to its contents that will never
exceed the threshold.

Bit #2 in the build option SPI_OPERATION, when set to 1, configures the driver to operate using DMA
transfers when performing a read operation. The DMA is set-up for the transfer using an optimal RX FIFO
threshold, the transfer is launched, and the end of transfer is waited for.

One should be aware that using interrupts when reading data makes the task block and this might not free
much CPU. This is because, depending on the controller’s RX FIFO size, it is quite possible to fill the RX
FIFO faster than the overall time required to enter the interrupt, copy the data, and exit the interrupt. For
example, a part capable of reading at 100 MHz will fill a 128 frame FIFO in 2.5µs when using 4 lanes to
transfer the data. When the read request is less than 64 frames, the interrupts are not used even if bit #1 is
set. This overriding is done as most of the time the part is read in the neighborhood of 100 MHz and 64
frames or less will be read around less than 1 µs.

Depending on the setting of the SPI_OPERATION bits #1 and #2, polling, ISR of DMA transfer will be
selected according to:

- Assume doing polling

- If SPI_OPERATION bit #1 is non-zero and # bytes to read > SPI_MIN_4_RX_ISR then use ISRs

- If SPI_OPERATION bit #2 is non-zero and # bytes to read > SPI_MIN_4_RX_DMA then use DMA

- If SPI_OPERATION bit #1 is non-zero, the end of transfer waiting is done blocking on a semaphore
posted by the ISR handler.

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 18

3.4 Sending and Receiving
The SPI driver supports two types of combined sending and receiving transfers, through the
spi_send_recv() (Section 4.1.4) component. One transfer is a full-duplex one where frames are sent
out at the same time as frames are captured. It is not necessary to have the same number of frames to
transmit as the number of frames to receive; either the controller itself deals with this condition or the SPI
driver send dummies frames or ignores the extra received frames. The other transfer is a half-duplex one,
where frames are sent out first, then frames are captured; this is the way EEPROM / flash memory operates
when reading from the memory. If the controller does not support half-duplex (or EEPROM) transfers, the
SPI drivers send the necessary dummy frames and ignores the received frames to properly implement the
protocol. The selection of the type of transfer is done when initializing the controller / slave pair with
spi_init() (See 4.1.1). To use half-duplex, the argument Mode should be set to SPI_TX_RX and to use
the half-duplex mode, it should be set to SPI_TX_RX_EEPROM.

The way spi_send_recv() operates is a combination of the sending and receiving operation described in
the two previous sections. The only difference, depending on the controller, may be the sending of dummy
frames and / or the ignoring of received frames.

3.5 Multiple Drivers
It is possible to use 2 or more drivers for different SPI controllers. Example of the need for this is a
processor with on-chip SPI(s) on a board with different type of SPI(s), or a SocFPGA with added SPI(s) in
the FPGA fabrics that are of different type than the processor system SPI(s). To use multiple drivers the
build option SPI_MULTIPLE_DRIVER must be defined and set to a non-zero value. This changes the API
names of the driver by pre-pending the SPI type to the function names. For example, if cd_spi.c is used,
the APIs are named as following:

Table 3-1 BAPI remapping

The prefix is always the prefix in the file name; e.g. cd_spi.c prefix is “cd” and dw_spi.c is “dw”.

All build options if not prefixed apply to all the drivers. To set build options on a per-driver basic all there
is to do is used the build option that has been pre-fixed with the same prefix used in the API but in
uppercase. For example to set each of the multiple drivers to support 3 devices each, the build option
SPI_MAX_DEVICES should defined and set to 3. If the cd_spi and the dw_spi drivers are use together
and, as for the example below, there are 2 devices used for the cd and 3 used for the dw, then
CD_SPI_MAX_DEVICES should defined and set to 2 and DW_SPI_MAX_DEVICES should defined and set to
3. When a driver specific build option is defined then the driver for which the build option applies ignores
the equivalent global build option.

A custom wrapper must be provided. The following code shows such a driver for the cd_spi (2 SPIs
accessed as device #0 and #1, mapped to cd’s #01 and #1) and the dw_spi (3 SPIs accessed as device #2,
#3, and #4, mapped as dw’s #0, #1, and #2). The example uses contiguous device number for cd (#0 and
#1) and for dw (#0, #1, and #2) as it’s easier to show the “how to”. Non-contiguous and non starting from
#0 devices can also be used by implementing the appropriate input–output device remapping.

Original Multiple

spi_init() cd_spi_init()

spi_recv() cd_spi_recv()

spi_send() cd_spi_send()

spi_set() cd_spi_set()

spi_send_recv() cd_spi_send_recv()

SPIintHndl_#() cd_SPIintHndl_#()

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 19

Table 3-2 Multiple SPI wrapper example (spi.c)

#include "spi.h"

/* --- */

int spi_init(int Dev, int Slv, int Freq, int Bits, uint32_t Mode)
{
int RetVal;

 RetVal = (Dev < 2)
 ? cd_spi_init(Dev, Slv, Freq, Bits, Mode)
 : dw_spi_init(Dev-2, Slv, Freq, Bits, Mode);

 return(RetVal);
}

/* --- */

int spi_recv(int Dev, int Slv, char *Buf, uint32_t Len)
{
int RetVal;

 RetVal = (Dev < 2)
 ? cd_spi_recv(Dev, Slv, Buf, Len)
 : dw_spi_recv(Dev-2, Slv, Buf, Len);

 return(RetVal);
}

/* --- */

int spi_send(int Dev, int Slv, char *Buf, uint32_t Len)
{
int RetVal;

 RetVal = (Dev < 2)
 ? cd_spi_send(Dev, Slv, Buf, Len)
 : dw_spi_send(Dev-2, Slv, Buf, Len);

 return(RetVal);
}

/* --- */

int spi_set(int Dev, int Slv, int Type, int Val)
{
int RetVal;

 RetVal = (Dev < 2)
 ? cd_spi_set(Dev, Slv, Type, Len)
 : dw_spi_set(Dev-2, Slv, Type, Val);

 return(RetVal);
}

/* --- */

int spi_send_recv(int Dev, int Slv, const char *BufTX, uint32_t LenTX, char *BufRX,
 uint32_t LenRX)
{
int RetVal;

 RetVal = (Dev < 2)

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 20

 ? cd_spi_send_recv(Dev, Slv, BufTx, LenTx, BufTX, LenRX)
 : dw_spi_send_recv(Dev-2, Slv, BufTx, LenTx, BufTX, LenRX);

 return(RetVal);
}

/* --- */

void SPIintHndl_0(void) {cd_SPIintHndl_0(); }
void SPIintHndl_1(void) {cd_SPIintHndl_1(); }
void SPIintHndl_2(void) {dw_SPIintHndl_0(); }
void SPIintHndl_3(void) {dw_SPIintHndl_1(); }
void SPIintHndl_4(void) {dw_SPIintHndl_2(); }

/* EOF */

Table 3-3 Multiple SPI wrapper example (spi.h)

#ifndef __SPI_H__
#define __SPI_H__ 1

#include "cd_spi.h" /* cd SPI driver */
#include "dw_spi.h" /* dw SPI driver */

#ifndef SPI_MULTI_DRIVER /* It must be defined and set to !=0 */
 #define SPI_MULTI_DRIVER 0 /* Set 0 to trigger the error message */
#endif

#if ((SPI_MULTI_DRIVER) == 0)
 #error "SPI_MULTI_DRIVER must be defined and set to a non-zero value"
#endif

#define SPI_MAX_DEVICES ((CD_SPI_MAX_DEVICES)+(DW_SPI_MAX_DEVICES))
#define SPI_LIST_DEVICE ((CD_SPI_LIST_DEVICE)|((DW_SPI_LIST_DEVICE)<<2))

/* --- */

int spi_init (int Dev, int Slv, int Freq, int Bits, uint32_t Mode);
int spi_recv (int Dev, int Slv, void *Buf, uint32_t Len);
int spi_send (int Dev, int Slv, const void *Buf, uint32_t Len);
int spi_set (int Dev, int Slv, int Type, int Val);
int spi_send_recv(int Dev, int Slv, const void *BufTX, uint32_t LenTX, void *BufRX,
 uint32_t LenRX);

/* --- */

extern void SPIintHndl_0(void);
extern void SPIintHndl_1(void);
extern void SPIintHndl_2(void);
extern void SPIintHndl_3(void);
extern void SPIintHndl_4(void);

#endif

/* EOF */

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 21

4 API
In this section, the API of all common SPI driver functions is provided. The next section gives examples
on how to use the SPI.

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 22

4.1.1 spi_init

Synopsis
#include “???_spi.h”

int spi_init(int Dev, int Slv, int Freq, int Nbits, int Mode);

Description

spi_init() is the component used to initialize a SPI device, specified with the device
indicated by the argument Dev, and one slave attached to that device; the slave is identified
with the argument Slv. The maximum SPI bus frequency is specified by the argument Freq,
the number of bits per frames is specified by the argument Nbits and the mode of operation
trough the argument Mode. The argument Mode is used to hold a lot of information, refer to
the Options sub-section for more information on Mode. An already initialized slave can be
re-initialized at any time.

Arguments

Dev Device to initialize (Number starting at 0)
Slv Slave to initialize (Number starting at 0)
Freq Desired SPI bus frequency
Nbits Number of bites per frame
Mode Mode of operation, refer to the Options section

Returns

int == 0 : success
 != 0 : error

Component type

Function

Options

The argument Mode is used to set-up almost everything on how the controller, specified by
the argument Dev, communicates with the Slave indicated by the argument Slv. The
following table shows all the supported settings, which must be binary ORed together for the
value set for Mode. It is important to always construct the value use for Mode by using one
and only one token from all groups; if all tokens from a group are missing, the result is target
specific. The groups are shown in the table boxed inside a wide border and only one of the
token in the group can be used.

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 23

Table 4-1 Mode OR’ed values

Defined token Description

SPI_PROTO_SPI The transfer protocol is the original SPI (Motorola)

SPI_PROTO_SSP The transfer protocol is Texas Instruments’ Serial Protocol
(SSP)

SPI_PROTO_UWIRE National Semiconductors’s µ-Wire ptotocol

SPI_CLK_CPHA0 Data is captured (read) on the inactive to active clock transition

SPI_CLK_CPHA1 Data is captured (read) on the active to inactive clock transition

SPI_CLK_CPOL0 Idle state (inactive) of the clock is 0

SPI_CLK_CPOL1 Idle state (inactive) of the clock is 1

SPI_ALIGN_LEFT The frames in the buffers passed to spi_recv(),
spi_send(), and spi_send_recv() are left aligned in the
buffer.

SPI_ALIGN_RIGHT The frames in the buffers passed to spi_recv(),
spi_send(), and spi_send_recv() are right aligned in the
buffer.

SPI_DATA_NONPACK The frames in the buffers passed to spi_recv(),
spi_send(), and spi_send_recv() are one frame per
byte/16 bit words.

SPI_DATA_PACK The frames in the buffers passed to spi_recv(),
spi_send(), and spi_send_recv() are packed. Ignored,
and SPI_DATA_NONPACK is used instead, if the build option
SPI_OPERATION bit #16 is reset to 0.

SPI_TX_RX When spi_send_recv() is used, both transmission and
reception are going on at the same time. It is a full-duplex
transfer.

SPI_TX_RX_EEPROM When spi_send_recv() is used, frames are transmitted first
and frames are received. It is a half-duplex transfer.

SPI_MASTER The controller is the bus master.

SPI_SLAVE The controller is a slave on the bus.

SPI_XFER_POLLING No transfers use interrupts, polling is used.

SPI_XFER_ISR All transfers use interrupts. When receiving frames, this is
ignored and SPI_XFER_POLLING is used instead if the build
option SPI_OPERATION bit #1 is reset. When transmitting
frames, this is ignored and SPI_XFER_POLLING is used
instead if the build option SPI_OPERATION bit #9 is reset.

SPI_XFER_DMA All transfers use DMA. When receiving frames, this is ignored
and SPI_XFER_POLLING is used instead if the build option
SPI_OPERATION bit #2 is reset. When transmitting frames,
this is ignored and SPI_XFER_POLLING is used instead if the
build option SPI_OPERATION bit #10 is reset.

SPI_EOT_POLLING When transmitting frames, uses polling to detect when all
frames have been transferred.

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 24

SPI_EOT_ISR When transmitting frames, uses an interrupt to detect when all
frames have been transmitted. This is ignored and
SPI_EOT_POLLING is used instead if the build option
SPI_OPERATION bit #9 is reset.

SPI_UWIRE_HS When SPI_PROTO_UWIRE is used in Mode, makes the transfer
use the µWire handshake. It is a “don’t care” if
SPI_PROTO_UWIRE is not selected in Mode.

SPI_UWIRE_NO_HS When SPI_PROTO_UWIRE is used in Mode, makes the transfer
to not use the µWire handshake. It is a “don’t care” if
SPI_PROTO_UWIRE is not selected in Mode.

Notes

When multiple slaves are connected on a device, spi_init() must be called using the same
device number but with a different slave number to initialize according to the slave on that
device.

See Also

spi_recv (Section 4.1.2)
spi_send (Section 4.1.3)
spi_send_recv (Section 4.1.3)

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 25

4.1.2 spi_recv

Synopsis
#include “???_spi.h”

int spi_recv(int Dev, int Slv, void *Buf, uint32_t Len);

Description

spi_recv() is the component used to receive frames from a SPI device. The part is
accessed using the controller specified by the argument Dev, and the slave number on that
device; the slave number is identified with the argument Slv. The number of frames to
receive is indicated by the argument Len, and the received frames are deposited in the buffer
indicated by the argument Buf. The frames are deposited in the receive buffer Buf according
to the setting of Mode in spi_init(). The tokens SPI_ALIGN_LEFT, SPI_ALIGN_RIGHT,
SPI_DATA_PACK and SPI_DATA_NONPACK control the way the frames lands in Buf. Refer
to Appendix A (Section 5) for more information.

Arguments

Dev Device number (Number starting at 0)
Slv Slave to read from (Number starting at 0)
Buf Buffer that will receive the data
Len Number of frames to read

Returns

int == 0 : success
 != 0 : error

Component type

Function

Options

The build option SPI_OPERATION (Section 0) controls the behavior of the driver when a read
operation is requested. When SPI_OPERATION bit #0 is set to 1, interrupts are disabled
during each read burst. When bit #1 is set to 1, and SPI_XFER_ISR is set in Mode during
initialization, interrupts can be used to transfer the data from the RX FIFO of the controller to
the application memory.

Notes

When the transfer is set-up to use the µWire protocol, the first 4 bytes of Buf must be
properly set-up to provide the driver with the control word used by µWire. Refer to Appendix
B (Section 6) for the required values of these 4 bytes.

See Also
spi_init (Section 4.1.1)
spi_send (Section 4.1.3)
spi_send_recv (Section 4.1.4)

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 26

4.1.3 spi_send

Synopsis
#include “???_spi.h”

int spi_send(int Dev, int Slv, const void *Buf, uint32_t Len);

Description

spi_send() is the component used to send frames to a SPI device. The part is accessed
using the controller specified by the argument Dev, and the slave number on that device; the
slave number is identified with the argument Slv. The number of frames to send is indicated
by the argument Len, and the frames sent are retrieved from the buffer indicated by the
argument Buf. The frames in the transmit buffer Buf must be formatted according to the
setting of Mode in spi_init(). The tokens SPI_ALIGN_LEFT, SPI_ALIGN_RIGHT,
SPI_DATA_PACK and SPI_DATA_NONPACK control the way the frames land in Buf. Refer to
Appendix A (Section 5) for more information.

Arguments

Dev Device number (Number starting at 0)
Slv Slave to write to (Number starting at 0)
Buf Frames to send
Len Number of frames to send

Returns

int == 0 : success
 != 0 : error

Component type

Function

Options

The build option SPI_OPERATION (Section 0) controls the behavior of the driver when a
send operation is requested. When SPI_OPERATION bit #8 is set to 1, interrupts are disabled
during each write burst. When bit #9 is set to 1, and SPI_XFER_ISR is set in Mode during
initialization, interrupts can be used to transfer the data from the application memory to the
TX FIFO of the controller.

Notes

When the transfer is set-up to use the µWire protocol, the first 4 bytes of Buf must be
properly set-up to provide the driver with the control word used by µWire. Refer to
Appendix B (Section 6) for the required values of these 4 bytes.

See Also
spi_init (Section 4.1.1)
spi_recv (Section 4.1.2)
spi_send_recv (Section 4.1.4)

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 27

4.1.4 spi_send_recv

Synopsis
#include “???_spi.h”

int spi_send_recv(int Dev, int Slv, const void *BufTX,
 uint32_t LenTX, void *BufRX, uint32_t LenRX);

Description

spi_send_recv() is the component used to read and write data to a SPI slave. The part is
accessed using the controller specified by the argument Dev, and the slave number on that
device; the slave number is identified with the argument Slv. The number of frames to send
is indicated by the argument LenTX, and the frames sent are retrieved from the buffer
indicated by the argument BufTX. The number of frames to receive is indicated by the
argument LenRX, and the frames recived are deposited in the buffer indicated by the
argument BufRX. The frames in the buffers Buf and the frames deposited in the buffer
BufRX are formatted according to the setting of Mode in spi_init(). The tokens
SPI_ALIGN_LEFT, SPI_ALIGN_RIGHT, SPI_DATA_PACK and SPI_DATA_NONPACK control
the buffer formatting. Refer to Appendix A (Section 5) for more information.

The transfer performed by spi_send_recv() can be either half-duplex or full-duplex. A
half-duplex transfer send LenTX frames on the SPI bus and the receive LenRX frames from
the SPI bus. A full-duplex transfer sends and receives frames at the same time, and the
duration of the transfer is the largest value between LenTX and LenRX. The full-duplex is
used when spi_init() Mode is set with SPI_TX_RX and the half-duplex is used when
Mode is set with SPI_TX_RX_EEPROM.

Arguments

Dev Device number (Number starting at 0)
Slv Slave to write to (Number starting at 0)
BufTX Base address of the buffer holding the frames to transmit
LenTX Number of frames to send on the bus
BufRX Base address of the buffer where the received frames are deposited
LenRX Number of frames to receive from the bus

Returns

int == 0 : success
 != 0 : error

Component type

Function

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 28

Options

The build option SPI_OPERATION (Section 0) controls the behavior of the driver when a read
operation is requested. When SPI_OPERATION bit #0 is set to 1, or bit #8 is set to 1
interrupts are disabled during the frame exchange burst. When bit #9 is set to 1, and
SPI_XFER_ISR is set in Mode during initialization, interrupts can be used to transfer the data
from the application memory to the TX FIFO of the controller. When bit #1 is set to 1, and
SPI_XFER_ISR is set in Mode during initialization, interrupts can be used to transfer the data
from the RX FIFO of the controller to the application memory.

Notes

spi_send_recv() cannot be used when the transfer protocol is set to µWire, i.e. when
Mode in spi_init() is set to SPI_PROTO_UWIRE.

See Also
spi_init (Section 4.1.1)
spi_recv (Section 4.1.2)
spi_send (Section 4.1.3)

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 29

4.1.5 SPIintHndl_n

Synopsis
#include “???_spi.h”

void SPIintHndl_n(void);

Description

SPIintHndl_n() is the interrupt handler for the SPI driver. The n in the name is a
numerical value that specifies the device number the interrupt handler is for.

Arguments
void

Returns
void

Component type

Function

Options

The SPI interrupt handler is not used, therefore not needed, if bit #1 and bit #9 of the build
option SPI_OPERATION are both set to 0 (Section 0). Interrupt handlers are only available
for the SPI devices validated by the build option SPI_LIST_DEVICE.

Notes

The interrupt handler should always be attached to the targeted SPI device interrupt and the
number of the interrupt handler MUST match the device number. If there is a mismatch, then
the application will most likely freeze or even crash. If the interrupt handler is not attached
and the related interrupt enabled, the SPI driver for this device will not operate.

See Also
spi_recv (Section 4.1.2)
spi_send (Section 4.1.3)
spi_send_recv (Section 4.1.4)

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 30

5 Appendix A
This appendix shows graphically all the types of frame buffering supported by the SPI driver. The first and
foremost important characteristic is the SPI driver supports from 1 to 16 bit frames. When the number of
bits per frame specified during initialization is less or equal to 8 bits, the buffered frames are held in byte
buffers. If the number of bits per frames is greater than 8, then the buffered frames are held in 16 bits
buffers. It was necessary to proceed with 8 bit and 16 buffers as processor memory is organized in either
little or big endian.

All examples show a byte buffering using 5 bit frames and a 16 bit buffering using 11 bit frames. The
numbers in the table are the frame number and x’s are don’t care bits. All frames have their MSBit on the
left (higher bit index in the byte or word) and the MSBits are always the first bit sent/received on the SPI
bus. The MSBit of the frame, which is the first bit of the frame transferred on the bus, is always on the left
no matter the data alignment chosen.

5.1 5 bit frame: left aligned non-packed
spi_init() arguments:
 Nbits : 5

 Mode : SPI_ALIGN_LEFT | SPI_DATA_NONPACK | …

Table 5-1 Left-aligned non-packed 5 bit frame

Byte\Bit 7 6 5 4 3 2 1 0
0 0 0 0 0 0 x x x

1 1 1 1 1 1 x x x

2 2 2 2 2 2 x x x

5.2 11 bit frame: left aligned non-packed
spi_init() arguments:
 Nbits : 11

 Mode : SPI_ALIGN_LEFT | SPI_DATA_NONPACK | …

Table 5-2 Left-aligned non-packed 11 bit frame

Word\Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 x x x x x

1 1 1 1 1 1 1 1 1 1 1 1 x x x x x

2 2 2 2 2 2 2 2 2 2 2 2 x x x x x

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 31

5.3 5 bit frame: right aligned non-packed
spi_init() arguments:
 Nbits : 5

 Mode : SPI_ALIGN_RIGHT | SPI_DATA_NONPACK | …

Table 5-3 Right-aligned non-packed 5 bit frame

Byte\Bit 7 6 5 4 3 2 1 0
0 x x x 0 0 0 0 0

1 x x x 1 1 1 1 1

2 x x x 2 2 2 2 2

5.4 11 bit frame: right aligned non-packed
spi_init() arguments:
 Nbits : 11

 Mode : SPI_ALIGN_RIGHT | SPI_DATA_NONPACK | …

Table 5-4 Right-aligned non-packed 11 bit frame

Word\Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 x x x x x 0 0 0 0 0 0 0 0 0 0 0

1 x x x x x 1 1 1 1 1 1 1 1 1 1 1

2 x x x x x 2 2 2 2 2 2 2 2 2 2 2

5.5 5 bit frame: left aligned packed
spi_init() arguments:
 Nbits : 5

 Mode : SPI_ALIGN_LEFT | SPI_DATA_PACK | …

Table 5-5 Left-aligned packed 5 bit frame

Byte\Bit 7 6 5 4 3 2 1 0
0 0 0 0 0 0 1 1 1

1 1 1 2 2 2 2 2 3

2 3 3 3 3 4 4 4 4

5.6 11 bit frame: left aligned packed
spi_init() arguments:
 Nbits : 11

 Mode : SPI_ALIGN_LEFT | SPI_DATA_PACK | …

Table 5-6 Left-aligned packed 11 bit frame

Word\Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

2 2 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 32

5.7 5 bit frame: right aligned packed
spi_init() arguments:
 Nbits : 5

 Mode : SPI_ALIGN_REIGH | SPI_DATA_PACK | …

Table 5-7 Right-aligned packed 5 bit frame

Byte\Bit 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 0 0

1 3 2 2 2 2 2 1 1

2 4 4 4 4 3 3 3 3

5.8 11 bit frame: right aligned packed
spi_init() arguments:
 Nbits : 11

 Mode : SPI_ALIGN_REIGH | SPI_DATA_PACK | …

Table 5-8 Right-aligned packed 11 bit frame

Word\Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1

2 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 2

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 33

6 Appendix B
The µWire protocol from National Semiconductor uses a control word at the beginning of all bus
transactions. A key thing is this control word does not necessary have the same number of bits as the
frames have. As only µWire requires a control word, it was decided to provide the control word and its
number of bits through the read or write buffers passed to spi_recv() and spi_send(). The µWire
control word information is always held in the first 4 bytes of the buffer, providing the number of bits
information and the control word itself. When receiving frames from the SPI bus, the µWire 4 bytes are
overwritten with the received frames. When sending frames on the SPI bus, the frames to send must be
located immediately after these four bytes in the transmit buffer.

The µWire control word information is indicated in the following table:

Table 6-1 µWire Control Word

Byte index Description

#0 Number of bits in the control word

#1 Ignored

#2 MSBits of the control word, if more than 8 bits

#3 LSBits of the control word

Although the SPI driver supports left or right aligned frames, the µWire control word (bytes #2 and #3) is
always right aligned in the bytes. The reason there is a “don’t care” byte is due the possibility the buffer
holds 16 bits words when the number of bits per frame is greater than 8. As many processors require data
alignment, adding a “don’t care” byte was necessary to retain the buffer alignment.

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 34

7 References
[R1] Abassi RTOS – User Guide, available at http://www.code-time.com
[R2] mAbassi RTOS – User Guide, available at http://www.code-time.com
[R3] µAbassi RTOS – User Guide, available at http://www.code-time.com
[R4] Abassi RTOS – QSPI Flash Memory Support, available at http://www.code-time.com
[R5] Abassi RTOS – System Calls Layer, available at http://www.code-time.com

Abassi RTOS SPI Support 2018.11.21

Rev 1.10 Page 35

8 Revision History
Date Version Author/Editor Description

2016.09.03 1.1 EV First Draft

2016.09.19 1.2 AP Review changes

2016.11.21 1.3 EV Added SPI_POLLING_TOUT

2016.11.23 1.4 AP Review changes

2017.03.22 1.5 EV Small changes

2017.05.30 1.6 EV Full clean-up

2017.08.31 1.7 EV Update

2018.08.17 1.8 EV Added multiple drivers

2018.08.28 1.9 EV Small changes

2018.11.21 1.10 EV Alternate Token naming

