
Copyright Information
This document is copyright Code Time Technologies Inc. ©2016-2018 All rights reserved. No part of this document may be
reproduced or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of
Code Time Technologies Inc.
Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

Abassi RTOS
System Calls Layer

Disclaimer
Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the
document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in
the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 3

Table of Contents
1 INTRODUCTION .. 6

1.1 DISTRIBUTION CONTENTS .. 6
1.2 LIMITATIONS .. 8
1.3 FEATURES ... 8

2 EXAMPLES AND HOW-TO .. 10
2.1 USE ... 10
2.2 BUILD EXAMPLE ... 10
2.3 MOUNT POINTS ... 11
2.4 /DEV .. 12

2.4.1 Device initialization .. 12
2.4.2 /dev/tty ... 12
2.4.3 /dev/i2c .. 13
2.4.4 /dev/spi .. 13

2.5 STDIO .. 13
3 TARGET SET-UP .. 14

3.1.1 Drive access protection ... 14
3.1.2 File & Directory access protection ... 14

3.2 IMPORTED VARIABLES .. 15
3.3 BUILD OPTIONS .. 15

3.3.1 OS_SYS_CALL .. 16
3.3.2 SYS_CALL_MUTEX ... 16
3.3.3 SYS_CALL_N_DRV .. 17
3.3.4 SYS_CALL_N_DIR ... 17
3.3.5 SYS_CALL_N_FILE .. 17
3.3.6 SYS_CALL_DEV_@@@ .. 17
3.3.7 SYS_CALL_TTY_EOF .. 17

3.4 MEDIA ACCESS OPTIONS .. 17
4 MULTIPLE FILE SYSTEM STACK ... 19

4.1 SET-UP .. 20
4.1.1 Build options ... 21

4.2 IMPLEMENTATIONS ... 21
4.3 MOUNTING A DEVICE .. 21

5 API .. 22
5.1 ALIKE UNIX SYSTEM CALLS .. 22
5.2 ALIKE UNIX “C” LIBRARY SYSTEMS CALLS .. 23

5.2.1 Non-standard functions ... 23
5.2.2 devctl ... 24
5.2.3 GetKey ... 25
5.2.4 mount... 26
5.2.5 mkfs ... 28
5.2.6 SysCallInit ... 29

5.3 EXAMPLES .. 30
5.3.1 devctl() usage .. 30
5.3.2 Mounting ... 30
5.3.3 Formatting .. 31

6 REFERENCES .. 32
7 REVISION HISTORY ... 33

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 4

List of Figures

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 5

List of Tables
TABLE 1-1 DISTRIBUTION ... 6
TABLE 1-2 FILE SYSTEM SHORT-NAMES ... 7
TABLE 1-3 “C” LIBRARIES SHORT-NAMES .. 7
TABLE 1-4 DIRECTORY STRUCTURE ... 8
TABLE 2-1 ZYNQ FILE EXAMPLE ... 10
TABLE 2-2 CYCLONE V FILE EXAMPLE ... 11
TABLE 2-3 DIRECT INITIALIZATION EXAMPLE .. 12
TABLE 2-4 DEVCTL() INITIALIZATION EXAMPLE ... 12
TABLE 3-1 BUILD OPTIONS .. 15
TABLE 3-2 SYS_CALL_MUTEX SETTINGS .. 16
TABLE 4-1 CYCLONE V MULTI-FS FILE EXAMPLE ... 20
TABLE 5-1 UART #2 INITIALIZATION EXAMPLE .. 30
TABLE 5-2 /DEV/TTY2 INITIALIZATION EXAMPLE ... 30
TABLE 5-3 MOUNT EXAMPLE .. 30
TABLE 5-4 MOUNT EXAMPLE .. 31
TABLE 5-5 MOUNT EXAMPLE .. 31
TABLE 5-6 MULTI-FS MOUNT EXAMPLE ... 31
TABLE 5-7 FORMAT EXAMPLE .. 31
TABLE 5-8 MULTI-FS FORMAT EXAMPLE ... 31

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 6

1 Introduction
This document describes the System Calls layer provided for Abassi1 [R1] (including mAbassi [R2] and
µAbassi [R3]). The System Calls layer is the way Code Time Technologies provides a solution to support
in an easy manner the standard “C” library system calls, and it encapsulates at the same time the board
support package (BSP). It is a plug-and-play set of files, where the standard “C” library input and output
(I/O) becomes fully supported, irrelevant of the target platform. With it, all stdio (stdin, stdout, stderr)
exchanges are done on the selected platform UART. When one or more mass storage interfaces are
available, then it becomes possible to use functions like fopen(), fprintf(), fseek(). In supplement,
the System Calls layer is designed to provided most of the UNIX system calls, like open(), read(),
dup(). The System Calls layer also supports virtual devices that can be accessed through a /dev/xxx file
naming, making the BSP fully transparent to the user. It also supports the use of multiple file system stacks
when more than one file system format is needed. This means an application can be created that will, for
example, handle at run time NTFS, FAT32, and exFAT, relying on different File System stacks.

1.1 Distribution Contents
There are many files supplied with the distribution for the purpose of implementing the System Calls layer.
This is mainly due to the number of file system stacks and “C” libraries supported. The general file naming
and use are listed in Table 1-1 below:

Table 1-1 Distribution

File Name Description

SysCall.h Include file for the System Calls.

SysCall_<FS>.c “C” file implementing the System Calls layer for the file
system stack <FS>. In the file name, <FS> is the short-
name of the specific file system library.

NOTE: Except for Newlib (GCC), two files are always
required: SysCall_<LIB>.c and
SysCall_<FS>.c. Newlib (GCC) is an
exception as it only requires SysCall_<FS>.c.

SysCall_<LIB>.c “C” file implementing the System Calls layer for the “C”
library <LIB>. In the file name, <LIB> is the short-name
of the specific “C” library.

NOTE: Except for Newlib (GCC) and ARM CC µLib,
two files are always required: SysCall_<LIB>.c
and SysCall_<FS>.c. Newlib (GCC) is an
exception as it only requires SysCall_<FS>.c;
ARM CC µLib only requires SysCall_uLib.c.

Abassi_<FS>.c “C” file providing mutex, semaphore and other RTOS
facility required by the file system stack <FS>. In the file
name, <FS> is the short-name of the specific file system
stack library. This file is independent from the target “C”
or from the target hardware platform.

1 When Abassi is mentioned in this document, unless explicitly stated, it always means Abassi, mAbassi
and µAbassi.

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 7

Media_<FS>_<HW>.c “C” file for the mass storage access. In the file name, <FS>
is the short-name of the specific file system stack and <HW>
is the target platform. This file is independent from the
target “C” library but is specific to the file system stack to
use AND the target hardware platform.

SysCall_<HW>.c “C” file for platform-specific System Calls layer. This is
currently used to provide access to the on-board RTC for
the local date/time.

<FS>-vvv Directory holding all files for the file system stack with the
short-name <FS>, with vvv being the version of the file
system stack release.

<CFG>.h Configuration file for the selected File System Stack. Each
file system stack uses a different name that has no real
relationship with the file system stack name. e.g FatFS uses
ffconf.h and FullFAT uses ff_config.h. File System
stacks specific definition file name can be found by looking
into the directory of the File System stack itself and an
include file whose name starts with “_”. This is the
standard way Code Time “removes” the standard include
file without modifying the code.

NOTE: When using the System Calls layer with the IAR CLIB and the file SysCall_<HW>.c is required
to access the on-board time of the day, it is necessary to define the following for the whole
project: _NO_DEFINITIONS_IN_HEADER_FILES=0 otherwise the time() function used will be
the one from the library and an infinite recursive call will occur.

At the time of writing this document, some of the naming for <FS> are as follows:

Table 1-2 File System short-names

Short-Name Description

noFS No file system, only stdio (stdin, stdout, stderr) is handled.

ctFAT Code Time FAT12/ FAT16 / FAT32 file system

FatFS FatFS - FAT12 / FAT16 / FAT32 and exFAT file system
ELM by ChanN [R4]

FullFAT FullFAT FAT12 / FAT16 / FAT32 file system [R5]

ueFAT Ultra-Embedded FAT12 / FAT16 / FAT32 file system [R6]

noFS Support for stdio only: stdin, stdout and stderr

For the libraries <LIB>:

Table 1-3 “C” libraries short-names

Short-Name “C” Library

ARMCC ARM CC (Keil) full library

uLib ARM CC (Keil) µLib library

CCS TI’s Code Composer “C” library.

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 8

IAR IAR CLIB library.

For the platform short-naming, as there are many of them, please look into the port specific port/src/
directory. The following table shows where the specific files are located in the distribution:

Table 1-4 Directory structure

./ --- / --- Abassi / SysCall.h
 | |
 | / Abassi_<FS>.c
 | |
 | / SysCall_<FS>.c
 | |
 | / SysCall_<LIB>.c
 |
 / --- Drivers / --- inc / xxx_qspi.h
 | | |
 | | / xxx_sdmmc.h
 | | |
 | | / xxx_uart.h
 | | |
 | | / ...
 | |
 | / --- src / Media_<FS>.c
 | |
 | / xxx_qspi.c
 | |
 | / xxx_sdmmc.c
 | |
 | / xxx_uart.c
 | |
 | / ...
 |
 / --- PORT / --- inc / <CFG>.h
 |
 / --- src / SysCall_<HW>.c

NOTE: All open-source code is provided as is, unmodified. The files may be located in a different place
than where they were in the original ZIP/GIT/SVN, but their content is never modified. The only
change Code Time may have performed is to prepend a “_” to the file name of one or more
include files, as these are for the configuration, which is application dependent.

Also part of the distribution are the UART, I2C, SD/MMC, etc. drivers, which may be used, and are all
supported by the System Calls layer. Refer to the specific driver documentation for further information.

1.2 Limitations
There is currently no support for the CMSIS RTOS API, nor is there support for a standalone version of the
System Calls layer.

There are limitations, which are all related to the way the specific file system stacks operates. As such,
instead of giving a long description of each one in this document, the limitations are described in the
SysCall_<FS>.c files, at the beginning of the file. In addition, each function in the SysCall_<FS>.c
files have further textual information on how they are implemented and what is non-standard.

1.3 Features
The System Calls layer is an add-on to the compiler “C” library. Abassi does not need to use it, it’s
optional. It provides all the hooks necessary to perform input and output (I/O) through the native API of

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 9

the “C” library. As such, all access to stdin, stdout, stderr is performed through the configured
UART(s) of the platform. When the System Calls layer file is selected to support a file system stack, then
all mass storage I/O operations of the “C” library become fully supported. The System Calls layer is
intrinsically built to provide the I/O UNIX system calls, so this ubiquitous API also becomes fully
accessible.

In addition to the mass storage I/O handling, the System Calls layer supports virtual non-mass storage
devices such as TTY, I2C, etc. These are accessible exactly the way UNIX devices are accessed, by
specifying filenames like /dev/tty1 or /dev/i2c4. They can be configured, opened, read from, written
to, closed, stat’ed, etc.

Another feature is related to how the mass storage devices are accessed: there is no reference to the
physical location of the device. All mass-storage devices are accessed through mount points, therefore only
when a device is mounted is the physical information required. For example, consider a system with 2
physical drives, where drive #0 is a SD/MMC and drive #1 is a QSPI flash memory. The mounting
operation could, for example, mount drive #0 on / (the root directory) or /logging, and drive #1 on
/apps. The use of mount points eliminates any reference to the physical interfaces in the file naming.
Only when performing the mounting operation does the physical interface matter. One could see the
benefit of using mount points to remove the information about the physical interface from the file names as
delivering truly portable code. Refer to Section 2.3 for more explanation of the benefits of mount points.

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 10

2 Examples and How-To

2.1 Use
There is nothing special to do when the System Calls layer is part of an application. The layer API is
exactly the same as the standard UNIX system calls and almost all standard “C” library I/O functions
become fully supported and can be used as such. There are build options to define to override defaults
setting; these are described in Section 3.3.

2.2 Build example
The first example considers using mAbassi with FatFS on Xilinx’s Zynq using SD/MMC as the mass
storage access point. Xilinx’s SDK is using GCC, therefore there is no need to add a library specific file
(SysCall_<LIB>.c, indicated in Table 1-1). The following table shows all the files and their location that
are required to build a basic application:

Table 2-1 Zynq file example

./ --- / --- Abassi / mAbassi.c
 | |
 | / mAbassi.h
 | |
 | / ARMv7_SMP_L1_L2_GCC.s
 | |
 | / Abassi_FatFS.c
 | |
 | / SysCall.h
 | |
 | / SysCall_FatFS.c
 |
 / --- Drivers / --- inc / xlx_lqspi.h
 | | |
 | | / xlx_sdmmc.h
 | | |
 | | / cd_uart.h
 | |
 | / --- src / Media_FatFS.c
 | |
 | / xlx_lqspi.c
 | |
 | / xlx_sdmmc.c
 | |
 | / cd_uart.c
 |
 / --- mAbassi_SMP_CortexA9_XSDK / --- src / SysCall_xlx.c
 | |
 | / mAbassi_SMP_CORTEXA9_GCC.s
 |
 / --- Share / --- inc / ffconf.h
 |
 / --- FatFS-0.12 / --- src / ff.c
 |
 / --- inc / ff.h

The file names in bold are the files required for the System Calls layer. All other files are the standard ones
needed by mAbassi or the standard files related to FatFS, UART, SDMMC and QSPI.

The second example considers using mAbassi with FatFS on Altera’s Cyclone V using SD/MMC and QSPI
flash memory as the mass storage access points. Altera’s Cyclone V is normally developed on ARM/Keil
DS-5, which offers its own compiler, ARM “CC”. As the “C” library is not GCC, it is necessary to add the

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 11

library file SysCall_ARMCC.c in the build. The following table shows all the files and their location that
are required to build a basic application:

Table 2-2 Cyclone V file example

./ --- / --- Abassi / mAbassi.c
 | |
 | / mAbassi.h
 | |
 | / ARMv7_SMP_L1_L2_GCC.s
 | |
 | / Abassi_FatFS.c
 | |
 | / SysCall.h
 | |
 | / SysCall_ARMCC.c
 | |
 | / SysCall_FatFS.c
 |
 / --- Drivers / --- inc / cd_qspi.h
 | | |
 | | / dw_sdmmc.h
 | | |
 | | / dw_uart.h
 | |
 | / --- src / Media_FatFS.c
 | |
 | / cd_qspi.c
 | |
 | / dw_sdmmc.c
 | |
 | / dw_uart.c
 |
 / --- mAbassi_SMP_CortexA9_DS5 / --- src / SysCall_CY5.c
 | |
 | / mAbassi_SMP_CORTEXA9_GCC.s
 |
 / --- Share / --- inc / ffconf.h
 |
 / --- FatFS-0.12 / --- src / ff.c
 |
 / --- inc / ff.h

The file names in bold are the files required for the System Calls layer. All other files are the standard ones
needed by mAbassi or the standard files related to FatFS and UART.

2.3 Mount Points
The use of mount points removes almost all references to the physical drive device. Only when mounting
the file system on a drive is it necessary to use the physical drive number. Thus, mount points allow the
creation of applications that are dealing with unified file systems. For example, let’s assume an application
that uses two SD/MMC devices. If one SD/MMC is used to hold a web server .html set of files on a FAT
formatted card, and the other one is used to record video on a NTFS formatted card, then the mount points
used can be alike /html and /video. Using physical drive numbers to differentiate both file systems
would require either to force the insertion of these two card in specific slots or if the card can be inserted in
any slot, then to propagate the drives numbers across the application. The mount points eliminate that, as
the FAT card is always accessed at the root level through /html and the NTFS through /video.

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 12

2.4 /dev
Using the same philosophy as UNIX, the System Calls layer offers access to virtual devices, where the file
name root is /dev. This means the application can use open() / read() / write() / close() to read
from and write to non-file system devices. For example, a second UART (device #3), different from the
one used for stdin, stdout, stderr can be use with fprintf() and fscanf(). All there is to do is to make
sure the UART is initialized and then to use fopen(“/dev/tty3”, “r+”). One can see, as for the
mount points, this decouples the application from the underlying device drivers. All virtual device naming
are alike /dev/<medium>#, where <medium> is like tty, i2c, spi, etc. and # is one or two digits from 0
to 9 that specifies the physical device to access. When a device requires a slave number, e.g. SPI, then the
number following <medium> must have 2 digits. The first digit is the device controller number and the
second digit is the slave number.

2.4.1 Device initialization
Any device accessed through the virtual device /dev has to be initialized before being useable. There are
two ways to perform the initialization. The obvious one is to directly use the device initialization API alike
i2c_init(). The other one is to use the System Calls layer API to initialize devices. This is done
through the function devctl(). The API of this function is:

int devctl(int fd, const int *Cfg);

The first argument is the file descriptor that was returned when opening the device, and the second is an
array of int that must provide all the arguments of the device driver initialization function (excluding the
device number which is derived from the virtual device name). Zero is returned when successful, and
non-zero when an error occurred. Using the example of the UART driver:

Table 2-3 Direct initialization example

 uart_init(3, Baudrate, Parity, StopBits, RxSize, TxSize, Filter);

The same initialization performed through the system call layer is as follows:

Table 2-4 devctl() initialization example

 fd = open(“/dev/tty3”, “r+”);

 Cfg[0] = Baudrate;
 Cfg[1] = Parity;
 Cfg[2] = StopBits;
 Cfg[3] = RxSize;
 Cfg[4] = TxSize;
 Cfg[5] = Filter;

 Devctl(fd, &Cfg[0]);

2.4.2 /dev/tty
To enable the support of UART devices, the build option SYS_CALL_DEV_TTY must be defined and set to a
non-zero value. Other than making sure the device to use has been initialized, there is nothing special for
tty devices other than turning on the detection of the EOF character (see Section 3.3.7).

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 13

2.4.3 /dev/i2c
To enable the support of I2C devices, the build option SYS_CALL_DEV_I2C must be defined and set to a
non-zero value. Device read and write are supported, but combined send and receive is not supported. As
the use of an I2C bus involves specifying the address of the target device on the bus, it is necessary for the
application to supply this information to the read() or write() system calls. The target I2C device
address is passed to these 2 functions through the buffer used to collect the data read or the one that holds
the data to send out. As the I2C bus can use either 7 or 10 bit addresses, the first two bytes of the buffer
holds the target address. The byte located at index zero in a char buffer holds the MSByte of the address
and the byte at index 1 holds the LSByte of the address. Both bytes must always be provided even if the
number of address bits used on the I2C bus is 7. When writing to an I2C device, the argument to write()
that indicates the number of bytes to write is the real number of data bytes sent on the I2C; the data
transferred excludes the first 2 bytes. So a buffer used to write #bytes on an I2C bus must be dimension
to at least 2+#bytes. When reading an I2C bus, the two address bytes in the buffer are overwritten by the
data read.

2.4.4 /dev/spi
To enable the support of SPI devices, the build option SYS_CALL_DEV_SPI must be defined and set to a
non-zero value. Device read and write are supported, but combined send and receive is not supported. As
the use of an SPI bus involves specifying the number of the target device on the bus, it is necessary for the
device to be of the form /dev/spiMN, where M is the device controller number and N is the slave number
of the bus.

2.5 stdio
“C” standard I/O, i.e. stdin, stdout and stderr, are natively supported by the System Calls layer. The
physical UART devices to associate with each I/O are provided to the system call layer through the
variables it imports (see Section 3.2). There is no standardization if the standard I/O is uni-directional or
bi-directional. The system call layer supports them in a bi-directional way. The UART device(s) used for
stdio is not initialized by the System Call Layer, this must be done before using any of the 3 stdio devices.

If an application only needs the standard I/O and no file system, the file SysCall_noFS.c should be used.
Another case may be an application that has no need, nor support for UART accesses. The build for this
type of application still requires to include the UART driver for the function called by the System Calls
layer, but setting the UART driver build option UART_LIST_DEVICE to zero will provide “do-nothing”
functions for the UART driver.

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 14

3 Target Set-up
To better understand the purpose and how to set the build options, a short description on how the System
Calls layer is implemented will help. Basically, the System Calls layer uses 3 types of descriptors (or “C”
data structures). One type is used to hold the information about the physical devices, another type is for
each open file, and the third type is for each open directory. There is most likely the need for multiple
instances of the same type of descriptor (maybe not for the physical device, if a single drive is used). The
way the standard “C” library and how UNIX system calls work when accessing a resource is to basically
perform an “open” operation to obtain a new resource, and then access it at will, and to perform a “close”
when done. It is the responsibility of the underlying layer to handle all the management of these resources.
This “open” / access / “close” management requires one descriptor for each open, and the minimum
number of descriptor of one type corresponds to the maximum number of the same resource that can be
open at the same time. The System Calls layer has a limit on how many drives can be mounted, how many
files can be open at the same time, and how many directories can be open at the same time.

Another factor to consider is the fact the System Calls layer is targeted for multi-tasking applications, and
as such, there can be simultaneous requests to the System Calls layer. This means exclusive access
protection must be used, and that is provided with mutexes. Each of the System Call Descriptors needs
protection under the circumstances described in the following 2 sub-sections.

3.1.1 Drive access protection
The drive accesses are limited to the mount() and unmount() function. These two functions are
protected by a single mutex internal to the System Calls layer. It does not matter how many drives the
System Calls layer is set to support, this internal mutex is always available, and how it is used does not
need to be configured.

There is also a need to protect the File System stack’s accesses to the drives themselves. It is quite standard
for File System stacks to support this protection and it is done by File System stack configuration and not
by the System Calsl layer configuration. This protection MUST be used, and if is not used an error
message will be issued during the compilation. If a File System stack does not have the capability of using
mutexes for protection, then the Code Time supplied Media interface driver will always incorporate mutex
protection.

3.1.2 File & Directory access protection
There are two types of protection to consider in the case of the file and directory accesses. The first one is
when an “open” is requested; this implies the System Calls layer has to look through the descriptors to find
an unused one that will be provided to the application. The “open” operation is always protected by a
single internal mutex, which is the same as the one used for the drive access protection. As explained in
the previous sub-section, how this mutex is used does not require any configuration setting.

The second type of protection involves the resources that are already open. When a resource is accessed by
a single task, there is no need for access protection. But if the resource can be accessed at the same time by
multiple tasks, done when the file or directory descriptor is shared amongst them, then it becomes
necessary to guarantee exclusive access. How this protection is done can be configured with the build
option SYS_CALL_MUTEX.

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 15

3.2 Imported variables
There are three variables that must be provided to the System Calls layer, and they provide the information
about the UART devices to use for stdin, stdout, stderr. The following table lists them:

Variable Description

int G_UartDevIn Specifies the UART device number for stdin.

int G_UartDevOut Specifies the UART device number for stdout.

int G_UartDevErr Specifies the UART device number for stderr.

The value each of these variables must be set to is the UART device numbers associated to the stdio. The
UART device number is the first argument used in the function uart_init(), uart_recv(), and
uart_send().

3.3 Build Options
There are a few build options that can be used to change how the System Calls layer operates. The
following table lists all of them:

Table 3-1 Build Options

File Name Default Description

OS_SYS_CALL Not defined When defined and non-zero, it informs
Abassi to reserve room in the task
descriptor to support the System Calls
layer. If not defined, or defined as zero, a
compilation error will be issued to report
the problem. This option is not needed/used
when the File System selected is noFS.

SYS_CALL_MUTEX 0 Indicates if mutexes are used for exclusive
access protection and if so, how the
mutexes are used. By default (0) the
individual directory & file descriptors are
protected through a single global and
shared mutex.

SYS_CALL_N_DRV 1 Specifies the maximum number of physical
devices handled by the System Calls layer.
The default value can be derived from the
File System stack configuration.

SYS_CALL_N_FILE 5 Specifies the maximum number of open
files handled by the System Calls layer.
The default value can be derived from the
File System stack configuration.

SYS_CALL_N_DIR 2 Specifies the maximum number of open
directories handled by the System Calls
layer.

SYS_CALL_DEV_@@@ 0 Specifies if the virtual /dev/@@@ devices
are handled by the System Calls layer.

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 16

SYS_CALL_TTY_EOF 0 When /dev/tty virtual devices are
supported, this build option defines the
end-of-file (EOF) character. It also
specifies if this EOF character is used for
stdio inputs, no matter if /dev/tty are
supported or not.

3.3.1 OS_SYS_CALL
The build option OS_SYSTEM_CALL is used to inform Abassi to reserve room in the task descriptor. It must
be defined and set to a non-zero value. If it is not defined, or defined and set to zero, an error will be issued
during the compilation. This is an Abassi build option needed by the System Calls layer. For more
information, refer to [R1]. It is not necessary to define this build option when the file SysCall_noFS.c is
the file used for the System Call Layer.

3.3.2 SYS_CALL_MUTEX
The build option SYS_CALL_MUTEX sets-up the way the System Calls layer protects the files and directory
accesses in a multi-task environment. The three possibilities are listed in the following table:

Table 3-2 SYS_CALL_MUTEX settings

SYS_CALL_MUTEX Conditions

== 0 Use this setting when limited data memory is available or when the
file and directory descriptors are not shared between tasks. The “C”
library access protection is irrelevant in this case.

> 0 The file and/or directory descriptors are shared between tasks. The
“C” library access protection is irrelevant in this case.

< 0 The File System stack protects the accesses to the individual physical
drives through its own mutexes. It also requires the “C” library to
protect the access to the individual files if the application shares open
file / directory descriptors between tasks. Using this setting, the
access protection for the virtual devices (/dev/%%%) is not provided
by the System Calls layer, therefore it must be provided by the
device drivers themselves.

When SYS_CALL_MUTEX is negative, a single internal mutex is used to protect the mounting and
un-mounting operations, all “open”, and also all directory accesses. When it is set to 0, an internal mutex is
used to protect the mounting and un-mounting operation, all “open”, and also all directory accesses, plus
the files descriptor accesses are protected by a different internal mutex, and the directory accesses are
protected by a third internal mutex. Finally, when SYS_CALL_MUTEX is positive, instead of the file
descriptors sharing a mutex and the directory descriptor sharing another one, each file descriptor and
directory descriptor has their own unique mutex.

A few conditions are required to be fulfilled when using the System Calls layer with the build option
SYS_CALL_MUTEX set to a negative value, otherwise issues will arise. One must be certain about the
overall environment. The choice between the 2 other set-ups of SYS_CALL_MUTEX depends on both the
available memory and the way the application accesses the file and directory. If the application is on a
limited data memory platform, then SYS_CALL_MUTEX should definitely be set to a value of zero. Also, if
there are very little concurrent accesses to the mass storage device, then having individual mutex
(SYS_CALL_MUTEX positive) may not provide much real time efficiency saving.

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 17

3.3.3 SYS_CALL_N_DRV
The build option SYS_CALL_N_DRV sets the maximum number of physical drives the System Calls layer
can handle. It is set by default to 1, except for FatFS, which the default value is derived from FatFS’s build
option _VOLUME. To use a different value from the default one, define SYS_CALL_N_DRV and set its value
to the application requirements.

3.3.4 SYS_CALL_N_DIR
The build option SYS_CALL_N_DIR sets the maximum number of directories that can be open at the same
time. Although directories may not be accessed directly through the opendir(), readdir(), etc, using
the file statistics API, i.e. fstat() and stat() do access (open) directories. The default value for
SYS_CALL_N_DIR is 2. To use a different value from the default one, define SYS_CALL_N_DIR and set its
value to the application requirements

3.3.5 SYS_CALL_N_FILE
The build option SYS_CALL_N_FILE sets the maximum number of files that can be open at the same time.
This number does not include the 3 file descriptors for stdio (i.e. stdin, stdout and stderr). By default, the
value for SYS_CALL_N_FILE is 5. To use a different value from the default one, define
SYS_CALL_N_FILE and set its value to the application requirements.

3.3.6 SYS_CALL_DEV_@@@
The @@@ used in the build option name here is a wildcard (it can be tty, i2c, spi, etc). There are multiple
SYS_CALL_DEV_@@@ build options, e.g. SYS_CALL_DEV_TTY, SYS_CALL_DEV_I2C, etc. By default, all
these build options are set to a value of zero, meaning the related virtual devices, e.g. /dev/tty,
/dev/i2c, /dev/spi, etc. are not recognized nor handled by the System Calls layer. To make the System
Calls layer recognize a specific virtual device, the associated build option must be defined and set to a
non-zero value. And, quite important, the associated device driver must be also added to the application
build process.

3.3.7 SYS_CALL_TTY_EOF
When virtual TTY devices are recognized and supported by the System Calls layer, it is possible to define
the character that reports the end-of-file (EOF). Defining the build option SYS_CALL_TTY_EOF and setting
it to the desired EOF character will make the system call layer report the end-of-file upon receiving this
character, and will drop all future characters received on that terminal device until closed. e.g. to use
CTRL-D as the end of file, SYS_CALL_TTY_EOF must be set to 0x4, which is the numerical value of
CTRL-D. The standard devices input are not monitored for this EOF character. But if this is desired, when
SYS_CALL_DEV_EOF is defined, set bit #31 of the definition to a 1. In the case of CTRL-D for example,
SYS_CALL_DEV_EOF would be set to 0x80000004. Beware that once the “C” library is informed a stdio
device has reached the end-of-file, further reading from that device will always report the end-of-file
condition.

3.4 Media Access Options
The media accesses are always performed through the API provided by the file Media_<FS>_<HW>.c.
This file is always file system and platform specific. Although each file system requires a unique media
interface, the configuration of the media accesses remains the same across all platforms and file systems.
The configuration uses build options to assign mass storage devices to drive numbers. All the build option
tokens use the same nomenclature, i.e. MEDIA_<DEV>#_IDX, where <DEV> is the device type, for example
USB or SDMMC, and # is the device controller number for that device. When a media access build option
is set to a negative value, it means that device number is not used. When non-negative, it indicates the
drive number assigned to that device. There is one restriction when assigning the device to the drive
numbers, the drive numbers must be contiguous and start at 0. For example, setting MEDIA_QSPI0_IDX to
0 and MEDIA_SDMMC1_IDX to 2 is incorrect and will issue an error during compilation, as the drive
numbers should have been 0 and 1. Please refer to the port specific media access file for the list of devices
supported.

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 18

When enabling QSPI devices, the slave number is also required. This is defined by the build option
MEDIA_QSPI#_SLV. If MEDIA_QSPI#_SLV is not defined when MEDIA_QSPI#_IDX is defined, a default
slave index of 0 is used.

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 19

4 Multiple File System Stack
The System Calls layer is not limited to the use of a single File System stack: it is capable of supporting
multiple File System stacks at the same time. This allows an application the capability to support different
file system formats. For example, a FAT32, exFAT, and a NTFS file systems can be combined, delivering
the same capabilities as a Window’s PC. The use of mount points makes the use of multiple stacks almost
transparent to the application.

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 20

4.1 Set-up
When building an application with multiple File System stacks, all there is to do is to add the
SysCall_MultiFS.c to the build, and obviously all the required files for each File System stacks.
Re-using the example shown in Table 2-2, and adding NTFS to it, the required files are:

Table 4-1 Cyclone V Multi-FS file example

./ --- / --- Abassi / mAbassi.c
 | |
 | / mAbassi.h
 | |
 | / ARMv7_SMP_L1_L2_GCC.s
 | |
 | / SysCall.h
 | |
 | / Abassi_FatFS.c
 | |
 | / Abassi_xxNTFS.c
 | |
 | / SysCall_ARMCC.c
 | |
 | / SysCall_FatFS.c
 | |
 | / SysCall_NTFS.c
 | |
 | / SysCall_MultiFS.c
 |
 / --- Drivers / --- inc / cd_qspi.h
 | | |
 | | / dw_sdmmc.h
 | | |
 | | / dw_uart.h
 | |
 | / --- src / Media_FatFS_CY5.c
 | |
 | / Media_xxNTFS_CY5.c
 | |
 | / cd_qspi.c
 | |
 | / dw_sdmmc.c
 | |
 | / dw_uart.c
 |
 / --- mAbassi_SMP_CortexA9_DS5 / --- src / SysCall_CY5.c
 | |
 | / mAbassi_SMP_CORTEXA9_GCC.s
 |
 / --- Share / --- inc / ffconf.h
 |
 / --- FatFS-0.12 / --- src / ff.c
 | |
 | / --- inc / ff.h
 |
 / --- xxNTFS-0.1.1 / --- inc / ...
 |
 / --- src / ...

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 21

4.1.1 Build options
All the build options listed and described in Section 3.3 are shared amongst all file systems. Therefore, all
file systems will have access to the same number of drives, the same number of open files and directories,
with the same type of mutex handling, etc. To make the individual System Calls layer files usable in a
multiple file system application, the build option SYS_CALL_MULTI_<FS> must be defined and set to a
non-zero value. Again <FS> is the short-name, all in uppercase, for the file system stack (see Table 1-2).

4.2 Implementations
The way the System Calls layer handles multiple file system stacks is to rename all of the System Call
Layer APIs with unique names for each file system. For example, when FatFS is integrated in an
application with a single file system, the function to open a file is named open(). When FatFS is
integrated in an application with multiple file system, then this function is named open_FatFS(). The
system call function open() is then located in the file SysCall_MultiFS.c and in there is located the
logic to select which of the File System stack to use, according to the drive number, and to handle the
remapping of all the descriptor numbers associated to the open files and directories. All the File System
stacks have access to exactly the same drives. The descriptor remapping is needed because each individual
System Calls layer file uses descriptor numbers starting at zero.

4.3 Mounting a device
In the System Calls layer, the mounting operation is one of the only two operations that deals with the
physical drive number (the other one is the media formatting). As all drives are shared amongst all the file
systems stacks, there is nothing special to do. The multiple file mount function uses the argument
specifying the type of file system to mount to determine the proper file system mount function. It is also
possible to over-ride this auto selection of the File System stack mount to specify the desired File System
stack mount to use.

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 22

5 API
The API for the System Calls layer is not described in much detail in this document, simply because all
user accessible functions are exactly the same as the UNIX system calls and they are exactly the same as
the “C” library itself. There are only three non-standard functions. One is devctl(), the device
initialization described in Section 2.4.1. Another is the System Calls layer initialization, that must always
be performed before using resources from the it, and it is void SysCallInit(void). The last one is
int GetKey(void). It simply reads stdin and returns 0 when no characters are available from stdin, else
it returns the character that was read. The system calls mount(), and mkfs() are described because their
arguments, although standard, are strings and specific keywords must be used.

5.1 Alike UNIX system Calls
The following functions are the same as the UNIX system calls, described in section #2 of the UNIX man
pages:

int chdir(const char *path);

int chmod(const char *path, mode_t mode);

int chown(const char *path, uid_t owner, gid_t group);

int close(int fd);

int dup(int fd);

int fstat(int fd, struct stat *pstat);

int fstatfs(int fs, struct statfs *buf);

off_t lseek(int fd, off_t offset, int whence);

int mkdir(const char *path, mode_t mode);

int mount(const char *type, void *dir, int flags, void *data);

int open(const char *path, int flags, int mode);

_ssize_t read(int fd, void *vbuf, size_t size);

int rename(const char *old, const char *new);

int stat(const char *path, struct stat *pstat);

int statfs(const char *path, struct statfs *buf);

mode_t umask(mode_t mask);

int unlink(const char *path);

int unmount(const char *dir, int flags);

_ssize_t write(int fd, const void *vbuf, size_t len);

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 23

5.2 Alike UNIX “C” Library systems calls
The following functions are the same as the UNIX “C” library system calls, described in section #3 of the
UNIX man pages:

int closedir(DIR_t *dirp);

char *getcwd(char *buf, size_t size);

int isatty(int fd);

int mkfs(const char *type, void *data);

DIR_t *opendir(const char *path);

struct dirent *readdir(DIR_t *dirp);

void rewinddir(DIR_t *dirp);

void seekdir(DIR_t *dirp, long loc);

long telldir(DIR_t *dirp);

The File System stack FatFS defines and uses its own dir_t typedef, therefore it is not possible to use
dir_t as the directory API of the UNIX “C” library uses. Instead, this typedef is declared as DIR_t to not
be in conflict with FatFS.

5.2.1 Non-standard functions

int devctl(int fd, const int *Cfg);

int GetKey(void);

void SysCallInit(void);

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 24

5.2.2 devctl

Synopsis
#include “SysCall.h”

int devctl(int fd, const int *Cfg);

Description

devctl() is a component that can be used to initialize any /dev device. Its use is straight
forward as the first argument, fd, is the file descriptor returned by the function open() and
the other argument, Cfg, is an array of int that holds all the arguments required by the
????_init() function used to initialize the type of device specified by fd.

Arguments

fd file descriptor returned by open for a “/dev/???”
Cfg array of int holding each of the arguments used by the initialization function

????_init(), excluding the device number, as it is part of the string that was
use with open() to obtain the device file descriptor.

Returns

int == 0 : the device initialization was successful
 != 0 : the device initialization has failed

Component type

Function

Options

Notes

See example in Section 5.3.

See Also
i2c_init (Reference [R7])
uart_init (Reference [R8])

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 25

5.2.3 GetKey

Synopsis
#include “SysCall.h”

int GetKey(void);

Description

GetKey() is the ubiquitous component to report if a key has been pressed on stdin and return
the character of the key pressed or the indication no key has been pressed.

Arguments
void

Returns

int == 0 : no key has been pressed
 != 0 : char of the key pressed

Component type

Function

Options

Notes

GetKey() always and only operates on stdin. The equivalent operation is not supported on
/dev/tty# . If an equivalent operation is needed on a /dev/ty#, please use directly
uart_recv() (See reference [R8]).

See Also
uart_recv (See reference [R8])

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 26

5.2.4 mount

Synopsis
#include “SysCall.h”

int mount(const char *type, void *dir, int flags, void *data);

Description

mount() is the component for mounting, or attaching, a file system device.

Arguments

type type of file system to mount
dir mount point (must always be at the root level)
flags qualifier when mounting:

0
MNT_RDONLY
MNT_UPDATE

data media device to mount

Returns

int == 0 : success
 != 0 : error

Component type

Function

Options

The argument type accepts a limited number of strings (the “” are used to indicate a string,
do not use them in the string passed in type) listed below and in brackets are the associated
tokens defined in SysCall.h:
 “AUTO” (FS_TYPE_NAME_AUTO)
 “exFAT” (FS_TYPE_NAME_EXFAT)
 “FAT12” (FS_TYPE_NAME_FAT12)
 “FAT16” (FS_TYPE_NAME_FAT16)
 “FAT32” (FS_TYPE_NAME_FAT32)

The string comparison performed in mount() is case insensitive, therefore “AUTO”, or
“auto”, or “Auto” are all considered the same. In almost all cases type should be set to
“AUTO” (or its definition token FS_TYPE_NAME_AUTO) as it will try to mount the media by
checking all supported file system formats.

The argument flags could be set to a value of zero, meaning to mount a media read-write,
or set to the token MNT_RDONLY to mount the media read-only, or set to the token
MNT_UPDATE to change the properties of an already mounted media.

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 27

The argument data is used to indicate the media device to mount. It is a string and should
always be “#:” where # is a digit, from 0 to 9. If an application is built with support for
multiple File System stacks, then it is possible to specify the file system stack to use for the
mounting operation through the argument data. This is done by appending the file system
stack name after #: in the string passed as the argument data. The argument data is then alike
#:<FS>, where:

is a digit from 0 to 9
<FS> is the file system stack short name, listed in Table 1-2; as for the argument type,
the internal string comparison is case in-sensitive

Notes

See Also
See example in Section 5.3.

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 28

5.2.5 mkfs

Synopsis
#include “SysCall.h”

int mkfs(const char *type, void *data);

Description

mkfs() is the component for formatting a file system device.

Arguments

type type of file system to format the target device
data media device to format

Returns

int == 0 : success
 != 0 : error

Component type

Function

Options

The argument type accepts a limited number of strings (the “” are used to indicate a string,
do not use them in the string passed in type) listed below and in brackets are the associated
tokens defined in SysCall.h.
 “AUTO” (FS_TYPE_NAME_AUTO)
 “exFAT” (FS_TYPE_NAME_EXFAT)
 “FAT12” (FS_TYPE_NAME_FAT12)
 “FAT16” (FS_TYPE_NAME_FAT16)
 “FAT32” (FS_TYPE_NAME_FAT32)

The string comparison performed in mount() is case insensitive, therefore “FAT32”, or
“Fat32”, or “fat32” are all considered the same.

The argument data is used to indicate the media device to format. It is a string and should
always be “#:” where # is a digit, from 0 to 9. If an application is built with the support for
multiple File System stacks, then it is possible to specify the file system stack to use for the
formatting operation with the argument data. This is done by appending the file system
stack name after #: in the string passed as the argument data. The argument data is then alike
#:<FS>, where:

is a digit from 0 to 9
<FS> is the file system stack short name, listed in Table 1-2; as for the argument type,
the internal string comparison is case in-sensitive

Notes

See Also
See example in Section 5.3.

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 29

5.2.6 SysCallInit

Synopsis
#include “SysCall.h”

void SysCallInit(void);

Description

SysCallInit() is the component used to initialize the System Call.

Arguments
void

Returns
void

Component type

Function

Options

Notes

SysCallInit() must be called once Abassi has been started, i.e. after OSstart() has been
called, and before using any functions from the System Calls layer. SysCallInit() does
not initialize the non-File System devices, e.g. I2C or the UART. Non-File System devices
can be initialized through the device type specific initialization functions ???_init(),
before or after calling SysCallInit(), or they can be initialized through the System Calls
layer devinit() function. Obviously, using a /dev requires the initialization of the
device.

See Also
i2c_init (Reference [R7])
uart_init (Reference [R8])

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 30

5.3 Examples
This section shows a few examples for the non-standard functions of the System Calls layer.

5.3.1 devctl() usage
This section provides an example on how to use the function devctl(). It shows how to initialize UART
#2 on the platform. The configuration shown is for a baud rate of 115200, 8 data bits, no parity, 1 stop bit,
a RX queue size of 128, a TX queue size of 128, and some filtering options. If the initialization is
performed with uart_init(), this would be done as follows:

Table 5-1 UART #2 initialization example

uart_init(2, 115200, 8, 0, 10, 256, 128, UART_FILT_OUT_LF_CRLF
 | UART_FILT_IN_CR_LF
 | UART_ECHO
 | UART_ECHO_BS_EXPAND);

Using devctl() to perform the initialization involves first to call open() to obtain a file descriptor for
/dev/tty2. Then calling devctl() with this file descriptor and an int array holding all uart_init()
arguments, in order, except the first one which is the device number. Error trapping (open() error or
devctl() error) is not shown.

Table 5-2 /dev/tty2 initialization example

int Cfg[8];
int Fd;

 Fd = open(“/dev/tty2”, O_RDWR, 0777);

 Cfg[0] = 115200; /* Baud rate */
 Cfg[1] = 8; /* 8 data bits */
 Cfg[2] = 0; /* No parity */
 Cfg[3] = 10; /* 1 stop bit */
 Cfg[4] = 256; /* RX queue size of 256 elements */
 Cfg[5] = 128; /* TX queue size of 128 elements */
 Cfg[6] = UART_FILT_OUT_CR_LF /* UART filtering options */
 | UART_FILT_IN_CR_LF
 | UART_ECHO
 | UART_ECHO_BS_EXPAND;

 devctl(fd, &Cfg[0]); /* Initialze UART #2 */

5.3.2 Mounting
The following table shows how to mount device #1 on the mount point /dsk1:

Table 5-3 mount example

 mount(“Auto”, “/dsk1”, 0, “1:”);

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 31

The following table shows the same example as the previous one, but it mounts the media in a read-only
way:

Table 5-4 mount example

 mount(“Auto”, “/dsk1”, MNT_RDONLY, “1:”);

The following table shows how to change an already mounted media from being read-only to be readable
and writable:

Table 5-5 mount example

 mount(“Auto”, “/dsk1”, MNT_UPDATE, “1:”);

The following table shows the same operation as in the first example, but in an application using the
multiple File System stack feature, with the requirement to use the FatFS File System stack when
performing the mounting:

Table 5-6 Multi-FS mount example

 fd = mount(“Auto”, “/dsk1”, 0, “1:FatFS”);

5.3.3 Formatting
The following table shows how to create a FAT32 media on device #1

Table 5-7 format example

 mkfs(“FAT32”, “1:”);

The following table shows the same operation, but in application using the multiple File System Stack
feature with the requirement to use the FatFS File System stack when performing the mounting and
allowing FatFS to determine itself which, amongst FAT12, FAT16 or FAT32, is the best format according
to the size of the media device.:

Table 5-8 Multi-FS format example

 fd = mkfs(“Auto”, “1:FatFS”);

Abassi RTOS System Calls Layer 2018.02.23

Rev 1.6 Page 32

6 References
[R1] Abassi RTOS – User Guide, available at http://www.code-time.com
[R2] mAbassi RTOS – User Guide, available at http://www.code-time.com
[R3] µAbassi RTOS – User Guide, available at http://www.code-time.com
[R4] FatFS – FAT & exFAT file system, available at http://elm-chan.org/fsw/ff/00index_e.html
[R5] FullFAT – FAT file system, available at https://github.com/jameswalmsley/FullFAT
[R6] Ultra-Embedded FAT file system, available at http:// http://ultra-embedded.com/fat_filelib
[R7] Abassi RTOS – I2C Support, available at http://www.code-time.com
[R8] Abassi RTOS – UART Support, available at http://www.code-time.com

