
Copyright Information
This document is copyright Code Time Technologies Inc. ©2016-2018 All rights reserved. No part of this document may be
reproduced or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of
Code Time Technologies Inc.
Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

Abassi RTOS
UART Support

Disclaimer
Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the
document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in
the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 3

Table of Contents
1 INTRODUCTION .. 6

1.1 DISTRIBUTION CONTENTS .. 6
1.2 LIMITATIONS .. 6
1.3 FEATURES ... 6

2 TARGET SET-UP .. 8
2.1 BUILD OPTIONS .. 8

2.1.1 OS_PLATFORM ... 9
2.1.2 UART_MAX_DEVICES .. 9
2.1.3 UART_LIST_DEVICE... 9
2.1.4 UART_CLK ... 10
2.1.5 UART_CIRC_BUF_RX ... 10
2.1.6 UART_CIRC_BUF_TX ... 10
2.1.7 UART_SLEEP ... 10
2.1.8 UART_FULL_PROTECT ... 11
2.1.9 UART_FIFO_ROOM .. 11
2.1.10 UART_SINGLE_MUTEX .. 11
2.1.11 UART_SLEEP ... 11
2.1.12 UART_MULTIPLE_DRIVER ... 12
2.1.13 UART_ARG_CHECK ... 12
2.1.14 UART_TOUT .. 12

2.2 SET-UP .. 12
2.2.1 RTOS (Not used in ISRs) ... 12
2.2.2 RTOS (Used in ISRs) ... 13
2.2.3 Stand-Alone ... 13
2.2.4 Multiple Drivers .. 13

3 API .. 20
3.1.1 uart_filt ... 21
3.1.2 uart_init .. 23
3.1.3 uart_recv ... 26
3.1.4 uart_send... 27
3.1.5 UARTintHndl_n .. 28

4 EXAMPLES .. 29
4.1 INITIALIZATION ... 29
4.2 UART TRANSMISSION .. 29
4.3 UART RECEPTION .. 30

5 REFERENCES .. 31
6 REVISION HISTORY ... 32

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 4

List of Figures

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 5

List of Tables
TABLE 1-1 DISTRIBUTION ... 6
SECTION TABLE 2-1 BUILD OPTIONS .. 8
TABLE 2-2 BUILD OPTIONS (RTOS ONLY) ... 9
TABLE 2-3 BUILD OPTIONS .. 9
TABLE 2-4 BAPI REMAPPING ... 13
TABLE 2-5 MULTIPLE UART WRAPPER EXAMPLE (UART.C) ... 15
TABLE 2-6 MULTIPLE UART WRAPPER EXAMPLE (UART.H) ... 16
TABLE 2-7 STDIO REDIRECTION UART WRAPPER EXAMPLE (UART.C) .. 17
TABLE 2-8 STDIO REDIRECTION UART WRAPPER EXAMPLE (UART.C) .. 18
TABLE 4-1 INITIALIZATION ... 29
TABLE 4-2 UART TRANSMISSION .. 30
TABLE 4-3 UART RECEPTION .. 30
TABLE 4-4 UART RECEPTION (NO WAITING) ... 30

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 6

1 Introduction
This document describes the UART driver available for Abassi1 [R1] (including mAbassi [R2] and µAbassi
[R3]). The standalone use of the UART driver is also described in here.

The UART driver is a key module used by the System Calls Layer as it handles the stdio I/O; for more
information, refer to [R4].

1.1 Distribution Contents
The set of files supplied with this distribution are listed in Table 1-1 below:

Table 1-1 Distribution

File Name Description

???_uart.h Include file for the UART driver (??? is target dependent)

???_uart.c “C” file for the Abassi UART driver (??? is target
dependent)

???_uart_CMSIS.c “C” file for the CMSIS RTOS API UART driver (??? is
target dependent and only available with the CMSIS API)

SAL.h Include file for the standalone abstraction layer (supplied
with standalone package only)

SAL.c “C” file for the standalone abstraction layer (supplied with
standalone package only)

ISRhandler_???.s “ASM” add-on file for the standalone version only. It
contains support for both the driver and the demo
application.

1.2 Limitations
The standalone version of the driver does not use nor support interrupts, mailboxes, or semaphores. All
wait operations are performed using polling.

1.3 Features
The UART driver API is kept the same across all target platforms. Target specific extra functionality is not
described in this document; refer to the code itself and embedded comments.

The UART driver can operate using exchange mailboxes or not using them. For example, if the UART
device has large enough FIFOs, then it may be preferable to not use mailboxes. (Mailboxes are not
available for µAbassi or the standalone version.) When using mailboxes, the blocking of the driver occurs
when the transmit mailbox is full or the receive mailbox is empty. Mailboxes are filled (RX) and emptied
(TX) by the driver though an interrupt handler.

When not using mailboxes, the driver can be set to either perform pure polling (with optional periodic
sleep) or to block on a semaphore when no RX characters are available or when the TX FIFO is full.
Polling can configured to use circular buffers, where the circular buffers are filled / emptied in the ISR
handler therefore performing transfers in the “background”.

1 When Abassi is mentioned in this document, unless explicitly stated, it always means Abassi, mAbassi
and µAbassi.

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 7

NOTE: The UART driver is designed for use in a multi-task environment and, as such, relies on a
protection mechanism to provide exclusive access to the UART peripheral. If the UART driver is
not used with mutex protection, there is a slight possibility for a lock-up or erroneous character
exchange if two or more tasks concurrently use the driver. This restriction also includes the use
of the driver inside an interrupt. Refer to the build options UART_FULL_PROTECT (Section 2.1.8)
and UART_SINGLE_MUTEX (Section 2.1.10) for more information on the internal protection
capabilities offered by the driver.

This UART driver has been optimized to be usable under as many conditions as possible. For example,
here is a short list of where or when the UART driver can be used:

Ø Called within an interrupt

Ø Initialized and used before Abassi is even started

Ø Used with interrupts disabled

Ø Used with the Abassi logging feature

Basically, all possible operating conditions under which an application can operate using Abassi are
handled. Whenever possible, task blocking (through semaphores, mailboxes, etc.) is used, if requested to
wait, when waiting for room in the output UART / mailbox or awaiting the arrival of a new character /
mailbox. Any operating condition that would render the task blocking problematic, such as possibly
locking-up or crashing the application, will make the driver fall back to using pure polling. When
mailboxes are used, polling occurs only once a transmit mailbox is full or a receive mailbox is empty.
Using this fall back mechanism greatly increases the usability of the UART driver and makes it able to
operate under all conditions, plus it removes most usage restrictions from the user.

IMPORTANT: If the UART driver is using interrupts (either semaphores or mailboxes), then on a
multi-core platform it is strongly advisable to make sure the UART interrupt is targeted to
all cores. If only one core is the target to the UART interrupt, then a lock-up condition
could exist.

Also provided by the UART driver are input and output filtering. The filtering allows character
substitution or removal. For example, in “C” it is typical to only use the character ‘\n’ (New Line) as the
end of line. When this is sent as is on a terminal, a ‘\r’ (Carriage Return) is missing and the displayed
text is not as expected. The filter can be set-up upon initialization to replace all outgoing ‘\n’ with the
sequence ‘\r’ ’\n’. Equivalently, when entering text on a terminal, it is typical to use the ‘\r’ as the
end of line character. The filtering can be set to substitute all incoming ‘\r’ by ‘\n’ to make the input
text compatible with “C”.

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 8

2 Target Set-up
All there is to do to configure and enable the use of the UART driver in an application based on Abassi is
to include the following file in the build:

Ø ???_uart.c (For Abassi & standalone)

Ø ???_uart_CMSIS.c (For CMSIS RTOS API)

Ø SAL.c (For Standalone)

Ø ISRhandler_???.s (For Standalone)

and set-up the include search directory order making sure the file ???_uart.h is found (and SAL.h for
the standalone) and set-up build options as required.

If interrupts are used, one or multiple UART interrupt handlers (UARTintHndl_n(), Section 3.1.5) must
be attached to the interrupt controller. In Abassi this is simply done using the OSisrInstall()
component.

The UART driver may or may not, depending on the target platform, be independent from other include
files.

2.1 Build Options
There are a few build options that allow the UART driver to be configured for the requirements of the
target application. The following two tables list all of them (there is an alternate token naming, refer to
section 2.2.4) :

Section Table 2-1 Build Options

Token Name Default Description

OS_PLATFORM Target dependent Number indicating the target platform.
Refer to ???_uart.h to see the list of
supported platforms and the default one.

UART_MAX_DEVICES Target dependent Number of UART device(s) supported by
the target platform

UART_LIST_DEVICE Target dependent Bit field selecting the UART device(s) to
use. The default value is dependent on the
build option OS_PLATFORM

UART_CLK Target dependent Frequency of the UART module clock

UART_CIRC_BUF_RX 0 If using a circular buffer in the RX
direction, size of the buffer

UART_CIRC_BUF_TX 0 If using a circular buffer in the TX
direction, size of the buffer

UART_SLEEP 0 When using polling, sleep time when no
RX chars available or when the TX FIFO is
full.

UART_FULL_PROTECT 0 Boolean used to activate the UART driver
internal protection for exclusive device
access

UART_FIFO_ROOM 2500 Sets the FIFO threshold when interrupts are
used

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 9

UART_ARG_CHECK 1 Boolean to check ot not check the validity
of the function arguments

UART_TOUT -1 or 1s Timeout when using a blocking mechanism

Table 2-2 Build Options (RTOS only)

File Name Default Description

UART_SINGLE_MUTEX -1 Boolean controlling if a single mutex is
shared amongst all devices or if each
device has their own mutex

UART_SLEEP 0 Boolean controlling to use or not use sleep
(time blocking) when polling is used

UART_MULTIPLE_DRIVER 0 To use drivers for different UART types at
the same time.

2.1.1 OS_PLATFORM
The build option OS_PLATFROM informs the UART driver about the target platform it will operate on.
There are two benefits ensuing from the presence of this build option:

Ø The UART driver implicitly knows the total number of UART devices on the platform.

Ø The UART driver is able to configure and reset the UART devices without the application
intervention.

2.1.2 UART_MAX_DEVICES
The build option UART_MAX_DEVICES informs the UART driver of how many UART devices are on the
target platform. If this build option is not set, then the UART driver will rely on the build option
UART_LIST_DEVICE (Section 2.1.3). If the build option UART_LIST_DEVICE is also not set, then the
UART driver will rely on the OS_PLATFORM value (Section 2.1.1).

UART_MAX_DEVICES can exceptionally be set to a value of zero; this creates “do-nothing stub” functions
for uart_init() (Section 3.1.1), uart_recv() (Section 0), and uart_send() (Section 3.1.4). These
do-nothing functions always return 0, and having do-nothing stubs is useful with the System Call Layer
when none of the stdio (stdin, stdout, stderr) resources are used.

2.1.3 UART_LIST_DEVICE
The build option UART_LIST_DEVICE informs the UART driver about the UART devices that are used.
When the target platform has multiple UART devices, enabling only the devices used by the application
offers two benefits:

Ø Minimize the data memory required by the driver, as there is no need to reserve memory for the
queue descriptors / buffers or optional mutexes of unused devices.

Ø When a single UART device is used, the UART registers are accessed through direct memory
access, possibly making the driver more real-time efficient.

This build option is a bit field, where the bit position represents the UART device number. When the
corresponding bit is cleared (set to 0) it specifies the device is not used; when the corresponding bit is set to
1 then the device is used. The following table shows the valid combinations for a target platform with 2
UART devices:

Table 2-3 Build Options

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 10

UART_LIST_DEVICE UART #0 UART #1

1 In use Not used

2 Not used In use

3 In use In use

If the build option UART_LIST_DEVICE is not externally defined, the default value will be set according to
the build option UART_MAX_DEVICES (Section 2.1.2). If the build option UART_MAX_DEVICES is not set,
then UART_LIST_DEVICE will be set according to the build option OS_PLATFORM (Section 2.1.1) and will
make available all the UART devices on the target platform.

UART_LIST_DEVICE can exceptionally be set to a value of zero; this creates “do-nothing stub” functions
for uart_init() (Section 3.1.1), uart_recv() (Section 0), and uart_send() (Section 3.1.4). These
do-nothing functions always return 0, and having do-nothing stubs is useful with the System Call Layer
when none of the stdio (stdin, stdout, stderr) resources are used.

2.1.4 UART_CLK
This build option overrides the clock frequency the UART operates. The build option value is in Hz and
the default value is target platform dependent.

2.1.5 UART_CIRC_BUF_RX
When the build option UART_CIRC_BUF_RX is defined and set to a positive value (> 0), it specifies the
size of a circular buffer to be used in the RX directions. The circular buffer can only be used in blocking
mode: the interrupt handler fills the circular buffer when new characters are available. To use the circular
buffer, the argument RXsize of the function uart_init() (Section 3.1.1) must be set to a non-zero value
(the value itself is irrelevant). By defining and setting UART_CIRC_BUF_RX to a positive value (> 0), it
overloads the use of mailboxes (RXsize > 0) or it overloads the per character transfers with blocking on
semaphore (RXsize < 0).

It is detrimental to use RXsize == 0 when UART_CIRC_BUF_RX defined and set to a positive value (> 0),
as the UART driver operates in the polling mode. There will be memory allocated for the circular buffer
although that memory will never be used.

2.1.6 UART_CIRC_BUF_TX
When the build option UART_CIRC_BUF_TX is defined and set to a positive value (> 0), it specifies the
size of a circular buffer to be used in the TX directions. The circular buffer can only be used in blocking
mode: the back ground fills the circular buffer and the interrupt handler retrieve characters from it when
there is room in the UART device. To use the circular buffer, the argument TXsize of the function
uart_init() (Section 3.1.1) must be set to a non-zero value (the value itself is irrelevant). By defining
and setting UART_CIRC_BUF_TX to a positive value (> 0), it overloads the use of mailboxes (TXsize >
0) or it overloads the per character transfers with blocking on semaphore (TXsize < 0).

It is detrimental to use TXsize == 0 when UART_CIRC_BUF_TX defined and set to a positive value (> 0),
as the UART driver operates in the polling mode. There will be memory allocated for the circular buffer
although that memory will never be used.

2.1.7 UART_SLEEP
This build option is supported in both the standalone and the RTOS version but is only useful in an RTOS
based application. When using polling, if there are no characters available in the RX FIFO or if the TX
FIFO is full, it is possible to put the calling task to sleep with the use of the UART_SLEEP build option.
When UART_SLEEP is set to a positive value (> 0), it specifies the number of timer tick to put the task to
sleep. UART_SLEEP is ignored if the RTOS is not configured to use a timer (OS_TIMER_US) [R1] or if
timeouts are set to infinity (OS_TIMEOUT <= 0) [R1].

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 11

2.1.8 UART_FULL_PROTECT
The build option UART_FULL_PROTECT allows the activation of an RTOS independent mechanism for
exclusive access protection of the UART device(s). Setting the build option UART_FULL_PROTECT to a
non-zero value will configure the driver to use its RTOS independent internal protection; setting it to a zero
value will not enable the internal protection. One must be aware this protection mechanism relies on
interrupts disabling / restore plus spinlocks when in a multi-core environment. As such, it is possible the
interrupts could be disabled for a fair amount of time. Refer to Section 2.2 for more information.

If full protection is enabled (UART_FULL_PROTECT != 0), then the build option UART_SINGLE_MUTEX
(Section 2.1.10) is ignored and the UART does not use mutexes.

2.1.9 UART_FIFO_ROOM
This build option only applies to a limited number of UART drivers. The value specified by
UART_FIFO_ROOM indicates the FIFO threshold in µs when the UART generates an interrupt. This is when
the RX FIFO has reached the point where it has just enough room left to received UART_FIFO_ROOM µs of
character duration, or when the TX FIFO is left with less than UART_FIFO_ROOM µs of character duration
to transmit. Time units are used instead of the number of characters, as the goal is to set the FIFO
thresholds according to the worst-case response to a UART interrupt in the target application. There are
many factors that influence the UART response time, but this is outside the scope of this document.

By default, UART_FIFO_ROOM is set to 2500, which is for a 2.5 ms maximum interrupt response time. The
duration of a UART character takes into account all bits for the programmed Baud rate and protocol: the
start bit, the number of character bits, the parity bit if used, and the number of stop bits. Depending on the
size of the RX FIFO and the calculated character duration, it could be possible that the resulting threshold
does not match the requested time, because a safety margin is used.

2.1.10 UART_SINGLE_MUTEX
In an RTOS environment (either Abassi or with the CMSIS RTOS API), the driver can provide exclusive
access protection to the UART device(s) through its internal mutex(es). There are two methods available to
provide the mutex based exclusive access to the UART device(s):

Ø Using a single mutex shared amongst all devices

Ø Using one mutex per device

Setting the build option UART_SINGLE_MUTEX to a positive value will configure the driver to use a single
mutex, shared amongst all the UART devices. Setting it to a zero value will assign to each UART device
its own mutex. Setting it to a negative value (default value) will not activate the internal use of mutexes by
the driver. Refer to Section 2.2 for more information.

2.1.11 UART_SLEEP
The build option UART_SLEEP, which is only available in an RTOS environment (either Abassi or the
CMSIS RTOS API), is used to enable or not enable the task sleep when the driver is configured to perform
polling during the device initialization. Depending on the Baud rate and if the UART device has a FIFO,
and also depending of that FIFO size, one must make sure the minimum granularity of sleep time (this is
set by the RTOS timer tick period) is not too short for proper operation. Take for example a
communication with a Baud rate at 115200 and a UART device with 64 character FIFOs. The FIFOs can
be filled/emptied in about 5.5ms. If the RTOS timer tick is set to 10ms, or even 5ms, it simply results in the
problem where there is not enough time resolution to guarantee the exact duration of the task sleep.

Setting the build option UART_SLEEP to a non-zero value will configure the driver to put the task into sleep
when any modules are configured for polling. Setting it to a zero value (default value) will not put tasks to
sleep. This build option is global therefore it is not possible to set one device to use sleep and another to
not use sleep.

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 12

2.1.12 UART_MULTIPLE_DRIVER
See section 2.2.4.

2.1.13 UART_ARG_CHECK
The build option UART_ARG_CHECK configures the UART driver on how it handles the API function
arguments. If the build option is set to a non-zero value (default setting) the function arguments are
validated with error report upon invalidity. If the build option is set to a value of zero, none of the function
arguments are validated.

2.1.14 UART_TOUT
When the UART driver is set-up to use interrupts upon initialization (uart_init()), either mailboxes or
binary semaphores are used as the blocking mechanism. By default, UART_TOUT is set to 1 second
(OS_TICK_PER_SEC [R1]) meaning the mailboxes or binary semaphores block with a timeout of 1 s. This
is a safety mechanism that guarantees the UART driver will never lock-up an application upon issues with
interrupts. The timeout duration (argument to the service call) is set by the value assigned to the build
option UART_TOUT.

2.2 Set-up
The UART driver can operate under most contexts in an application (Section 1.3). But to properly operate,
there are some basic requirements unique to each situation. The following sub-sections describe the basic
required set-up.

2.2.1 RTOS (Not used in ISRs)
The exclusive access protection with mutexes is all there is to consider when using the UART driver in a
multi-tasking environment when it is not used in an interrupt handler. If a single task uses the UART
driver, then no exclusive access protection is required. When used across multiple tasks, the best exclusive
access protection choice is to rely on an I/O library that internally uses mutexes to control the accesses of
the standard I/O devices. That is only if the library uses the same mutex on the input and the output. When
this is not the case, or when the library does not use mutexes, then the build option UART_SINGLE_MUTEX
should be set to non-negative value. Setting it to zero will make the UART driver use a single mutex per
devices. When set to a positive value, the UART driver uses a single mutex for all UART devices.

It is always possible to not use a mutex for the exclusive access protection mechanism by setting the build
option UART_FULL_PROTECT (Section 2.1.8) to a non-zero value. Doing so involves the use of interrupt
disabling / restore (plus spinlocks in a multi-core platform). Using mutexes is preferable as the choice for
the protection mechanism implemented because using the interrupt disable / restore does intrinsically
impact the real-time response of the application.

In the Abassi RTOS environment, the UART driver does automatically fall back to a non-blocking mode
when it is called with any of these conditions true:

Ø Called before the OSstart() was done

Ø Called from within the kernel

Ø Called with the interrupts disabled

Ø Called within an interrupt handler

Falling back to a non-blocking mode means that if the driver is set to use semaphores, the semaphore is not
used and the driver performs polling. If the driver is set to use mailboxes, then mailboxes are still used but
without blocking with a periodic manual operation of the UART mailbox interrupt to get the mailbox
properly used by the UART device. Please be aware that when the UART driver is initialized before
OSstart() is done, the driver operates in polling only. When this is the set-up, if semaphores or
mailboxes operation are desired, a re-initialization of the driver is required (Section 3.1.1).

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 13

2.2.2 RTOS (Used in ISRs)
When the UART driver is used inside the interrupt handler(s) of an application built on an RTOS, then it
becomes impossible to fully rely on mutexes for the exclusive access protection of the UART device, as
mutexes (locking mutex could block a task) should never be used in interrupts. Therefore, only the basic
interrupt disable / restore (plus spinlocks in a multi-core platform) can be relied on to provide exclusive
accesses protection to the UART device. This interrupt disabling / restore + spinlocks must use the
mechanism provided by the UART driver by setting the build option UART_FULL_PROTECT (Section 2.1.8)
to a non-zero value, as it deals with all cases of access to the UART device. When the build option
UART_FULL_PROTECT is set to a non-zero value, the build option UART_SINGLE_MUTEX is internally
forced to a negative value, meaning to not associate internal mutexes with the UART driver.

Another requirement when using the UART driver in an interrupt handler is to always request a
non-waiting sending/receiving by setting argument Len in uart_send (Section 3.1.4) and uart_recv
(Section 0) to a negative value. If the UART driver is not called with the indication to not wait, the driver
will ignore the request to wait and internally fall back to a no-wait condition when it is used within an
interrupt handler.

2.2.3 Stand-Alone
When the UART driver is used in a stand-alone application, mutexes are not available, therefore the build
option UART_SINGLE_MUTEX must be set to a negative value to inform the UART driver to not rely on
mutexes. If the UART driver is not used in the interrupt handlers, then the build option
UART_FULL_PROTECT (Section 2.1.8) can be left to its default value of zero, meaning no interrupt disable /
restore protection. If the UART driver is used in both the background and the interrupts handlers, then the
build option UART_FULL_PROTECT should be set to a non-zero value.

2.2.4 Multiple Drivers
It is possible to use 2 or more drivers for different UARTs. Example of the need for this is a processor with
on-chip UART(s) on a board with different type of UART(s), or a SocFPGA with added UART(s) in the
FPGA fabrics that are of different type than the processor system UART(s). To use multiple drivers the
build option UART_MULTIPLE_DRIVER must be defined and set to a non-zero value. This changes the API
names of the driver by pre-pending the UART type to the function names. For example, if dw_uart.c is
used, the APIs are named as following:

Table 2-4 BAPI remapping

The prefix is always the prefix in the file name; e.g. dw_uart.c prefix is dw and cd_uart.c is cd.

All build options if not prefixed apply to all the drivers. To set build options on a per-driver basic al there
is to do is used the build option that has been pre-fixed with the same prefix used in the API but in
uppercase. For example to set each of the multiple drivers to support 3 devices each, the build option
UART_MAX_DEVICES should defined and set to 3. If the dw_uart and the ns16550_uart drivers are use
together and, as for the example below, there are 2 devices for the dw and 3 for the ns16550, then
DW_UART_MAX_DEVICES should defined and set to 2 and NS16550_UART_MAX_DEVICES should defined
and set to 3.

Original Multiple

uart_filt() dw_uart_filt()

uart_init() dw_uart_init()

uart_recv() dw_uart_recv()

uart_send() dw_uart_send()

UARTintHndl_#() dw_UARTintHndl_#()

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 14

A custom wrapper must be provided. The following code shows such a driver for the dw_uart (2 UARTs
accessed as device #0 and #4) and the ns16550_uart (3 UARTs accessed as devicde #2, #3, and #4):

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 15

Table 2-5 Multiple UART wrapper example (uart.c)

#include "uart.h"

/* --- */

int uart_filt(int Dev, int Enable, int Filter)
{
int RetVal;

 RetVal = (Dev < 2)
 ? dw_uart_filt(Dev, Enable, Filter)
 : ns16550_uart_filt(Dev-2, Enable, Filter);

 return(RetVal);
}

/* --- */

int uart_init(int Dev, int Baud, int Nbits, int Parity, int Stop, int RXsize,
 int TXsize,int Filter)
{
int RetVal;

 RetVal = (Dev < 2)
 ? dw_uart_init(Dev, Baud, Nbits, Parity, Stop, RXsize, TXsize, Filter)
 : ns16550_uart_init(Dev-2, Baud, Nbits, Parity, Stop, RXsize, TXsize, Filter);

 return(RetVal);
}

/* --- */

int uart_recv(int Dev, char *Buff, int Len)
{
int RetVal;

 RetVal = (Dev < 2)
 ? dw_uart_recv(Dev, Buff, Len)
 : ns16550_uart_recv(Dev-2, Buff, Len);

 return(RetVal);
}

/* --- */

int uart_send(int Dev, const char *Buff, int Len)
{
int RetVal;

 RetVal = (Dev < 2)
 ? dw_uart_send(Dev, Buff, Len)
 : ns16550_uart_send(Dev-2, Buff, Len);

 return(RetVal);
}

/* --- */

void UARTintHndl_0(void) { dw_UARTintHndl_0(); }
void UARTintHndl_1(void) { dw_UARTintHndl_1(); }
void UARTintHndl_2(void) { ns16550_UARTintHndl_0(); }
void UARTintHndl_3(void) { ns16550_UARTintHndl_1(); }
void UARTintHndl_4(void) { ns16550_UARTintHndl_2(); }

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 16

/* EOF */

Table 2-6 Multiple UART wrapper example (uart.h)

#ifndef __UART_H__
#define __UART_H__ 1

#include "dw_uart.h" /* DW UART driver */
#include "ns16550_uart.h" /* NS16550 UART driver */

#ifndef UART_MULTI_DRIVER /* It must be defined and set to !=0 */
 #define UART_MULTI_DRIVER 0 /* Set 0 to trigger the error message */
#endif

#if ((UART_MULTI_DRIVER) == 0)
 #error "UART_MULTI_DRIVER must be defined and set to a non-zero value"
#endif

#define UART_MAX_DEVICES ((DW_DW_UART_MAX_DEVICES)+(NS16550_DW_UART_MAX_DEVICES))
#define UART_LIST_DEVICE ((DW_UART_LIST_DEVICE)|((NS16550_UART_LIST_DEVICE)<<2))

/* --- */

int uart_filt(int Dev, int Enable, int Filter);
int uart_init(int Dev, int Baud, int Nbits, int Parity, int Stop, int RXsize,
 int TXsize,int Filter);
int uart_recv(int Dev, char *Buff, int Len);
int uart_send(int Dev, const char *Buff, int Len);

/* --- */

extern void UARTintHndl_0(void);
extern void UARTintHndl_1(void);
extern void UARTintHndl_2(void);
extern void UARTintHndl_3(void);
extern void UARTintHndl_4(void);

#endif

/* EOF */

Enabling the multiple drivers can also be used to redirect any of the 3 stdio when the System Call layer
[R4] is used. The way to do this is to “play” with the UART device number assigned to stdin, stdout,
and stderr (respectively G_UartDevIn, G_UartDevOut, and G_UartDevErr). The UART device
number is the information used by the wrapper to determine if the physical device to access is an UART or
an other type of device. Any device number with a value of less than UART_MAX_DEVICES is for sure an
UART device; all other values indicate another device type. If the other device is accessible through the
System Call layer, then everything \become easy as all there is to do is to call write() or read() with the
proper file descriptor value. The next 2 tables show the require operations.

If the other device is not accessible through the System Call layer, the implementation should be very close
to the example provided.

NOTE: The filter enabled in the UART assigned to the stdio devices are not active when a redirected
device is not an UART: the filters are always specific the UART device they have been set-up.

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 17

Table 2-7 stdio redirection UART wrapper example (uart.c)

#include “SysCall.h”

extern int G_UartDevOut;

…

 UartOut = G_UartDevOut; /* Memo original UART device number */
 /* Open the file and redirection */
 fd = open(“Log.txt”, O_CREATE | O_RDWR, 0666);
 if (fd >= 0) {
 G_UartDevOut = UART_MAX_DEVICES+fd;
 }
 else {
 … error …
 }

…
 /* Close the file and original stdout */
 G_UartDevOut = UartOut;
 close(fd);

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 18

Table 2-8 stdio redirection UART wrapper example (uart.c)

#include "uart.h"
#include “SysCall.h”

/* --- */

int uart_filt(int Dev, int Enable, int Filter)
{
int RetVal = 0;

 if (Dev < UART_MAX_DEVICES) {
 RetVal = dw_uart_filt(Dev, Enable, Filter);
 }

 return(RetVal);
}

/* --- */

int uart_init(int Dev, int Baud, int Nbits, int Parity, int Stop, int RXsize,
 int TXsize,int Filter)
{
int RetVal = 0;

 if (Dev < UART_MAX_DEVICES) {
 RetVal = dw_uart_init(Dev, Baud, Nbits, Parity, Stop, RXsize, TXsize, Filter);
 }

 return(RetVal);
}

/* --- */

int uart_recv(int Dev, char *Buff, int Len)
{
int RetVal;

 if (Dev < UART_MAX_DEVICES) {
 RetVal = dw_uart_recv(Dev, Buff, Len);
 }
 else {
 RetVal = read(Dev-UART_MAX_DEVICES, Buff, Len);
 }

 return(RetVal);
}

/* --- */

int uart_send(int Dev, const char *Buff, int Len)
{
int RetVal;

 if (Dev < UART_MAX_DEVICES) {
 RetVal = dw_uart_send(Dev, Buff, Len);
 }
 else {
 RetVal = write(Dev-UART_MAX_DEVICES, Buff, Len);
 }

 return(RetVal);
}

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 19

/* --- */

void UARTintHndl_0(void) { dw_UARTintHndl_0(); }
void UARTintHndl_1(void) { dw_UARTintHndl_1(); }
void UARTintHndl_2(void) { dw_UARTintHndl_2(); }
void UARTintHndl_3(void) { dw_UARTintHndl_3(); }

/* EOF */

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 20

3 API
In this section, the API of all common UART driver functions is provided. The next section gives
examples on how to use the UART

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 21

3.1.1 uart_filt

Synopsis
#include “???_uart.h”

int uart_filt(int Dev, int Enable, int Filter);

Description

uart_filt() is a component to use for changing the filter setting (the setting that was don’t
during initialization with uart_init()). The UART controller to use is indicated by the
argument Dev, if the filtering indicated by the argument Filter is to be enable, then the
argument Enable must be set to a non-zero value and if the filtering is to be disable, then
Enable must be set to 0.

Arguments

Dev Device’s controller number (Number starting at 0)
Enable If enabling or disabling the filtering operation indicated in the argument

Filter:
== 0 : disable

 != 0 : : enable
Filter Handling of \r, \n and \b (Is a set of bits OR any of the control masks). On

some platform it can also be used to enable flow control with RTS/CTS &
DTR/DSR etc.
== 0 : do nothing and return the current filter setting; i.e. the binary OR of all
filter masks that have been enable.

 See the defines of input and output character filter control masks in
???_uart.h

Returns

int == -1 : error

!= -1 : original setting of the filter option(s) indicated by Filter.
It is not all the current filtering options but only the one that were
specified by Filter.

Component type

Function

Options

Notes

For example to disable the echoing of RX to TX (for password entry for example):
 Original = uart_filt(0, 0, UART_ECHO);
 if (Original != -1) {
 … read the password
 uart_filt(0, 1, Original);
 }

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 22

Because the return value (when there is no error) is the original filter setting of
UART_ECHO, the re-ebaling can be done without checking if UART_ECHO was originaly
enable or not. If it was originally enabled, then the return value held in Original is
UART_ECHO. If it wasn’t enabled, the return value held in Original is 0, indicating no
options to be enabled.

See Also

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 23

3.1.2 uart_init

Synopsis
#include “???_uart.h”

int uart_init(int Dev, int Baud, int Nbits, int Parity, int Stop,
 int RXsize, int TXsize, int Filter);

Description

uart_init() is the component used to initialize one UART device. The device’s controller
number is indicated by the argument Dev. The Baud rate is specified by the argument Baud,
the number of bits per character by the argument Nbits, if parity is used, and what parity, by
the argument Parity, and the number of stop bits with the argument Stop. The use of
mailboxes, polling or semaphore blocking, is enabled and its size through the arguments
RXsize and TXsize. The filtering and echoing are configured with the argument Filter.

Arguments

Dev Device’s controller number (Number starting at 0)
Baud Baud rate of the serial link. The value specified is the baud rate as is. For

example, if a baud rate of 115200 is required, the argument Baud is simply set
to the numerical value of 115200

Nbits Number of bits per character. The range is target dependent and if a value out
of range is specified, no error is reported and the resulting number of characters
is target dependent

Parity Parity bit
== 0 : no parity bit

 > 0 : even parity
 < 0 : odd parity
Stop Number of stop bits

== 5 : 0.5 stop bit
== 10 : 1 stop bit
== 15 : 1.5 stop bit
== 20 : 2 stop bit

RXsize If using a mailbox in the receive direction and if so the size of the mailbox
< 0 : with UART_CIRC_BUF_RX <= 0 (or undefined)

blocking on a semaphore (requires the ISR handler)
with UART_CIRC_BUF_RX > 0

Circular buffer with blocking (requires the ISR handler)
== 0 : polling, not using mailboxes (ISR handler is not used)
> 0 : with UART_CIRC_BUF_RX <= 0 (or undefined)

mailboxes set to a size of RXsize (requires the ISR handler)
with UART_CIRC_BUF_RX > 0

Circular buffer with blocking (requires the ISR handler)
TXsize If using a mailbox in the transmit direction and if so the size of the mailbox

< 0 : with UART_CIRC_BUF_TX <= 0 (or undefined)
blocking on a semaphore (requires the ISR handler)

with UART_CIRC_BUF_TX > 0
Circular buffer with blocking (requires the ISR handler)

== 0 : polling, not using mailboxes (ISR handler is not used)
> 0 : with UART_CIRC_BUF_TX <= 0 (or undefined)

mailboxes set to a size of TXsize (requires the ISR handler)
with UART_CIRC_BUF_TX > 0

Circular buffer with blocking (requires the ISR handler)

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 24

Filter Handling of \r, \n and \b (Is a set of bits OR any of the control masks). On
some platform it can also be used to enable flow control with RTS/CTS &
DTR/DSR etc.
== 0 : do nothing

 See the defines of input and output character filter control masks in
???_uart.h

Returns

int == 0 : success
 != 0 : error

Component type

Function

Options

Notes

As previously stated, it is possible to initialize and use the UART driver before Abassi is
started. Doing so means it is possible to re-initialize the UART driver after Abassi is started
in order to use mailboxes and other services.

The UART driver can operate with three different mechanisms, and a direction can use a
different mechanism from the other one:

Ø Using polling with short sleep time when no characters are available
Ø Using a mailbox, which will block when the mailbox is empty
Ø Using a semaphore to block when no characters are available

The polling mechanism is selected by setting the argument RXsize and/or TXsize to zero
when using uart_init(). When using polling, the UART driver does not rely on the
UART ISRs or the UART ISR handler. Instead, it simply checks continuously to see if a
character is available from the UART. When no characters are available, then, if possible, it
will go into sleep for a short time and then check again. If the build option
UART_CIRC_BUF_RX and/or UART_CIRC_BUF_TX are set to a positive value, then the polling
mechanism uses a circular buffer. Although circular buffers can be used with and without
interrupts, their use without interrupts provides no advantage.

The semaphore blocking mechanism is selected by setting the RXsize and/or TXsize to a
negative value when using uart_init(). When using the semaphore blocking, the UART
driver does rely on the UART ISRs and the UART ISR handler. In the receive direction,
when there are no characters available from the UART, the driver will block, if possible, on
the receive semaphore. If it is not possible to block, it falls back to pure polling. In the
transmit direction, when there is no room left in the output FIFO, the driver will block, if
possible, on the transmit semaphore. If it is not possible to block, it falls back to pure
polling. The semaphore gets posted in the interrupt handler when the blocking condition is
over. Compared to the polling mechanism, the use of the semaphore keeps the driver
blocked until a new character is available or there is room in the transmit direction, while the
polling keeps awakening the driver to check if a new character is available.

The mailbox mechanism is selected by setting the RXsize or TXsize to a positive when
using uart_init().

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 25

IMPORTANT:

 When the mailboxes are used, it is critical to take into consideration the size of the interrupt
queue (set by Abassi’s build option OS_MAX_PEND_RQST) when dimensioning the UART
mailbox queues. The transfer of the characters between the mailboxes and the UART are
mostly done inside an interrupt handler. As such, each character exchanged results in a
request that is inserted in Abassi’s ISR queue. Therefore if the total size of the mailboxes
(RX & TX) of all the UARTs devices used exceeds the size of Abassi’s ISR queue, there is a
risk of overflowing the ISR queue. This means for sure loss of characters and if the out-of-
memory detection is enable (Abassi’s build option OS_OUT_OF_MEM), then the application
will freeze (due to the detection of the ISR queue overflow).

See Also

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 26

3.1.3 uart_recv

Synopsis
#include “???_uart.h”

int uart_recv(int Dev, char *Buff, int Len);

Description

uart_recv() is the component used to read the characters received by the UART. The
UART controller to use is indicated by the argument Dev, and the buffer to deposit the
received characters into is specified by Buff. The number of bytes to read from the UART is
specified by the argument Len. With the argument Len, it is possible to specify if the driver
should wait for all the characters indicated or to quit when there are no more characters
presently available.

Arguments

Dev Device number (Number starting at 0)
Buff Buffer that will hold the data read from the UART. This buffer must be sized to

at least Len bytes
Len Number of character to read from the UART. If the value of Len is negative,

then it indicates to the driver to read up to –Len characters and quit when either
–Len have been read or there are no more characters presently available.

Returns

int Number of characters read and held in Buff. The reported number may be
different than the number of characters received by the UART due to the
filtering.

Component type

Function

Options

Notes

See Also
uart_send()

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 27

3.1.4 uart_send

Synopsis
#include “???_uart.h”

int uart_send(int Dev, const char *Buff, int Len);

Description

uart_send() is the component used to send characters to the UART. The UART controller
to use is indicated by the argument Dev, and the buffer holding the characters to send is
specified by Buff. The number of bytes to send to the UART is specified by the argument
Len. With the argument Len, it is possible to specify if the driver should wait for room in the
UART (or UART FIFO) or to quit when there is no room presently available.

Arguments

Dev Device number (Number starting at 0)
Buff Buffer that holds the data to send to the UART
len Number of characters to send to the UART. If the value of Len is negative,

then it indicates to the driver to send up to –Len characters and quit when either
–Len have been sent or there is no more room in the UART to accept more
characters.

Returns

int Number of characters sent to the UART. The reported number may be different
than the number of characters physically sent by the UART due to the filtering.

Component type

Function

Options

Notes

See Also
uart_recv()

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 28

3.1.5 UARTintHndl_n

Synopsis
#include “???_uart.h”

void UARTintHndl_n(void);

Description

UARTintHndl_n() is the interrupt handler for the UART driver (not used by the standalone
version). The n in the name is a numerical value that specifies the device number the
interrupt handler is for.

Arguments
void

Returns
void

Component type

Function

Options

Notes

The interrupt handler should always be attached to the targeted UART device interrupt and
the number of the interrupt handler MUST match the device number. If there is a mismatch,
then the application will most likely crash. If the interrupt handler is not attached and the
related interrupt enabled, the UART driver for this device will not operate at all (not
applicable for the standalone version).

See Also

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 29

4 Examples

4.1 Initialization
The first step required when using the UART driver is to initialize the device controller to be used. The
second step required (not applicable with the standalone version) is to attach the interrupt handler for the
UART device and enable these interrupts. The following example is typical of how the UART should be
configured when using the GCC library. It shows the initialization of controller #1 with the following
characteristics:

- Baud rate of 115200

- 8 Data bits

- No parity

- 1 Stop bit (argument set to 10)

- Mailbox of 32 entries in the receive direction

- Mailbox of 128 entries in the transmit direction

- The filtering performs the following:

o Replace all outgoing LF with the sequence CR and LF

o Replace all incoming CR with LF

o Echo to the output all received characters

o Expand input BS (replace) with BS, WhiteSpace, BS

Table 4-1 Initialization

 uart_init(1, 115200, 8, 0, 10, 32, 128, UART_FILT_OUT_LF_CRLF
 | UART_FILT_IN_CR_LF
 | UART_ECHO
 | UART_ECHO_BS_EXPAND);

 OSisrInstall(UART_INT1, &UARTintHndl_1);
 GICenable(UART_INT1, 128, 1);

The interrupt handler can only be used (and MUST be used) with Abassi and the CMSIS API. With the
standalone version, do NOT attach/use the interrupt handler or enable the related interrupt.

4.2 UART transmission
The following example is simply the GCC library _write_r() (or _write() in some libraries) function
used for all I/O writing. It calls directly uart_send() with device #1 (same device as shown in the
initialization example). It passes the buffer and length information directly to uart_send(). As the
buffer length is positive, the driver will send all the characters supplied, even if it has to wait for room in
the UART (or UART FIFO).

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 30

Table 4-2 UART transmission

_ssize_t _write_r (struct _reent *rreenn, int fd, const void *vbuf, size_t len)
{
 if ((fd == 1) || (fd == 2)) /* Make sure it is stdout or stderr */
 return(uart_send(1, (const char *)vbuf, (int)len));
 }
 else { /* Is a file writing */
 …
 }
 return(0)
}

4.3 UART reception
The following example is simply the GCC library _read_r() function that is used for all I/O reading. It
uses directly uart_recv() with device #1 (same device as shown in the initialization example). It passes
the buffer and number of characters to read directly to uart_recv(). As the buffer length is positive, the
driver will read all the requested characters, even if it has to wait for new characters to become available
from the UART (or UART FIFO).

Table 4-3 UART reception

_ssize_t _read_r(struct _reent *rreenn, int fd, void *vbuf, size_t size)
{
 if (fd == 0) /* Make sure it is stdin */
 return(uart_recv(0, (char *)vbuf, (int)size));
 }
 else { /* Is a file reading */
 …
 }
 return(0)
}
 …

The following example shows an implementation of the non-standard but omni-present getkey() function
that is used to report if a character is available and what it is. It uses directly uart_recv() with device #1
(same device as shown in the initialization example). It passes the pointer to a single character and requests
to read a length of -1, meaning to return any character currently available or nothing if none is available.
The information if a character is available is reported through the return value of uart_recv().

Table 4-4 UART reception (no waiting)

int getkey(void)
{
char ccc;

 ccc = (char)0;
 uart_recv(1, &ccc, -1);

 return((int)ccc);
}

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 31

5 References
[R1] Abassi RTOS – User Guide, available at http://www.code-time.com
[R2] mAbassi RTOS – User Guide, available at http://www.code-time.com
[R3] µAbassi RTOS – User Guide, available at http://www.code-time.com
[R4] Abassi RTOS – System Calls Layer, available at http://www.code-time.com

Abassi RTOS UART Support 2018.11.21

Rev 1.13 Page 32

6 Revision History
Date Version Author/Editor Description

2016.04.06 1.1 EV First Draft

2016.04.06 1.2 AP Review changes

2016.04.11 1.3 EV Added semaphore blocking

2016.04.27 1.4 EV Updated for final implementation

2016.04.27 1.5 AP Review changes

2016.06.19 1.6 EV UART_FIFO_ROOM and some other little things

2016.06.19 1.7 AP Review changes

2017.08.25 1.8 EV Lots of build options added

2018.02.22 1.9 EV Multiple drivers at the same time

2018.07.18 1.10 EV I/O redirection and uart_filt() with filter == 0

2018.08.28 1.11 EV Small changes

2018.08.29 1.12 EV Circular buffer explanations were wrong

2018.11.20 1.13 EV UART_CLK instead of UART_CLOCK + Alternate Token
naming

