

Copyright Information
This document is copyright Code Time Technologies Inc. ©2011-2019. All rights reserved. No part of this document may be
reproduced or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of
Code Time Technologies Inc.
Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

Abassi RTOS
User’s Guide

Disclaimer

Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either
expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose.

Code Time Technologies Inc. does not warrant that the contents of this document will meet your
requirements or that the document is error-free. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the document. Code Time Technologies Inc. may
make improvements and/or changes in the product(s) and/or program(s) described in the document at any
time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make
generally available the product(s) described herein.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 3

Table of Contents
1 INTRODUCTION .. 13

1.1 GLOSSARY .. 13
2 FEATURES ... 14

2.1 LIMITATIONS .. 16
3 OVERVIEW .. 17

3.1 DESIGN CHOICES ... 17
3.1.1 Portability ... 17
3.1.2 Feature set .. 17
3.1.3 Scalability ... 18
3.1.4 Code Size ... 18
3.1.5 Data Size ... 18
3.1.6 Interrupts not disabled .. 19

3.2 SERVICES .. 19
3.2.1 Tasks ... 19
3.2.2 Semaphores ... 20
3.2.3 Mutexes ... 21
3.2.4 Event Flags ... 21
3.2.5 Mailboxes .. 21
3.2.6 Timer ... 22
3.2.7 Memory Block Management ... 22
3.2.8 Interrupts Handlers ... 22

3.3 CONSTRAINTS AND DON’TS .. 22
3.3.1 Idle Task .. 23
3.3.2 Interrupts... 23
3.3.3 Task Suspension .. 25
3.3.4 Single Task per Priority .. 25

3.4 DISTRIBUTION CONTENTS .. 27
3.5 C++ .. 27

4 CONFIGURATION .. 28
4.1 BUILD OPTIONS .. 28

4.1.1 OS_ALLOC_SIZE ... 28
4.1.2 OS_DEF_IN_MAKE ... 29
4.1.3 OS_CHECK_DESC .. 29
4.1.4 OS_COOPERATIVE ... 29
4.1.5 OS_EVENTS ... 29
4.1.6 OS_FCFS .. 29
4.1.7 OS_GROUP .. 30
4.1.8 OS_GRP_XTRA_FIELD ... 30
4.1.9 OS_HASH_ALL .. 30
4.1.10 OS_HASH_MBLK ... 30
4.1.11 OS_HASH_MBX ... 31
4.1.12 OS_HASH_MUTEX .. 31
4.1.13 OS_HASH_SEMA ... 31
4.1.14 OS_HASH_TASK .. 31
4.1.15 OS_HASH_TIMSRV .. 31
4.1.16 OS_IDLE_STACK ... 31
4.1.17 OS_LOGGING_TYPE .. 31
4.1.18 OS_MAILBOX ... 32
4.1.19 OS_MBX_XTRA_FIELD ... 32
4.1.20 OS_MBLK_XTRA_FIELD .. 32

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 4

4.1.21 OS_MAX_PEND_RQST ... 32
4.1.22 OS_MBXPUT_ISR .. 33
4.1.23 OS_MEM_BLOCK .. 33
4.1.24 OS_MIN_STACK_USE ... 33
4.1.25 OS_MTX_DEADLOCK .. 33
4.1.26 OS_MTX_INVERSION ... 34
4.1.27 OS_MTX_OWN_UNLOCK ... 34
4.1.28 OS_NAMES ... 34
4.1.29 OS_NESTED_INTS ... 35
4.1.30 OS_OUT_OF_MEMORY .. 35
4.1.31 OS_PERF_MON ... 35
4.1.32 OS_PRE_CONTEXT ... 36
4.1.33 OS_PRIO_CHANGE ... 36
4.1.34 OS_PRIO_MIN ... 36
4.1.35 OS_PRIO_SAME .. 36
4.1.36 OS_ROUND_ROBIN .. 36
4.1.37 OS_RUNTIME .. 37
4.1.38 OS_SEARCH_ALGO .. 37

4.1.38.1 OS_SEARCH_ALGO == 0 ... 37
4.1.38.2 OS_SEARCH_ALGO == 1 ... 37
4.1.38.3 OS_SEARCH_ALGO > 1 ... 38
4.1.38.4 OS_SEARCH_ALGO < 0 ... 38

4.1.39 OS_SEM_XTRA_FIELD ... 38
4.1.40 OS_STACK_CHECK .. 38
4.1.41 OS_STARVE_PRIO ... 39
4.1.42 OS_STARVE_RUN_MAX ... 39
4.1.43 OS_STARVE_WAIT_MAX .. 39
4.1.44 OS_STATIC_BUF_MBLK .. 40
4.1.45 OS_STATIC_BUF_MBX ... 40
4.1.46 OS_STATIC_MBLK .. 40
4.1.47 OS_STATIC_MBX... 41
4.1.48 OS_STATIC_NAME .. 41
4.1.49 OS_STATIC_SEM ... 41
4.1.50 OS_STATIC_STACK ... 41
4.1.51 OS_STATIC_TASK ... 42
4.1.52 OS_STATIC_TIM_SRV ... 42
4.1.53 OS_SYS_CALL .. 42
4.1.54 OS_TASK_SUSPEND ... 42
4.1.55 OS_TASK_XTRA_FIELD ... 42
4.1.56 OS_TIM_EXTRA_FIELD ... 43
4.1.57 OS_TIMEOUT .. 43
4.1.58 OS_TIMER_CB ... 43
4.1.59 OS_TIMER_SRV ... 43
4.1.60 OS_TIMER_US ... 43
4.1.61 OS_USE_TASK_ARG ... 44
4.1.62 OS_WAIT_ABORT .. 44

4.2 BUILD OPTION SELECTION ... 44
4.2.1 Cooperative ... 44
4.2.2 Priority Span ... 44
4.2.3 One or multiple tasks at same priority .. 45
4.2.4 Task suspension .. 45
4.2.5 Mailboxes .. 46
4.2.6 Events .. 46
4.2.7 First Come First Served .. 47
4.2.8 Task Arguments ... 47
4.2.9 Data Memory .. 47

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 5

4.2.9.1 Data Memory with malloc() .. 48
4.2.9.2 Data Memory with Abassi’s allocator ... 49
4.2.9.3 Data memory with memory pools ... 49
4.2.9.4 Data memory at compile time ... 49

4.2.10 Idle Task .. 50
4.2.11 Timer ... 50

4.2.11.1 Timeout .. 51
4.2.11.2 Round Robin .. 52
4.2.11.3 Task Starvation Protection ... 53
4.2.11.4 Timer Services ... 53

4.2.12 Priority inversion protection ... 54
4.2.13 Mutex Deadlock protection ... 54
4.2.14 Interrupt Queue sizing .. 55
4.2.15 Logging ... 55

4.3 BUILD EXAMPLES ... 56
4.3.1 Minimum feature set ... 56
4.3.2 Minimum feature with static memory creation ... 58
4.3.3 Minimum feature with compiled time creation ... 59
4.3.4 Adding the timer .. 60
4.3.5 Adding many features ... 61

5 QUICK START ... 62
6 COMPONENTS .. 64

6.1 COMPONENT TYPE .. 64
6.1.1 Atomic Macro .. 65
6.1.2 Function .. 65
6.1.3 Macro .. 65
6.1.4 Data Access ... 65

6.2 SYSTEM COMPONENTS .. 65
6.2.1 Description .. 65
6.2.2 OSstart .. 66

6.3 TASK COMPONENTS .. 67
6.3.1 Description .. 68
6.3.2 TSK_STATIC ... 69
6.3.3 TSK_SETUP .. 71
6.3.4 return... 72
6.3.5 TSKcreate .. 73
6.3.6 TSKgetArg ... 75
6.3.7 TSKgetID... 76
6.3.8 TSKgetPrio .. 77
6.3.9 TSKgetRR .. 78
6.3.10 TSKgetStrvPrio ... 79
6.3.11 TSKgetStrvRunMax ... 80
6.3.12 TSKgetStrvWaitMax .. 81
6.3.13 TSKisBlk .. 82
6.3.14 TSKisRdy ... 83
6.3.15 TSKisSusp ... 84
6.3.16 TSKmyID ... 85
6.3.17 TSKresume .. 86
6.3.18 TSKselfSusp .. 87
6.3.19 TSKsetArg ... 88
6.3.20 TSKsetPrio .. 89
6.3.21 TSKsetRR .. 90
6.3.22 TSKsetStrvPrio .. 92
6.3.23 TSKsetStrvRunMax ... 94
6.3.24 TSKsetStrvWaitMax .. 96

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 6

6.3.25 TSKsleep ... 97
6.3.26 TSKstate .. 99
6.3.27 TSKstkFree .. 100
6.3.28 TSKstkUsed ... 101
6.3.29 TSKsuspend ... 102
6.3.30 TSKtimeoutKill .. 104
6.3.31 TSKtout ... 106
6.3.32 TSKyield .. 108
6.3.33 Examples ... 109

6.3.33.1 Static task ... 109
6.3.33.2 OS_IDLE_STACK set to 0 ... 109

6.4 SEMAPHORE COMPONENTS ... 110
6.4.1 Description .. 110
6.4.2 SEM_STATIC .. 111
6.4.3 SEMabort .. 113
6.4.4 SEMnotFCFS .. 115
6.4.5 SEMopen ... 116
6.4.6 SEMopenFCFS ... 118
6.4.7 SEMpost .. 120
6.4.8 SEMpostAll ... 121
6.4.9 SEMreset ... 122
6.4.10 SEMsetFCFS ... 123
6.4.11 SEMwait .. 124
6.4.12 SEMwaitBin .. 126
6.4.13 Examples ... 128

6.4.13.1 Semaphore Flushing .. 128
6.5 MUTEX COMPONENTS .. 129

6.5.1 Description .. 129
6.5.2 MTX_STATIC .. 131
6.5.3 MTXabort .. 133
6.5.4 MTXcheckOwn .. 134
6.5.5 MTXgetCeilPrio .. 135
6.5.6 MTXgetPrioInv ... 136
6.5.7 MTXignoreOwn... 137
6.5.8 MTXisChkOwn .. 138
6.5.9 MTXlock .. 139
6.5.10 MTXnotFCFS .. 141
6.5.11 MTXopen ... 142
6.5.12 MTXopenFCFS ... 144
6.5.13 MTXowner... 146
6.5.14 MTXprioInvOff .. 147
6.5.15 MTXprioInvOn .. 148
6.5.16 MTXsetCeilPrio .. 149
6.5.17 MTXsetFCFS ... 151
6.5.18 MTXunlock .. 152
6.5.19 Examples ... 154

6.6 EVENT COMPONENTS ... 155
6.6.1 Description .. 155
6.6.2 EVTabort ... 157
6.6.3 EVTget ... 158
6.6.4 EVTgetAcc ... 159
6.6.5 EVTreset .. 160
6.6.6 EVTresetAcc .. 161
6.6.7 EVTset ... 162
6.6.8 EVTwait .. 163
6.6.9 Examples ... 165

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 7

6.7 MAILBOXES COMPONENTS .. 166
6.7.1 Description .. 166
6.7.2 MBX_STATIC ... 168
6.7.3 MBXabort .. 170
6.7.4 MBXavail .. 172
6.7.5 MBXget ... 173
6.7.6 MBXnotFCFS .. 175
6.7.7 MBXopen ... 176
6.7.8 MBXopenFCFS ... 178
6.7.9 MBXput ... 180
6.7.10 MBXputInISR .. 182
6.7.11 MBXsetFCFS .. 184
6.7.12 MBXused ... 186
6.7.13 Examples ... 187

6.7.13.1 Buffers ... 187
6.7.13.2 Buffer count ... 187
6.7.13.3 Example code .. 187

TIMER COMPONENTS .. 190
6.7.14 OS_TIM_TICK_ACK .. 190
6.7.15 G_OStimCnt .. 191
6.7.16 TIMcallBack .. 192
6.7.17 Time Converters .. 193

6.7.17.1 OS_HAS_TIMEDOUT ... 193
6.7.17.2 OS_HMS_TO_TICK ... 194
6.7.17.3 OS_MS_TO_TICK .. 195
6.7.17.4 OS_MS_TO_MIN_TICK .. 196
6.7.17.5 OS_SEC_TO_TICK .. 197
6.7.17.6 OS_TICK_EXPIRY .. 198
6.7.17.7 OS_TICK_PER_SEC .. 199

6.7.18 Examples ... 200
6.7.18.1 Periodic Timer ... 200

6.8 INTERRUPT COMPONENTS ... 201
6.8.1 OSdint ... 202
6.8.2 OSeint .. 204
6.8.3 OSintBack ... 206
6.8.4 OSintOff .. 208
6.8.5 OSintOn... 210
6.8.6 OSisrInstall ... 211

6.9 TIMER SERVICES ... 212
6.9.1 TIM_STATIC ... 214
6.9.2 TIMarg .. 215
6.9.3 TIMdata... 217
6.9.4 TIMevt ... 219
6.9.5 TIMfct .. 221
6.9.6 TIMfreeze .. 223
6.9.7 TIMkill ... 224
6.9.8 TIMleft ... 225
6.9.9 TIMmbx ... 226
6.9.10 TIMmtx .. 228
6.9.11 TIMopen .. 230
6.9.12 TIMpause .. 232
6.9.13 TIMperiod ... 233
6.9.14 TIMrestart ... 235
6.9.15 TIMresume .. 236
6.9.16 TIMsem ... 237
6.9.17 TIMtoAdd .. 239

6.10 MEMORY BLOCK MANAGEMENT SERVICES ... 241

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 8

6.10.1 Memory Requirement Rules .. 241
6.10.2 MBLKalloc .. 243
6.10.3 MBLKfree .. 245
6.10.4 MBLKnotFCFS ... 246
6.10.5 MBLKopen .. 248
6.10.6 MBLKopenFCFS ... 250
6.10.7 MBLKsetFCFS .. 252
6.10.8 Examples ... 254

6.11 GROUPING ... 255
6.11.1 Nomenclature .. 255
6.11.2 Restrictions ... 255
6.11.3 Coexistence ... 256
6.11.4 GRPaddMBX ... 257
6.11.5 GRPaddSEM ... 259
6.11.6 GRPaddSEMbin .. 261
6.11.7 GRPdscMBX ... 263
6.11.8 GRPdscSEM .. 264
6.11.9 GRPrmAll .. 265
6.11.10 GRPrmMBX .. 266
6.11.11 GRPrmSEM ... 267
6.11.12 GRPwait .. 268
6.11.13 Grouping Examples .. 270

6.12 LOGGING SERVICES .. 274
6.12.1 Direct writing .. 274
6.12.2 Buffer recording .. 274
6.12.3 Description .. 274
6.12.4 LOGallOff ... 276
6.12.5 LOGallOn ... 277
6.12.6 LOGcont .. 278
6.12.7 LOGdis .. 279
6.12.8 LOGdumpAll ... 280
6.12.9 LOGdumpNext .. 281
6.12.10 LOGenb ... 282
6.12.11 LOGgetNext .. 283
6.12.12 LOGoff .. 284
6.12.13 LOGon .. 285
6.12.14 LOGonce ... 286
6.12.15 Logging Messages Numbers ... 287

6.12.15.1 Semaphores .. 287
6.12.15.2 Mailboxes .. 287
6.12.15.3 Timer ... 288
6.12.15.4 Priority / Running .. 288
6.12.15.5 Timer Services ... 289
6.12.15.6 Event Flags .. 289
6.12.15.7 State changes ... 289
6.12.15.8 Starvation Protection ... 290
6.12.15.9 Priority Inversion ... 290
6.12.15.10 Stack monitoring .. 290
6.12.15.11 Memory Block management ... 290
6.12.15.12 SMP multi-core .. 291
6.12.15.13 Out of Memory Checks ... 291
6.12.15.14 Group messages ... 292
6.12.15.15 Wait Abort messages ... 293
6.12.15.16 Timeout messages .. 294
6.12.15.17 Mutex deadlock messages ... 294

6.12.16 Logging examples ... 294
6.12.16.1 Direct writing ... 294
6.12.16.2 Circular buffer ... 296

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 9

6.13 PERFORMANCE MONITORING ... 297
6.13.1 Description .. 297
6.13.2 Measurements ... 298
6.13.3 PMrestart .. 301
6.13.4 PMstop .. 302

6.14 MIX BAG .. 303
6.14.1 G_OSmutex ... 304
6.14.2 G_OSnoName ... 305
6.14.3 OSalloc .. 306
6.14.4 OSallocAvail ... 308
6.14.5 OSputchar ... 309
6.14.6 OStrap ... 310

7 APPENDIX A: PRIORITY INVERSION .. 318
7.1 PRIORITY INHERITANCE .. 318

7.1.1 Single Task per priority .. 319
7.2 PRIORITY CEILING .. 319

8 APPENDIX B: TASK STARVATION ... 321
9 APPENDIX C: MUTEX DEADLOCK ... 322
10 APPENDIX D: ROUND ROBIN ... 323
11 APPENDIX E: COOPERATIVE MODE ... 324

11.1 COOPERATIVE RTOS EMULATION .. 324
11.2 SAME PRIORITY COOPERATIVE .. 324

12 APPENDIX F: PROTECTING “C” LIBRARIES FOR MULTITHREADING 325
13 APPENDIX G: HASHING .. 327
14 REFERENCES .. 328
15 REVISION HISTORY ... 329

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 10

List of Figures
FIGURE 3-1 STATE CHANGES .. 20
FIGURE 6-1 PERFORMANCE METRICS MEASUREMENTS ... 297

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 11

List of Tables
TABLE 3-1 COMPONENTS USABLE IN AN INTERRUPT .. 23
TABLE 3-2 COMPONENTS TO NEVER USE IN AN INTERRUPT (1) ... 24
TABLE 3-3 COMPONENTS TO NEVER USE IN AN INTERRUPT (2) ... 25
TABLE 4-1 BUILD OPTION COOPERATIVE MODE ... 44
TABLE 4-2 BUILD OPTION FOR PREEMPTIVE MODE (NATIVE) .. 44
TABLE 4-3 BUILD OPTION OS_PRIO_MIN .. 44
TABLE 4-4 BUILD OPTION FOR ONE TASK PER PRIORITY ... 45
TABLE 4-5 BUILD OPTION FOR MANY TASKS AT THE SAME PRIORITY ... 45
TABLE 4-6 BUILD OPTION WITHOUT TASK SUSPENSION .. 45
TABLE 4-7 BUILD OPTION WITH TASK SUSPENSION .. 46
TABLE 4-8 BUILD OPTION TO INCLUDE MAILBOXES ... 46
TABLE 4-9 BUILD OPTION TO NOT INCLUDE MAILBOXES .. 46
TABLE 4-10 BUILD OPTION TO INCLUDE EVENT FLAGS ... 46
TABLE 4-11 BUILD OPTION TO NOT INCLUDE EVENT FLAGS ... 46
TABLE 4-12 BUILD OPTION TO SUPPORT FCFS ... 47
TABLE 4-13 BUILD OPTION TO NOT SUPPORT FCFS ... 47
TABLE 4-14 BUILD OPTION TO SUPPORT TASK ARGUMENTS ... 47
TABLE 4-15 BUILD OPTION TO NOT SUPPORT TASK ARGUMENTS ... 47
TABLE 4-16 BUILD OPTIONS FOR DATA MEMORY ALLOCATION WITH MALLOC() ... 48
TABLE 4-17 BUILD OPTIONS FOR ABASSI’S DATA MEMORY ALLOCATOR ... 49
TABLE 4-18 BUILD OPTIONS FOR MULTIPLE MEMORY POOLS ... 49
TABLE 4-19 BUILD OPTIONS FOR ALLOCATION AT COMPILE / LINK TIME .. 50
TABLE 4-20 BUILD OPTION TO NOT CREATE THE IDLE TASK .. 50
TABLE 4-21 BUILD OPTION TO CREATE THE IDLE TASK ... 50
TABLE 4-22 BUILD OPTIONS WHEN THE RTOS TIMER IS NOT USED .. 51
TABLE 4-23 BUILD OPTIONS WHEN THE RTOS TIMER IS USED ... 51
TABLE 4-24 BUILD OPTION WHEN TIMEOUTS ARE USED ... 51
TABLE 4-25 BUILD OPTION WHEN TIMEOUTS ARE NOT USED (+VE MAP TO 0) .. 52
TABLE 4-26 BUILD OPTION WHEN TIMEOUTS ARE NOT USED (+VE MAP TO -VE) .. 52
TABLE 4-27 ROUND ROBIN SETTING WHEN OS_COOPERATIVE IS NON-ZERO .. 52
TABLE 4-28 NO ROUND ROBIN .. 52
TABLE 4-29 FIXED ROUND ROBIN .. 52
TABLE 4-30 PROGRAMMABLE ROUND ROBIN .. 53
TABLE 4-31 TASK STARVATION PROTECTION .. 53
TABLE 4-32 TIMER SERVICES ... 54
TABLE 4-33 PRIORITY INVERSION PROTECTION DISABLED .. 54
TABLE 4-34 PRIORITY INHERITANCE ENABLED .. 54
TABLE 4-35 PRIORITY CEILING ENABLE .. 54
TABLE 4-36 DISABLING MUTEX DEADLOCK PROTECTION .. 54
TABLE 4-37 ENABLING MUTEX DEADLOCK PROTECTION ... 55
TABLE 4-38 INTERRUPT QUEUE SIZING ... 55
TABLE 4-39 DISABLING THE LOGGING FACILITIES ... 55
TABLE 4-40 ACTIVATING THE ASCII LOGGING DUMP .. 56
TABLE 4-41 ACTIVATING THE BUFFERED LOGGING .. 56
TABLE 4-42 BUILD WITH MINIMUM FEATURE SET .. 57
TABLE 4-43 BUILD WITH STATIC MEMORY ... 58
TABLE 4-44 BUILD WITH COMPILE TIME MEMORY ... 59
TABLE 4-45 BUILD WITH TIMER ... 60
TABLE 4-46 BUILD WITH MANY FEATURES ... 61
TABLE 5-1 QUICK START EXAMPLE ... 62
TABLE 6-1 FUNCTION CALL .. 64
TABLE 6-2 CODE FROM A MACRO DEFINITION .. 64
TABLE 6-3 SYSTEM COMPONENT LIST .. 65

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 12

TABLE 6-4 TASK COMPONENT LIST .. 67
TABLE 6-5 USAGE OF TSK_STATIC WITH TSK_SETUP ... 70
TABLE 6-6 RETRIEVING THE PRIORITY OF THE RUNNING TASK ... 77
TABLE 6-7 STATIC TASK DEFINITION EXAMPLE ... 109
TABLE 6-8 OS_IDLE_STACK SET TO 0 EXAMPLE .. 109
TABLE 6-9 SEMAPHORE COMPONENT LIST ... 110
TABLE 6-10 MUTEX COMPONENT LIST .. 129
TABLE 6-11 EVENT COMPONENT LIST ... 155
TABLE 6-12 MAILBOX COMPONENT LIST ... 166
TABLE 6-13 QUEUE WRITER CODE .. 188
TABLE 6-14 QUEUE READER CODE ... 189
TABLE 6-15 DATA STRUCTURE BUFFERS .. 189
TABLE 6-16 PROPER WAY TO USE OSDINT() AND OSEINT() ... 202
TABLE 6-17 PROPER WAY TO USE OSDINT() AND OSEINT() ... 204
TABLE 6-18 PROPER WAY TO USE OSINTOFF() AND OSINTBACK() ... 206
TABLE 6-19 PROPER WAY TO USE OSINTOFF() AND OSINTBACK() ... 208
TABLE 6-20 TIMER SERVICES LIST ... 212
TABLE 6-21 MEMORY BLOCK MANAGEMENT SERVICE COMPONENT LIST .. 241
TABLE 6-22 MEMORY BLOCK MANAGEMENT SERVICE COMPONENT LIST .. 255
TABLE 6-23 GROUPING EXAMPLE .. 271
TABLE 6-24 GROUPING EXAMPLE (SECTION #1) .. 272
TABLE 6-25 GROUPING EXAMPLE (SECTION #2) .. 272
TABLE 6-26 GROUPING EXAMPLE (SECTION #3) .. 272
TABLE 6-27 GROUPING EXAMPLE (SECTION #4) .. 273
TABLE 6-28 LOGGING SERVICE COMPONENT LIST ... 275
TABLE 6-29 DIRECT WRITING EXAMPLE .. 295
TABLE 6-30 CIRCULAR WRITING EXAMPLE .. 296
TABLE 6-31 COMPUTATION OF THE AVERAGE STATISTICS ... 298
TABLE 6-32 PERFORMANCE MONITORING TASK DESCRIPTORS ENTRIES ... 298
TABLE 6-33 OSTRAP VS. BUILD OPTIONS ... 310
TABLE 9-1 MUTEX DEADLOCK DETECTION PSEUDO-CODE ... 322
TABLE 12-1 MULTITHREAD PROTECTION WITH A MUTEX ... 325
TABLE 12-2 MULTITHREAD PROTECTION THROUGH INTERRUPT DISABLING .. 325

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 13

1 Introduction
This document is the User’s Guide for the Abassi RTOS, and provides all the information the reader needs
on how to configure and use the RTOS. It was written to deliver to the user all the information related to
the Abassi RTOS, without turning into a tutorial on operating systems. The reader is assumed to have a
good understanding of embedded and real-time concepts, general knowledge of RTOS, and a desire to
understand the design process and design decisions that led to the Abassi RTOS.

While this document contains a lot of information on the internal operation of the Abassi RTOS, there is
nothing in the way of an introduction to RTOS or OS concepts. Plenty of books and tutorials are available
that discuss OS and RTOS. If the nomenclature used in this document differs from any reference work, a
quick glance at the glossary below should be sufficient to remove these ambiguities.

1.1 Glossary
Adam & Eve “Adam & Eve” is the name given in Abassi for the task associated to the “C” function

main(). This name was chosen since this is always the first task created in an
application, and from this task one or more tasks can be created.

Blocking Blocking is a mechanism to stop a task when it needs access to an unavailable service.
When a task gets blocked, it does not use any CPU and relinquishes the CPU to another
task.

Component An access point to a RTOS service.

Descriptor A service descriptor is a single instance of class of operation. In Abassi, a descriptor is
always referenced by the pointer to the data memory holding the information.

Event Events are a synchronization mechanism holding multiple flags, where the flags can only
be set. Tests are applied to the flags to validate the synchronization when a set of
conditions is fulfilled.

Mailbox First-in First-out data structure used to exchange information between two entities. A
mailbox uses fixed size element exchanges, when a message queue uses variable size
elements.

Mutex (MUTual EXclusion) service, providing a mechanism to avoid simultaneous use of a
shared resource.

Ready to run State of a task where the task is ready to run but cannot use the CPU because another task
is using it.

Resuming Operation performed on a task to terminate the suspended state. When a task is in the
suspended state, it does not use the CPU, nor can it react to synchronization services.

RTOS Real-Time Operating System.

Running Operation state of a task where it is the task using the CPU.

Semaphore Service providing a synchronization mechanism.

Service This is a class of operations based on one synchronization/exchange mechanism.

Stack Last-in First-out data structure commonly used in processors. It is typically used to hold
function call/return and local variable in re-entrant systems. In a RTOS, each task has its
own stack that is used by the processor when the task is in the running state.

Suspending Forcing a task to go into the suspended state where it will neither request nor use the
CPU, and will not react to synchronization services.

Timer RTOS service offering time based synchronization triggers.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 14

2 Features
Ø Portable source code with minimal amount of assembly code

Ø Fully scalable: only the services required are compiled in

Ø The code can reside in ROM

Ø Can be re-started without reloading the code/data image

Ø Very small code size

Ø Very low interrupt latency

Ø Data used by the kernel services can be allocated dynamically, or statically, or at compile time

Ø Fully preemptive

Ø Cooperative mode emulation

Ø Versatile semaphores, features are selectable on per semaphore basis:

o Counting semaphores or binary semaphores

o Priority ordered or first come first served ordered

Ø Reentrant Mutexes, features are selectable on per Mutex basis:

o Priority ordered or first come first served ordered

o Task suspension postponed upon Mutex lock

Ø Recursive Mutex deadlock detection

Ø Mutex unlocking can be restricted to the locker only

Ø Priority Inheritance on Mutexes to eliminate the priority inversion issue

Ø Intelligent Priority Ceiling on Mutexes to eliminate the priority inversion issue

Ø Mailboxes

Ø Events with AND & OR masks

Ø Grouping (semaphores and mailboxes)

Ø Run-time safe service creation

Ø Real-time tailored Priority Aging protection

o Programmable highest priority on per task basis

o Programmable maximum run time at a raised priority on per task basis

o Programmable maximum wait time on per task basis

Ø Dynamic priority changes

Ø Can be configured for one task per priority to reduce the code size

Ø Multiple tasks at same priority:

o On a first come first served basis

o Round Robin

o Programmable Round Robin time slice duration on per task basis

o Co-existence of round robin and run to blocking/completion at same priority

Ø No limits on the number of Tasks / Priorities / Semaphores, etc. …

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 15

Ø Selectable search algorithm for the next task to run

Ø Optional per task arguments

Ø Time-out on components

Ø RTOS timer callback

Ø Timer Services (one shot & periodic)

o Data write to memory (with data post-addition)

o Function call (with argument post-addition)

o Semaphore posting

o Mutex unlocking

o Mailbox writing (with data post-addition)

o Event flag setting

Ø Dynamic memory block management Services

Ø Names can be associated to the resources (Tasks, Semaphores, Mailboxes, etc.…)

Ø Interrupts are not disabled by the kernel (except with nested interrupts: only a few instructions)

Ø All RTOS components are available in interrupt contexts

Ø Simple Interrupt handler attachment

Ø Hybrid stack for interrupts (most ports)

Ø Fast Interrupt (FIQ) support (most ports)

Ø Optional stack usage monitoring

Ø Optional out of memory monitoring

Ø Operational log for debugging

Ø Multi-threading & reentrance library protection (when supported by the library)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 16

2.1 Limitations
There are a few features not available in the Abassi RTOS.

Ø Queues are not supported because too many flavors of them exist. Most of the time an
application needs a finely tuned queue system to be code size and real-time efficient. Using the
mailboxes service that is available in the Abassi RTOS, it is quite easy to tailor a queue
management service fully adapted to the needs of an application. An example is given in Section
6.7.13.

Ø Once a service descriptor (Task, Semaphore, Mutex, Mailbox, etc.) has been created, it cannot be
deleted. Not allowing the deletion of services eliminates unexpected resource locking, it reduces
both the code complexity and size, and it eliminates possible long-term fragmentation issues
when dynamic memory is used.

Ø Operating the Memory Management Unit (MMU) on processors with such peripherals is not
supported. The reasoning behind not supporting MMUs is to keep the Abassi RTOS simple and
real-time efficient. This RTOS has been tailored for embedded applications, not for workstations
or servers; it is not a RTOS capable of replacing the class of OSes like the real-time LINUX
operating system.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 17

3 Overview
This section gives an overview of the Abassi RTOS. The design choices are explained so as to give the
reader an understanding of the decisions made when Abassi was architected and implemented.

3.1 Design choices
The Abassi RTOS was architected and implemented with 5 main goals:

Ø To be fully portable with very little assembly language programming

Ø To be the most feature-rich and innovative RTOS available

Ø To be completely scalable

Ø To use as little code and data memory as possible

Ø To not disable interrupts

The following subsections describe some of the techniques used to achieve each one of these goals.

3.1.1 Portability
Portability is guaranteed by coding most of the Abassi RTOS in standard ANSI-C language (the 1999
standard is used [R1]). A very small number of compilers used in the ports are still not C99 standard
compliant, more than a decade after the establishment of the standard. When some aspect of the ANSI-C
language syntax is not supported, an alternate method is used. One example of these standard syntaxes not
being handled is the initialization of a data structure using the “.field=value” expression. It was
decided to not use this form of initialization. (There is no side effect other than making the code a bit less
readable.)

On purpose, the data types used in the implementation of Abassi are char, int, and pointers, and data
structures composed of any of the previous. Almost all variable used in the RTOS are of type int; char
is only used for dealing with memory allocation and for character strings. When a variable can hold both
an int and a pointer, the standard data type intptr_t, as defined in stdint.h, is used. The choice of
using int everywhere instead of int8_t, int16_t or int32_t (which are also defined in stdint.h)
was made on the basis that, for most processor/compiler pairs, the data type int is the native data size of
the processor. Being the native data size, data movements and operations are always performed in a single
instruction, and this helps fulfilling both the goal of small code size and fast operation.

3.1.2 Feature set
The Abassi RTOS was designed to be feature-rich and innovative. As such, it supports almost all the
features found in other RTOS, and adds many key features that are unique to it:

Ø Priority Aging

Ø Per task programmable round robin time slice

Ø Co-existence of round robin and run until blocking/completion at the same priority

Ø Mutex deadlock detection

Ø Intelligent priority ceiling

Ø Task suspension postponed upon Mutex lock

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 18

3.1.3 Scalability
Scalability was achieved with the use of C pre-processor #define directives. This allows the Abassi
RTOS to scale from handling a single task per priority with nothing else, which obviously delivers the
smallest data size requirement and the smallest and fastest code, to the other extreme, where all available
features are enabled. Due to the large number of combinations of build options, it is not realistic to build
or supply individual libraries for every combination of options. Instead, the source code of the RTOS is
supplied to the user, which allows full control of tuning the build options to fulfill the exact requirements
of the application.

3.1.4 Code Size
Keeping the code size as small as possible offers multiple advantages. This is especially true when using
ASICs, which often impose additional memory (both data and code) constraints. Additionally, the smaller
is a piece of code, the better the chances of high performance on processors using a memory cache.
Finally, depending on how the small code size was achieved, it translates into a lower number of
instructions, therefore delivering better real time performance.

The technique used in the Abassi RTOS to keep the code size small was to eliminate all but one function
call inside the kernel. One has to remember that calling a function typically implies pushing the
argument(s) of the function (or setting the argument(s) in specific registers) and a return address on the
stack (or register), plus the called function may need to create its own local context. Even worse, a
function call always disrupts the optimizer because (on most compiler implementations) around half the
registers are lost at the calling function level, as the called function is allowed to modify them. By
eliminating function calls, it allows the optimizer (when capable of recognizing the condition) to use all the
registers of the processor for most of the kernel code. Eliminating the extra operations required for a
function call, and possibly using all the registers, translates most of the time into smaller, and also faster,
code.

The internal RTOS functionality was decomposed into elementary operations, e.g. “remove a task from the
blocked list”, “add a task to a running list”, etc. These elementary operations would typically be
implemented by individual functions, which would then be used in higher level functions like “posting a
semaphore”. Instead, they are all directly implemented in the kernel without function calls, and it is done
in a manner that code duplication is largely avoided. In the end, the Abassi kernel is single large function
with conditional processing blocks. The processing blocks were grouped in a sort of successive
approximation, and were ordered in such a way as to minimize the number of conditions to check for any
operation by the kernel.

The sole function call in the kernel is used to perform the context switch, which must be coded in assembly
language. Many “C” compilers allow direct insertion of assembler directives in the “C” code. However,
the presence of assembly code in the “C” code can confound some optimizers. Even for compilers /
optimizers that deal properly with the assembly code needed for the context switch, it was decided to keep
this operation in an assembly file because some compilers have extra build configurations only set for the
assembly file.

3.1.5 Data Size
Care has been taken to optimize the descriptors of the tasks, semaphores, mailboxes, etc. When features of
the Abassi RTOS are disabled through the build options, their respective entries are eliminated from the
descriptor, reducing the data memory requirements for each descriptor and the kernel operations.
Significant time and effort was spent when defining the Abassi architecture to find ways to re-use the
fields or variables for multiple purposes.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 19

3.1.6 Interrupts not disabled
Any RTOS kernel possesses critical regions that need to be protected. The obvious way to protect these
critical regions is to disable interrupts when these critical regions run. However, there are disadvantages to
doing so. The first is that on some processor the enabling and disabling is not as straight-forward as
simply setting/clearing a bit in the data memory space (memory mapped register), but instead involves
inserting assembly code in the middle of “C” code, which sometimes confuses the optimizer. Doing so
would then require an assembly-coded function, and the associated overhead of a function call. The
second is that the re-enabling of the interrupts after the critical region must be conditional on the interrupts
having been enabled in the first place. The third issue is for applications with very strict real-time
requirements, and depends on the size of the critical region: when interrupts are disabled and an interrupt
occurs, the interrupt processing is delayed, which could have a negative impact.

3.2 Services
This section gives an introduction to all the basic services supported by the Abassi RTOS.

The Abassi RTOS supports all the services that are required in a full featured RTOS:

Ø Tasks

Ø Semaphores

Ø Mutexes

Ø Event flags

Ø Mailboxes

Ø Timer

Ø Memory Block Management

Ø Interrupts

Many of these services use a descriptor (object) that needs to be created and initialized. In some RTOS,
there is a never-ending case of ambiguity between either the use of the descriptor or the use of a pointer to
the descriptor. The Abassi RTOS supports and makes visible pointers to the descriptors and nothing else;
this is even true when a descriptor is statically created at compile time. This means pointers are the only
descriptor type available and usable by the user, so there is no confusion on the data types. Every time the
expression “descriptor” is used in this document it really means the pointer to the descriptor, as pointers to
descriptors are the only access method.

3.2.1 Tasks
Tasks in the Abassi RTOS are what are commonly called “a thread” in the literature. A task is the
elementary processing entity in the Abassi RTOS; it possesses its own stack and operates exactly as if it
was it was an independent little processor having access to all memory and peripherals inside the full
processor. The Abassi RTOS has no limits on how many tasks can exist in an application, nor is there a
restriction on the task code size, stack size, or data size usage; only the data and code space available to the
processor limits these numbers.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 20

Tasks are always in one out of 4 possible states:

Ø Running

Ø Ready to Run

Ø Blocked

Ø Suspended

Figure 3-1 State Changes

Each task is assigned a priority. A priority value of 0 is the highest priority, and the larger the numerical
value of the priority, the lower is the priority level (the maximum priority value is the maximum numerical
value supported by a signed int, so typically 32767 for 16 bit integer or 2147483647 for 32 bit integer).
The task with the highest priority (lowest numerical value) that is not blocked, suspended, or preempted by
another task at the same priority, is the task that uses the CPU, and it is the task in the running state; at all
time, there is one and only one task in the running state. All other tasks that are not blocked or suspended
are in the ready to run state.

A blocked task is a task waiting for a service; this can be either a semaphore to be posted, a mutex to be
unlocked, event flags to be set, room to deposit a message in a mailbox, or the availability of a message to
be retrieved from a mailbox.

Multiple tasks can co-exist at the same priority, and depending on the build option, they either share the
CPU time available through round robin, which is also called time slicing, or they can simply operate on a
first come first served basis, or a mix of both. A task can be suspended only if it is in the running or ready
to run state. When a task is blocked, it needs to get unblocked before the suspension occurs.

3.2.2 Semaphores
Semaphores are at the heart of the Abassi RTOS and are the only internal blocking mechanism. Every
synchronization service uses a semaphore to block a task. Mutexes are simply semaphores in disguise.
Events are implemented as a set of conditions attached to the private semaphore of a task that specify when
to acquire or when to release the private semaphore. It is the same with mailboxes. And even suspending a
task is simply blocking the task on its own private semaphore (this is the same semaphore used by the event
flags, re-used to save on data memory usage).

All semaphores in the Abassi RTOS are counting semaphores: they keep track of the excess number of
postings. Binary semaphores are also available; the accumulated count is zeroed upon the acquisition of
the semaphore, so a regular counting semaphore is used for a binary semaphore, and it becomes a binary
semaphore upon being acquiring.

By default, tasks that are blocked on a semaphore will become unblocked in a priority based ordering: the
highest priority task that is blocked on a semaphore is the first to be unblocked on the first posting, no
matter when that highest task got blocked. If the same semaphore blocks multiple tasks with the same
priority, the task that was the first to try to acquire the semaphore will become the first to get unblocked.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 21

The Abassi RTOS optionally supports the configuration of semaphores to make them operate in a First
Come First Served mode. When configured in this mode, the priority of the tasks blocked on the
semaphore is not taken into account when determining which task gets unblocked first. The first task to get
unblocked when a semaphore is operating in First Come First Served mode is the first task that tried to
acquire the semaphore, no matter what its priority is. The selection of Priority mode or First Come First
Served mode is done on a per semaphore basis (and, implicitly, per mutex and per mailbox).

3.2.3 Mutexes
In the previous section it was stated that mutexes are semaphores in disguise. A mutex is simply a binary
semaphore with an initial count of the accumulated postings of 1 instead of 0, as in a regular semaphore.
Mutexes are a synchronization mechanism used to control access to shared resources, making sure only one
task can access the resource at any time. When a task has acquired a mutex, this means it has access to the
shared resource, and all other tasks that try to acquire the mutex will be blocked until the task that has
access to the resource (the owner of the mutex) releases (unlocks) the mutex.

Another characteristic of the Abassi mutexes is that they are fully re-entrant mutexes. A re-entrant mutex
is a mutex that can be locked multiple times by the owner (the same number of unlockings must be
performed to release the lock on the mutex). This characteristic allows the use of a single mutex for
multiple shared resources that themselves also use a common resource. The multiple locks on a mutex
translate into multiple acquisitions, which is not possible on a semaphore. So, for the mutexes, the count
value of the semaphore is allowed to become negative in order to track the number of recursive locks
performed by the owner of the mutex.

Mutexes are the root cause of the so-called Priority Inversion problem in multi-tasking applications. The
Abassi RTOS optionally supports either automatic Priority Inheritance or Priority Ceiling to eliminate the
Priority Inversion problem. Abassi Priority Ceiling is completely automatic; there is no need to set the
mutex ceiling priority, the priority is determined at run time. More details on Priority Inheritance / Ceiling
are given in Section 7.

Another problem that can exist with mutexes is a mutex deadlock. Abassi optionally support the run-time
discovery of mutex deadlock, and when a deadlock is detected, the lock request is cancelled and an error
condition is reported to the caller. See Section 9 for more information on mutex deadlock detection.

3.2.4 Event Flags
When the event flags service is enabled through the build options, it gives every task an event register set
that can be used to synchronize the task through event flags. Event flags can be set by any tasks in the
application, and typically, a task will be blocked until the desired combination of flags in its register is
true.

The flag condition is a minimalist “sum of products”. Two masks define the condition, an AND mask and
an OR mask. The AND mask condition is true when all flags matching the bits set to 1 in the AND mask
have been set in the event register. The OR mask condition is true when any of the flags matching the bits
set to 1 in the OR mask have been set in the event register. When one of the two mask conditions is true,
the event is declared valid. When an event is valid, the task owning the event register is unblocked if it
was blocked on the event. The number of flags held in the event register is determined by the int size
used by the compiler; this is typically 16 or 32 bits.

3.2.5 Mailboxes
Mailboxes are queues (first-in first-out buffers) with fixed size elements, and this service is optionally
supported by the RTOS through the build options. There should always be a single reader of the mailbox,
as in the real life postal system, but any task can write to the mailbox. The Abassi RTOS does not enforce
the single reader requirement and can properly operate with multiple readers (except when the reader is an
interrupt handler). When the mailbox is empty, the reader(s) can be blocked until a message is deposited
into the mailbox. When the mailbox is full, the writer(s) can be blocked until there is room to put a new
message in the mailbox.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 22

3.2.6 Timer
Time based operations are supported by the Abassi RTOS when enabled through the appropriate build
options. The time-based operations cover round robin, timeout on a service, and blocking a task for a fixed
duration. All blocking services have the capability to block a task forever (until the normal unblocking
occurs), to not block the task at all, or to block the task for a maximum time, called the expiry time. The
timer resource used in the Abassi RTOS is not hour - minute - second based, but tick based, which is
another way to indicate it is based on a simple ever incrementing counter (with roll-over). If needed,
components are available to convert timer tick units into/from milliseconds or seconds, abstracting the
internals of the timer from the application.

Also involving the timer is an optional timer service module, which gives the application access to generic
timer facilities. The timer services can be used to perform a delayed operation or periodic operations.
With selected timer services, when the operation is periodic, it is possible to add an offset to the argument
of the operation. For example, a function can be periodically called, and after each periodic call, the
function argument gets its value updated by a specified value.

3.2.7 Memory Block Management
Abassi supplies a memory block management module, allowing an application to create as many memory
block pools as required. Each memory block pool holds a number of memory blocks, all with the same
number of bytes per block, selectable on a per pool basis. The memory block management service offers
simple “alloc” and “free” type components, and tasks can get blocked upon exhaustion of the memory
block pool.

NOTE: Because the memory block management service can be used inside an interrupt, it is not possible
to support this service without disabling / enabling the interrupts in the kernel. The interrupt
enabling / disabling only affects the memory block management section in the kernel; even when
the memory block management service is part of Abassi, none of the other services disable
interrupts.

3.2.8 Interrupts Handlers
Interrupt handlers are easily attached to an application using the Abassi RTOS. This is done with the
OSisrIntall() (Section 6.8.6) component, where all there is to do is to indicate the interrupt number and
the function to use as the interrupt handler. From a user point of view, an interrupt function is not much
different from any other function; all resources of the Abassi RTOS are available as is. There is no need to
declare the function with non-standard keywords like interrupt or using.

There are a few exceptions, obviously, such as not having an interrupt handler waiting on a semaphore or
trying to lock a mutex for example; the use of these exceptions in an application is not verified by the
RTOS, and it is the responsible of the designer to not use any of these exceptions.

3.3 Constraints and Don’ts
There are very few limitations in the Abassi RTOS. The main one relates to the need to always have a task
in the running state in the application. The other constrains are either related to the build choices, or the
internal architecture, or obvious caveats applicable to any RTOS.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 23

3.3.1 Idle Task
The Abassi RTOS requires there to always be a task in the running state in the application, which is the
origin of the concept of the Idle Task. The Idle Task (or an application equivalent) is always the lowest
priority task in the application, and this task cannot be in the blocked or suspended state. This means none
of the following components can be used in the Idle Task if the expiry timeout specified in the arguments
is non-zero:

Ø SEMwait()

Ø SEMwaitBin()

Ø MTXlock()

Ø EVTwait()

Ø MBXget()

Ø MBXput()

Ø GRPwait()

And the following components should never be used:

Ø TSKsleep()

Ø TSKselfSusp()

Ø TSKsuspend() (when the task to suspend is the Idle Task)

Ø MTXlock() (if priority inheritance or priority ceiling is enabled)

The Idle Task can be used as a regular task, performing any type of operations needed in the application, as
long as it always remains either in the ready to run or running state. The Idle Task is also ideal to put a
processor into idle mode or power saving mode (even though the Idle Task is in the running state, this does
not mean it needs to actively be consuming CPU cycles). It is not necessary to create and use the Idle Task,
but it is necessary to always have a running task in the application.

3.3.2 Interrupts
The constraints on components used in an interrupt context are not unique to this RTOS: no RTOS
component that could block a task can be used in an interrupt handler. If such components are used, the
most likely outcome is the running task that has been interrupted will become blocked. The components
that are not authorized to use a timeout are the same as the one listed in the previous section. These
components can still be used in an interrupt as long as the timeout value is set to zero. It was decided to not
add code to override a non-zero value, in order to not create a new type of problem that the user would not
be aware. Others components don’t make sense to use in an interrupt.

The following table lists the components that can safely and meaningfully be used in an interrupt, as long
as the timeout value is zero:

Table 3-1 Components usable in an interrupt

Component Purpose / Extra Information

SEMwait Decrement a semaphore count / Timeout value must be 0

SEMwaitBin Flush the accumulated count of a semaphore / Timeout value must be 0

MBXput Deposit a message in a mailbox / Delayed operation / Timeout value is ignored

MBXget Retrieve a message from a mailbox / Timeout value ignored

MTXunlock Unlock a mutex

MBLKalloc() Retrieve a block of memory from a memory block pool

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 24

The second to last item, MTXunlock() needs a bit of explanation on how to correctly use it in an interrupt.
This component should not be used blindly in an interrupt handler. But, with careful planning, using it in
an interrupt handler can speed-up the reaction time of the application.

An example of the proper use of unlocking a mutex in an interrupt would be the case when a shared
peripheral needs to be protected by a mutex. If the peripheral generates an interrupt after completion of its
operations, then it makes sense to unlock the mutex directly in the interrupt handler. Performing the
unlocking operation in the interrupt means that no task accessing the peripheral can unlock the mutex; all
they can do is to lock the mutex.

The implementation described in the above example speeds-up the reaction time because it eliminates the
extra step of having the mutex locker to run and then unlock the mutex, which would then unblock the next
task trying to lock the mutex.

BEWARE: If one understands sufficiently well the problem of mutex deadlock, the above example is a
perfect candidate to create a mutex deadlock, under certain conditions.

Kernel requests performed during an interrupt are queued for processing outside the interrupt context
(except for the MBXget() component, Section 6.7.5). This means that any kernel request performed during
an interrupt will be processed a bit later. As a side effect, the return value or result of using such a
component is always zero (Success) as the kernel request is always successfully queued. The operation is
still performed, but with a small delay. The return value always being zero was changed in Abassi
V1.262.234, mAbassi V1.76.75, and uAbassi V1.34.24. The return value in these versions and following
indicate if the queuing has been successful or not.

The component MBXget() (and MBXput() in Abassi V1.262.234 and mAbassi V1.76.75, and following)
is/are an exception to the above, as special code is used when the request is performed in an interrupt
handler. The addition of this special code was deemed necessary. For example, reading a mailbox in an
interrupt may be required when the interrupt is triggered by a peripheral that needs to be fed new data,
assuming the new data is held in a mailbox.

The added code creates a new constraint, which is typically not an issue: two or more nested interrupt
handlers cannot read the same mailbox. This means that if multiple interrupt handlers at the same priority
read the same mailbox, then it is safe. What is not safe is if two or more interrupt handlers at different
priorities read the same mailbox; then there is a risk of having mailbox data duplication or loss. As
previously stated, a mailbox service should normally always have a single reader.

The following table lists the components that should never be used in an interrupt, as they apply to and
affect the running task. These are not restrictions unique to the Abassi RTOS; these operations simply do
not make sense in an interrupt.

Table 3-2 Components to never use in an interrupt (1)

Component Issue

MTXlock If the mutex is already locked, a pairing MTXlock / MTXunlock done in an
interrupt will not lock the mutex as the timeout is 0, but it will unlock the mutex,
not making the locker aware of the loss of lock.

EVTwait If the flag conditions are valid, the flags will be moved into the receive register
without the task owning the event flags being aware of the fact. This is almost
equivalent to losing flags setting.

TSKsleep Will put the currently running task in sleep.

TSKselfSusp Will suspend the currently running task.

GRPwait Cannot operate inside an interrupt. It will also report failure if used in an
interrupt, no matter what are the value of the Timeout and All arguments

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 25

The following table lists another group of components that should never be used in an interrupt, as they
deal with resource creation / allocation. These components manipulate one or more of Abassi’s global
resources as they rely on a mutex (locking with infinite timeout) to give the calling task exclusive access to
the resource. As a mutex locking / unlocking is performed in these components, none of them can be used
in an interrupt.

Table 3-3 Components to never use in an interrupt (2)

Component Issue

TSKcreate MTXlock issue described in Table 3-2.

SEMopen MTXlock issue described in Table 3-2.

SEMopenFCFS MTXlock issue described in Table 3-2.

MTXopen MTXlock issue described in Table 3-2.

MTXopenFCFS MTXlock issue described in Table 3-2.

MBXopen MTXlock issue described in Table 3-2.

MBXopenFCFS MTXlock issue described in Table 3-2.

TIMopen MTXlock issue described in Table 3-2.

MBLKopen MTXlock issue described in Table 3-2.

MBLKopenFCFS MTXlock issue described in Table 3-2.

GRPaddMBX MTXlock issue described in Table 3-2.

GRPaddSEM MTXlock issue described in Table 3-2.

GRPaddSEMbin MTXlock issue described in Table 3-2.

GRPrmAll MTXlock issue described in Table 3-2.

GRPrmMBX MTXlock issue described in Table 3-2.

GRPrmSEM MTXlock issue described in Table 3-2.

3.3.3 Task Suspension
There is a generic component named TSKsuspend() (Section 6.3.29) used to suspend a task. If a task to
suspend is blocked, the suspension only occurs when the task becomes ready to run. Additionally, a critical
safety feature is added in the Abassi RTOS: a task will not go into the suspended state until it has unlocked
all the mutexes it owns.

The verification that the task to suspend does not own mutexes is not performed when the component
TSKselfSusp() (Section 6.3.18) is used. Proper care must be taken when using the component
TSKselfSusp() otherwise some tasks in the application may remain blocked indefinitely if they try to
acquire a lock on a mutex still locked by a self-suspended task.

3.3.4 Single Task per Priority
There is an issue to be mindful of when the Abassi RTOS is configured for a single task per priority: no
two tasks can have the same priority. This is straightforward, but if the priority inversion protection feature
is enabled in the Abassi RTOS build, then extreme care must be taken when assigning the priority to the
tasks in an application. For more information consult section 7, on priority inheritance / priority ceiling.

If two or more tasks operate at the same priority in a build set for a single task per priority, all tasks at that
priority, except one, will “disappear” from the application. This is not equivalent to suspending a task: the
tasks are in the ready to run state but will not run. They are still there, but can’t become blocked, running
or suspended.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 26

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 27

3.4 Distribution Contents
The Abassi RTOS source code distribution always has a minimum of 3 files:

Abassi.h The Abassi RTOS definition file

Abassi.c The Abassi RTOS code

Abassi_???_???.? The processor / compiler specific assembly file

Most of the distributions have code examples for specific hardware platforms, and some
processor/compiler ports may also include device drivers. Consult the processor/compiler port document
that applies to your target application.

3.5 C++
Abassi can be used in a C++ environment. As Abassi is entirely coded in “C”, and not “C++”, care must
be taken when attaching functions to the Abassi services (this is the only restriction involved when using
Abassi in C++). The following functions must be declared with “C” linkage in a C++ environment:

Ø The function attached to a task when using TSK_STATIC() (Section 6.3.2)

Ø The function attached to a task when using TSKcreate() (Section 6.3.5)

Ø The handler attached to an interrupt through OSisrInstall() (Section 6.8.6)

Ø The function attached to a timer service when using TIMfct() (Section 6.9.5)

The RTOS timer callback function TIMcallBack() (Section 6.7.16) is already declared with “C” linkage;
therefore nothing special is required when creating the callback function, as long as the file Abassi.h is
included in the file where the function TIMcallBack is located; if not, the function TIMcallBack() must
be declared with “C” linkage.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 28

4 Configuration
The Abassi RTOS is fully configurable: services and modules that are not required/used are not compiled-
in and the respective entries in the task, semaphore, mutex or mailbox descriptors are not present. The
inclusion of a feature is controlled by the use of #define in “C”; the token used in these #define are
called “build options”. There are two ways to specify these #define: directly in the file Abassi.h, or
with typically the option –D or -d on the compiler command line, most of the time as part of a make file.
The first method, which defines the build options in the file Abassi.h is desirable when a single instance
of the Abassi RTOS is built (or multiple instances of the RTOS are built with exactly the same
configuration). The second method is preferable when building multiple platforms that require different
configurations of the Abassi RTOS. The latter case would happen on a multi-processor platform where
each processor uses a different configuration of the Abassi RTOS. Moving the definition out of the
Abassi.h file into the make file allows the build process to keep a single instance of the Abassi.h file.

To use the definitions in Abassi.h, all there is to do is to not define the build option OS_DEF_IN_MAKE
(Section 4.1.2) on the compiler command line. This will force the build process to use all the definitions in
Abassi.h. If the build option OS_DEF_IN_MAKE is defined (the definition value is not important) on the
compiler command line (most likely in a make file), all the build options that are defined in the file
Abassi.h are completely ignored, but the make file must define all of them on the compiler command
line. If some build options haven’t been defined, building the Abassi RTOS will report at compile time
which build options have not been defined. When build options have invalid values or there are conflicts
between related build options, error messages are generated during the build operation.

There are some other internal build options not really accessible to the user. These internal build options
are processor / compiler specific and are set to values that match the processor / compiler capabilities when
applicable, and/or their values are set to generate code that minimizes both the real-time CPU usage and/or
the code and data memory usage.

NOTE: Each of the build options (except OS_DEF_IN_MAKE, Section 4.1.2) described in the sub-sections
of 4.1 must be defined. This is true even if a build option is internally overloaded because of the
value of another build options. It has been decided for enforce this because, first, it is easier to
work with a standard template of definitions. And second, because when a build option is
modified, if this build option was provoking an overload of another option, error messages will
not look like suddenly appearing from nowhere because build options that are not overloaded
anymore are not defined.

NOTE: MISRA-C:2004 compliance makes the use of #undef not acceptable. As some build options are
internally overloaded, it was necessary to internally use a different build options when
overloading occurred. To simplify the identification of the build options, all internal build
options that are used have the OS_ part of the token name replaced by OX_. This means it is
strongly suggested when a build option is used in the application code that the token name OX_
should be used instead of the one with OS_.

4.1 Build Options
The following sub-sections describe each of the build options that must be defined, and the meaning of
their value. The next section, Section 4.2, gives a step by step explanation to assist the reader in setting the
build option values according to the needs of their application.

4.1.1 OS_ALLOC_SIZE
Depending on the setting of many build options, dynamic memory allocation may be the source of the data
memory utilized when creating services. When dynamic memory allocation is used and this build option is
set to a value of zero, the standard “C” library function malloc() is the memory allocator.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 29

When the build option OS_ALLOC_SIZE is positive, then OSalloc() (Section 6.14.3) uses special code to
extract memory from an area of size OS_ALLOC_SIZE bytes that has been reserved at compile / link time.
As memory allocated from that pool of memory is never returned to the pool, this method delivers a more
efficient use of the data memory than malloc() does with the heap memory. An important add-on is that
when this build option is positive, the memory allocator is protected by a mutex, making Abassi’s internal
allocator multithread-safe; this is not always the case when malloc() is directly used, which is when this
build option is set to zero. (Some compilers have access to multithread-safe libraries when others don’t.)

This build option cannot be set to a negative value; if it is, an error message will be generated at compile
time.

4.1.2 OS_DEF_IN_MAKE
OS_DEF_IN_MAKE is not really a build option that configures the features of the Abassi RTOS; it is a token
with the purpose of overriding all the build options defined inside the file Abassi.h. This token should
only be defined on the compiler command line. Defining it, no matter what value is assigned to it, is an
indication to ignore all the build options that are declared in the file Abassi.h. Overloading the
definitions in Abassi.h is useful when applications targeted to multiple processors with different RTOS
configurations are built from a common source code.

4.1.3 OS_CHECK_DESC
The build option OS_CHECK_DESC has been added in 2019 releases. When defined and set to a non-zero
value it makes Abassi to check the validity of descriptors it is provided. This is done through the insertion
of a marker in the descriptors that uniquely identify each type of descriptors. When an invalid or worng
descriptor type is detected Abassi goes into the OStrap() facility (Sect 6.14.6).

4.1.4 OS_COOPERATIVE
The build option OS_COOPERATIVE make the Abassi RTOS kernel operate in a cooperative mode instead
of preemptive. Setting this build option to a non-zero value configures the kernel to operate in the
cooperative mode. For more information on Abassi’s cooperative mode, refer to Section 11.

When OS_COOPERATIVE is set to a non-zero value, the build option OS_ROUND_ROBIN (Section 4.1.36) is
internally forced to a zero value, as round robin cannot exist in a cooperative RTOS. Also, when
OS_COOPERATIVE is set to a non-zero value, the build option OS_SEARCH_ALGO (Section 4.1.38) is
internally forced to a negative value, so the kernel uses a 2-dimensional linked list to determine the next
task that will run when a task relinquishes the CPU.

4.1.5 OS_EVENTS
The Abassi RTOS optionally offers the event flags service as one of the inter-task synchronization
mechanisms. Setting this build option to a non-zero value configures the build to include the code that
supports this service. Events are described in detail in Section 6.6.

4.1.6 OS_FCFS
Setting a non-zero value for the build option OS_FCFS adds the capability to make semaphores (and all
other blocking services) unblock tasks on a First Come First Served ordering instead of default Priority
ordering. This does not require all services to operate in First Come First Served mode; the type of
ordering is specified when creating the service and it can also be notified during run-time on a per case
basis. As previously explained, since the only blocking mechanism in the Abassi RTOS are semaphores,
then mutexes and mailboxes also gain the capability of unblocking tasks in a First Come First Served
ordering when this build option is set to a non-zero value.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 30

4.1.7 OS_GROUP
The build option OS_GROUP is not required to be defined. When it is defined and set to a non-zero value, it
adds support for groups of triggers (Section 6.11). Grouping triggers allows a task to block on reading one
or more mailboxes and / or waiting for one or more semaphores. When defined and set to a positive value,
it informs the Abassi RTOS to reserve memory at compile / link time. This memory is used to hold special
descriptors. A positive value assigned to OS_GROUP specifies the total number of trigger descriptors
available. When a negative value is assigned to OS_GROUP, then the memory needed to hold the trigger
descriptors is obtained during run-time through the OSalloc() service (Sections 4.1.1 and 6.14.3).
Setting the build option OS_GROUP to a value of zero disables the support of group of triggers. Note that
when OS_GROUP is positive, it specifies the maximum total number of triggers, not the maximum total
number of groups.

Availability:

Abassi: Version 1.250.223 and up

mAbassi: Version 1.60.59 and up

µAbassi: Unsupported

4.1.8 OS_GRP_XTRA_FIELD
The build option OS_GRP_XTRA_FIELD is new in Abassi version 1.264.239 and mAbassi version 1.82.80.
When defined and set to a positive value, it informs Abassi to add in the group descriptors
OS_GRP_XTRA_FIELD scratch pad entries. These entries are of standard “C” type intptr_t, meaning
they can hold either an int or any types of pointer. The data is accessed through the field XtraData[]
in the group descriptor (of type GRP_t). This build option is ignored if the build option OS_GROUP
(Section 4.1.7) is not defined or if defined and set to 0. The application usable entries in XtraData[] are
the first OS_GRP_XTRA_FIELD entries; if Abassi internally needs to use entries in XtraData[] it adds
extra entries and accesses the entries at and above index OS_GRP_XTRA_FIELD.

4.1.9 OS_HASH_ALL
The build option OS_HASH_ALL is not required to be defined. When it is defined and set to an unsigned,
non-zero value, it configures Abassi to use hashing tables for all named services and task. The size of the
hashing tables is the value defined by OS_HASH_ALL and it must be a power of 2 (unsigned). When
OS_HASH_ALL is defined and set to an unsigned non-zero value, all other hashing table build options are
ignored. This build option is ignored if the built options OS_RUNTIME (Section 4.1.37) or OS_NAMES
(Section 4.1.28) are zero.

When runtime creation and names are supported (build options OS_RUNTIME and OS_NAMES), Abassi by
default keeps the service and task names in a linked list, one linked list per service / tasks. If an
application creates a large number of the same type of service, then the opening of the service or the
extraction of the task by name could take a long time due to the need to traverse the linked list. When
hashing tables are used, the service and task names are kept in multiple linked lists; the number of linked
lists is the value assigned to OS_HASH_xxx. Statistically, the search time is 1/OS_HASH_xxx the time
required using a single linked list.

4.1.10 OS_HASH_MBLK
The build option OS_HASH_MBLK is not required to be defined. When it is defined and set to an unsigned,
non-zero value, it configures Abassi to use hashing tables for the named memory blocks. The size of the
hashing tables is the value defined by OS_HASH_MBLK and it must be a power of 2 (unsigned). This build
option is ignored if the build options OS_RUNTIME (Section 4.1.37), or OS_NAMES (Section 4.1.28), or
OS_MEM_BLOCK (Section 4.1.23) are zero. See section 13 for further information about the hashing tables.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 31

4.1.11 OS_HASH_MBX
The build option OS_HASH_MBX is not required to be defined. When it is defined and set to an unsigned,
non-zero value, it configures Abassi to use hashing tables for the named mailboxes. The size of the
hashing tables is the value defined by OS_HASH_MBX and it must be a power of 2 (unsigned). This build
option is ignored if the build options OS_RUNTIME (Section 4.1.37), or OS_NAMES (Section 4.1.28), or
OS_MAILBOX (Section 4.1.18) are zero, or OS_HASH_ALL (Section 4.1.9) is non-zero. See section 13 for
further information about the hashing tables.

4.1.12 OS_HASH_MUTEX
The build option OS_HASH_MUTEX is not required to be defined. When it is defined and set to an unsigned,
non-zero value, it configures Abassi to use hashing tables for the named mutexes. The size of the hashing
tables is the value defined by OS_HASH_MUTEX and it must be a power of 2 (unsigned). This build option
is ignored if the build options OS_RUNTIME (Section 4.1.37), or OS_NAMES (Section 4.1.28) are zero, or
OS_HASH_ALL (Section 4.1.9) is non-zero. See section 13 for further information about the hashing tables.

4.1.13 OS_HASH_SEMA
The build option OS_HASH_SEMA is not required to be defined. When it is defined and set to an unsigned,
non-zero value, it configures Abassi to use hashing tables for the named semaphores. The size of the
hashing tables is the value defined by OS_HASH_SEMA and it must be a power of 2 (unsigned). This build
option is ignored if the build options OS_RUNTIME (Section 4.1.37), or OS_NAMES (Section 4.1.28) are
zero, or OS_HASH_ALL (Section 4.1.9) is non-zero. See section 13 for further information about the
hashing tables.

4.1.14 OS_HASH_TASK
The build option OS_HASH_TASK is not required to be defined. When it is defined and set to an unsigned,
non-zero value, it configures Abassi to use hashing tables for the named tasks. The size of the hashing
tables is the value defined by OS_HASH_TASKK and it must be a power of 2 (unsigned). This build option
is ignored if the build options OS_RUNTIME (Section 4.1.37), or OS_NAMES (Section 4.1.28) are zero, or
OS_HASH_ALL (Section 4.1.9) is non-zero. See section 13 for further information about the hashing tables.

4.1.15 OS_HASH_TIMSRV
The build option OS_HASH_TIMSRV is not required to be defined. When it is defined and set to an
unsigned, non-zero value, it configures Abassi to use hashing tables for the named timer services. The size
of the hashing tables is the value defined by OS_HASH_TIMSRV and it must be a power of 2 (unsigned).
This build option is ignored if the build options OS_RUNTIME (Section 4.1.37), or OS_NAMES (Section
4.1.28), or OS_TIMER_SRV (Section 4.1.59) are zero, or OS_HASH_ALL (Section 4.1.9) is non-zero. . See
section 13 for further information about the hashing tables.

4.1.16 OS_IDLE_STACK
This build option has a double meaning as it controls, first, if a dedicated Idle Task function is supplied by
the application or not, and second, when the Idle Task function is supplied, what is the size of the stack to
allocate to this task. When OS_IDLE_STACK is set to a positive value, the Abassi RTOS creates at start-
up the environment for an Idle Task function supplied by the application and it allocates a stack size of
OS_IDLE_STACK bytes to the task. If this build option is zero, the Idle Task environment is not created,
but the application must create the equivalent of an Idle Task, and this task must have its priority set to the
lowest level amongst all other tasks (see OS_PRIO_MIN, Section 4.1.34). This build option cannot be set
to a negative value; if it is, an error message will be generated at compile time.

4.1.17 OS_LOGGING_TYPE
When set to a value of zero, no logging of the internal operations is performed by the Abassi RTOS.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 32

When this build option is set to a numerical value of 1, the Abassi RTOS outputs ASCII messages for each
one of the operations it performs. The output device is specified by the definition of OSputchar()
(Section 6.14.5); this function uses the same function prototype as the standard “C” library function
putchar().

Note: Activating ASCII logging creates a significant impact on the real-time performance of the kernel.
The real-time performance of the kernel will definitely degrade.

When this build option is set to a numerical value greater than 1, the Abassi RTOS inserts packets of
numerical information into a circular buffer sized to the build option value. The sizing is the number of
packets the buffer can hold.

The logging can be run-time started/stopped, and when the circular buffer is used, can be dumped over the
same ASCII output mechanism as used for the ASCII dump (OS_LOGGING_TYPE set to a value of 1) or
dumped anywhere else by using the logging buffer reader API.

When OS_LOGGING_TYPE is non-zero, the build option OS_NAMES (Section 4.1.28) is internally enabled
(forced to a non-zero value), activating the naming of all services.

4.1.18 OS_MAILBOX
The Abassi RTOS optionally offers the possibility of using mailbox services as a data exchange and
synchronization mechanism. Setting this build option to a non-zero value includes the code during the
build to support this service. If OS_MAILBOX is set to zero, meaning the mailbox service is not supported,
then the build options OS_STATIC_BUF_MBX (Section 4.1.45) and OS_STATIC_MBX (Section 4.1.47) must
be set to a value of zero.

4.1.19 OS_MBX_XTRA_FIELD
The build option OS_MBX_XTRA_FIELD is new in Abassi version 1.264.239 and mAbassi version 1.82.80.
When defined and set to a positive value, it informs Abassi to add in the mailbox descriptors
OS_MBX_XTRA_FIELD scratch pad entries. These entries are of standard “C” type intptr_t, meaning
they can hold either an int or any types of pointer. The data is accessed through the field XtraData[]
in the mailbox descriptor (of type MBX_t). This build option is ignored if the build option OS_MAILBOX
(Section 4.1.18) is set to 0. The application usable entries in XtraData[] are the first
OS_MBX_XTRA_FIELD entries; if Abassi internally needs to use entries in XtraData[] it adds extra
entries and accesses the entries at and above index OS_MBX_XTRA_FIELD.

4.1.20 OS_MBLK_XTRA_FIELD
The build option OS_MBLK_XTRA_FIELD is new in Abassi version 1.264.239 and mAbassi version
1.82.80. When defined and set to a non-zero value, it informs Abassi to add in the memory block
descriptors OS_MBLK_XTRA_FIELD scratch pad entries. These entries are of standard “C” type intptr_t,
meaning they can hold either an int or any types of pointer. The data is accessed through the field
XtraData[] in the memory block descriptor (of type MBLK_t). This build option is ignored if the build
option OS_MEM_BLOCK (Section 4.1.23) is not defined or if defined and set to 0. The application usable
entries in XtraData[] are the first OS_MBLK_XTRA_FIELD entries; if Abassi internally needs to use
entries in XtraData[] it adds extra entries and accesses the entries at and above index
OS_MBLK_XTRA_FIELD.

4.1.21 OS_MAX_PEND_RQST
The value of this build option sets the dimension of an internal queue used to absorb all kernel requests
performed during interrupts. One must be aware that bursts of continuous back-to-back interrupts can
starve the kernel of CPU, to the point where it is not able to completely empty this internal queue between
each interrupt. So, when selecting the value for this build option, one must take in account the worst case
of all interrupts performing the maximum number of requests to the kernel at once; and due to the way the
queue is implemented (chosen to minimize code size and to optimize real-time efficiency), there is always
one entry that is never used. For example, if the worst total number of back-to-back requests is 10,
OS_MAX_PEND_RQST must be set to 11 or higher.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 33

If the value of this build option is set to an exact power of 2, code space and CPU cycle savings are
achieved.

This build option cannot be set to a value of less than 2; if this happens, an error message will be generated
at compile time.

For MISRSA-C:2004 compliance the suffix U, indicating an unsigned integer, must be appended to the
numerical value specified.

4.1.22 OS_MBXPUT_ISR
The build option OS_MBXPUT_ISR was added in Abassi V1.262.234 and mAbassi V1.76.75 (and
following). If the build option OS_MBXPUT_ISR is not defined, it is assume it has a value of zero. When
defined and set to a non-zero value, it enables the possibility to get a valid return value when using
MBXput() (Section 6.7.9) in an ISR. This means when MBXput() is called from an interrupt handler, if it
returns a zero value, then the message will be added to the mailbox. If it return a non-zero zero, it means
either the mailbox is full or the interrupt request queue is full, meaning the message will not land in the
mailbox.

Please refer to the section on MBXput() (Section 6.7.9) because setting the build option OS_MBXPUT_ISR
to a non-zero value does not enable the validation of the return value in an ISR; this feature must be enable
on individual mailboxes.

4.1.23 OS_MEM_BLOCK
The Abassi RTOS optionally offers the possibility of managing pools of memory blocks as a data retrieval
and synchronization mechanism. The build option OS_MEM_BLOCK is one of the few options that is not
required to be defined. When defined and set to a non-zero value it includes the code during the build to
support this service. If OS_MEM_BLOCK is set to zero, meaning the memory block management service is
not supported, then the build options OS_STATIC_BUF_MBLK (Section 4.1.44) and OS_STATIC_MBLK
(Section 4.1.46) must be set to a value of zero.

4.1.24 OS_MIN_STACK_USE
The build option OS_MIN_STACK_USE configures the kernel and the RTOS timer tick interrupt handler to
minimize the amount of stack they use. When this build option is non-zero, all, but two int, local
variables used by the kernel are declared static, therefore none of the later use stack room. Enabling this
feature is mostly useful on target devices with very small data memory. But when the auto variables are
set to static, it is quite likely that the run-time performance of the kernel will suffer a bit.

To give an idea to what is the memory saving, assuming a 32 bit processor with 32 bit int and 32 bit
pointer, enabling OS_MIN_STACK_USE on an application with all the Abassi features enabled, reduces the
room required on the stack for the local variables from 84 bytes down to 8 bytes. This translates a reduced
stack requirement for each task (as all task access the kernel) of 76 bytes. For the timer tick, still
considering the same 32 bit processor, a saving of 12 bytes is achieved. For an application with N tasks,
the saving on the stack size is N times 88 (76+12) bytes.

4.1.25 OS_MTX_DEADLOCK
When set to a non-zero value, this build option activates the recursive mutex deadlock protection feature.
Simple stated, a mutex deadlock condition occurs if a task tries to lock a mutex that is locked by another
task that is blocked on a mutex locked by the first task. The reality is a bit more convoluted because the
task locking the mutex can be blocked on another mutex, which is locked by another task, which is blocked
on a mutex… and after traversing many mutex / locker pairs then the locker of a mutex that blocks a task in
the chain can be the first task that was trying to lock the original mutex.

The mutex deadlock protection detects this condition and does not allow the locking/blocking, and instead
reports an error to the caller. More information on mutex deadlock protection is available in Section 9.

Since 2019 when the build option OS_MTX_DEADLOCK is negative it will go into the RTOS trap code (See
section 6.14.6) instead of returning an error when locking the mutex at fault..

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 34

4.1.26 OS_MTX_INVERSION
Setting this build option to a non-zero value includes the code to support one of two commonly used
mechanisms to prevent the problem of priority inversion, created under certain conditions when a task
blocks on a mutex. When this build option is positive, the priority inheritance mechanism is activated in
the build. When this build option is negative, Abassi’s intelligent priority ceiling mechanism is activated
instead.

The case where only some mutexes would be selected to have protection against priority inversion while
others do not is not supported by the Abassi RTOS. Also, the priority inversion protection is either priority
inheritance or intelligent priority ceiling; the two mechanisms cannot co-exist in a build, since they were
determined during the conception of Abassi as two mutually exclusive mechanisms.

When OS_MTX_INVERSION is set to a non-zero value, the build option OS_PRIO_CHANGE (Section 4.1.33)
is internally forced to a non-zero value in order to allow dynamic priority changes. This is necessary
because the priority inheritance and priority ceiling mechanisms rely on raising the priority level of tasks.

If OS_MTX_INVERSION is set to a value either greater than 999 or less than -999, it then becomes possible
to enable/disable the priority inversion on a per mutex basis.

More information in priority inversion protection is available in Section 7.

4.1.27 OS_MTX_OWN_UNLOCK
The build option OS_MTX_OWN_UNLOCK is not required to be defined. When defined and set to a non-zero
value, it adds code to restrict the unlocking of a mutex to the mutex owner (that’s the task that currently
locks the mutex). When the value assigned to OS_MTX_OWN_UNLOCK is positive, all mutexes are under the
unlocking protection. When the value assigned to OS_MTX_OWN_UNLOCK is negative, mutexes are by
default under the unlocking protection and the feature can be enabled and disabled with the
MTXignoreOwn() and MTXcheckOwn() components. When this feature is enabled on a mutex, a
non-owner task unlocking that mutex is a do-nothing operation, with report of an error.

Availability:

Abassi: Version 1.245.219 and up

mAbassi: Version 1.55.55 and up

µAbassi: Unsupported

4.1.28 OS_NAMES
Names (“C” strings) can be attached to individual tasks, semaphores, mutexes, and mailboxes to identify
them at run-time. Setting this build option to a value of zero does not attach names to services; setting it to
a non-zero value performs the attachment.

There are three reasons why one would choose to use named services. First, it simplifies the debugging
when using the logging facilities; without names, all services could only be identified with the pointer to
their descriptor (“C” pointers). Second, it allows the application to not use global variables to access the
services. Third, when opening a named semaphore, mutex or mailbox, the Abassi RTOS uses a run-time
safe opening technique. The run-time safe feature is such that if the semaphore, mutex or mailbox already
exists, the already existing descriptor is returned instead of creating the service. This feature removes the
requirement to assign at the design stage which task will create the service: at run-time, the first task using
the creation component will be the one that creates the service, and all other tasks running afterward, when
using the creation component for the same service, will get the descriptor to the already existing service.

Setting the build option to a positive value creates a local copy of the string in the service descriptor, and a
negative value memorizes the pointer to the string in the service descriptor. The latter can save memory on
the condition that none of the individual names share memory, e.g. if sprintf() is used to create the
names, but the same destination string is re-used, then all names will be the same.

If the build option OS_LOGGING_TYPE (Section 4.1.17) is set to a non-zero, the build option OS_NAMES is
internally forced to a non-zero value in order for the logging to report meaningful information.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 35

When OS_NAMES is set to a non-positive value, the build option OS_STATIC_NAME (Section 4.1.48) is
internally forced to a value of zero, as there is no need to reserve memory for the different names.

4.1.29 OS_NESTED_INTS
If the target processor supports nested interrupts or if the RTOS interrupt dispatcher, implemented in the
assembly file, has been configured to create nesting interrupts, then this build option must be set to non-
zero. This is required because even though the Abassi RTOS does not disable interrupts, this statement is
true only with non-nested interrupts. A very small critical region exists when interrupts are nested and this
build option insert a tiny interrupt protection code. The interrupt dispatcher in the assembly file of many
processors can be set to operate with either non-nested, or nested interrupt. The OS_NESTED_INTS build
option must be set the same as how the assembly file set-up configures the interrupt dispatcher in there.

On some processors, this build option is overloaded, as it is internally forced to the only mode
implemented in the interrupt handler. Consult the processor / compiler porting documents for your target
platform to get the full information on what is available.

4.1.30 OS_OUT_OF_MEMORY
The build option OS_OUT_OF_MEMORY is one of the few options that is not required to be defined. When
defined and set to a non-zero value, it adds code to verify possible memory allocation issues. Most of the
problems encountered when configuring Abassi for an application are related to the amount of memory
and the number of services allocated through the OS_STATIC_???? build options. Defining the build
option OS_OUT_OF_MEMORY inserts dedicated code that will stop the application exactly where a memory
problem occurs. As it is expected this feature is only enabled for debugging, it is assumed a debugger is
used and as such, the specific service that is running out of memory can be determined by looking at the
source code. The trap code is a macro named OS_CHK_OOM(); if the application is stopped at such a
statement, then an out of memory condition was encountered. The build option that must be upgraded is
stated in comments.

Alternatively, if the logging facilities (See sections 4.1.17 and 6.12) are enabled, then an error message
indicating the build option to upgrade is generated before stopping the application.

When an out of memory condition is detected, the processor enters and remains in the function OStrap().
Refer to OStrap() (Section 6.14.6) for a list of the errors that are trapped.

4.1.31 OS_PERF_MON
The build option OS_PREF_MON is new in Abassi version 1.255.277 and mAbassi version 1.67.66. When
defined and set to a non-zero value, it adds a callback to the function PerfMon() immediately before the
optional callback OSpreContext() (See section 4.1.32), which is before the context switch.

The performance monitoring facilities collect statistics on all task operations. To do so, a timer is used and
through the value assigned to OS_PERF_MON, can be selected between the RTOS timer tick (G_OStimCnt;
See section 6.7.15) or a port specific fine time resolution timer:

OS_PERF_MON == 0 : No performance monitoring

OS_PERF_MON > 0 : RTOS timer period / OS_PERF_MON

OS_PERF_MON < 0 : Port Specific timer period / -OS_PERF_MON

OS_PERF_MON == 0x7FFFFFFFL : Port specific timer set-up by Abassi without call to
PerfMon()

Refer to section 6.13 for more information on the performance monitoring facilities.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 36

4.1.32 OS_PRE_CONTEXT
The build option OS_PRE_CONTEXT is new in Abassi version 1.255.277 and mAbassi version 1.67.66.
When defined and set to a non-zero value, it adds a callback to the function OSpreContext()
immediately before a context switch. This could be used, for example, for per task data memory bank
selection or to add statistics collection, alike the performance monitoring (See section 4.1.31). Application
specific data can be held in the task descriptors through the use of the build option OS_TASK_XTRA_FIELD
(See section 4.1.55).

The function prototype OSpreContext() is:
void OSpreContext(TSK_t *TaskNext, TSK_t *TaskNow);

The argument TaskNext is the next task to run, and TaskNow is the current running task that will be
pre-empted or block upon context switch.

The callback OSpreContext()operates inside the kernel, therefore it is not possible to use any Abassi
services in the callback. If a service call is performed in the callback, the application will most likely
misbehave, even crash. As it is operating inside the kernel, the callback will never be pre-empted (except
by interrupts) and in the case of the multi-core mAbassi, switching between when in the callback cannot
happen.

4.1.33 OS_PRIO_CHANGE
If the build option OS_PRIO_CHANGE is non-zero, it enables the Abassi RTOS to allow the run-time
change of priority tasks.

If either the build option OS_MTX_INVERSION (Section 4.1.26) or the build option
OS_STARVE_WAIT_MAX (Section 4.1.43) are non-zero, the value of OS_PRIO_CHANGE is internally forced
to a non-zero value, as both the mutex priority inversion protection and the task starvation protection
mechanisms rely on modifying the priority of tasks during run-time.

4.1.34 OS_PRIO_MIN
The value of this build option informs the Abassi RTOS what is the highest numerical value it needs to
handle in the application; the largest numerical priority value is the lowest priority level in the application.
The Idle Task, or its equivalent, must always be set to the lowest priority; therefore, the numerical value of
the Idle Task priority must be set to OS_PRIO_MIN. No task can have its priority set to a numerical value
larger than OS_PRIO_MIN; if this restriction is not respected, it will most likely provoke a crash of the
Abassi RTOS.

4.1.35 OS_PRIO_SAME
To enable the Abassi RTOS to support multiple tasks running at the same priority, this build option must
be set to a non-zero value. If it is set to zero and multiple tasks at the same priority are created, duplicate
priority tasks will never run and will “disappear” from the application.

If either the build option OS_ROUND_ROBIN (Section 4.1.36) or OS_STARVE_WAIT_MAX (Section 4.1.43)
are non-zero, the value of OS_PRIO_SAME is internally forced to a non-zero value.

4.1.36 OS_ROUND_ROBIN
Setting this build option to a non-zero value includes the code for round robin (also known as time slicing).
The value indicates the maximum period in microseconds for the time slice. This is the maximum
continuous CPU time allocated to a running task, when one or more tasks at the same priority are ready to
run.

If the value of this build option is negative, it enables the run-time setting of the maximum allowed CPU
time per slice on a per task basis. Upon creation, all tasks have their time slice set to |OS_ROUND_ROBIN|
(absolute value), and this value can be modified during run-time for selected tasks. When the build option
is negative, it also becomes possible to set-up the time slice of some task such that they run until
completion/blocking, while others tasks at the same priority remain under round robin CPU distribution.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 37

When round robin is enabled, the value assigned to the build option OS_PRIO_SAME (Section 4.1.35) is
internally overloaded. The value of this build option must be equal or greater than the value of
OS_TIMER_US (Section 4.1.59); if this condition is not respected, the numerical value of
OS_ROUND_ROBIN is internally forced to the value of OS_TIMER_US, meaning the round robin time slice
duration is a single timer tick.

If the build option OS_COOPERATIVE (Section 4.1.4) is non-zero, OS_ROUND_ROBIN is internally
overloaded and forced to a value of zero.

4.1.37 OS_RUNTIME
When this build option is set to a non-zero value, the Abassi RTOS supports the creation of tasks,
semaphores, mutexes and mailboxes at run-time. If this build option is positive, the Abassi RTOS still
allows the creation of services defined at compile time for tasks (using the macro TSK_STATIC(), Section
6.3.2), semaphores (with SEM_STATIC(), Section 6.4.2), mutexes (with MTX_STATIC(), Section 6.5.2),
and MBX_STATIC(), Section 6.7.2). When all services are created at compile/link time, with
TSK_STATIC(), SEM_STATIC(), MTX_STATIC() and MBX_STATIC(), then a significant code size
reduction is achieved by setting this build option to zero.

If this option is negative, the services are created at run-time, but the creation of services at compile time is
not available. For MISRA-C:2004 compliance, this build option should be set to a negative value.

4.1.38 OS_SEARCH_ALGO
The build option OS_SEARCH_ALGO selects the algorithm used to determine the next task to run when the
currently running task becomes blocked or suspended. The next task to run could be either a task at the
same priority or lower priority.

For most algorithms, an array is used to hold the head of linked lists of tasks ready to run at the same
priority. The advantage of the array is that it makes the insertion of a task that became unblocked quite
fast. The index is the priority, and all there is left to do is to insert the task in the linked list. But when the
running task becomes blocked or suspended, this array needs to be traversed to determine the next task to
run. So, the array helps at speeding up the operations after a task gets unblocked, but slows down the
operations when a task gets blocked.

Consult the processor/compiler porting documents for your target platform to obtain all the information on
how to set this build option in an optimal manner according to your application.

If the build option OS_COOPERATIVE (Section 4.1.4) is non-zero, OS_SEARCH_ALGO is internally
overloaded and forced to a negative value, since in cooperative mode the most efficient search is the 2-
dimensional linked list.

4.1.38.1 OS_SEARCH_ALGO == 0
The basic search, when the build option value is zero, simply traverses the array holding the information
for each possible priority in the system (OS_PRIO_MIN, Section 4.1.34) checking entry after entry until the
first lower priority task ready to run is found.

4.1.38.2 OS_SEARCH_ALGO == 1
When the build option is set to 1, the search uses a faster algorithm. An array of bytes (char) holds 8 bits
indicating if the corresponding priority (priority value == Bit# + 8 * Byte#) has a task ready or not. This
char array is traversed to find the first non-zero byte entry, which indicates a ready to run task amongst
the group of 8. Therefore, for K*8 tasks, a maximum of K iterations is performed for the first step. Once
the group of 8 priorities with a ready to run task is found, the basic search is used, starting from the
associated index.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 38

4.1.38.3 OS_SEARCH_ALGO > 1
When this build option is greater than 1, the search uses a successive approximation algorithm. First, an
array of type int holds a bit field indicating if the corresponding priority has a task ready to run or not.
This array is traversed to find the first entry with a ready to run task. For example, if the int holds 32 bits,
for K*32 tasks, a maximum of K iterations is performed for the first step. Second, for int of 2N bit, the
entry of the array holds the information for 2N consecutive priorities. Using successive approximation
requires N iterations to find the next task to run. The value to assign to OS_SEARCH_ALGO is the power of
two over which the search is to be performed; e.g. for 16 bits, a value of 4, and for 32 bits, a value of 5. It
is very important to not exceed the size of an int: a smaller value is OK.

Note: If the processor does not have a barrel shifter, i.e. the capability to shift data by more than a one
bit in a single cycle, using OS_SEARCH_ALGO with a value greater than 1 will probably deliver a
slower search than if it was set to 1.

4.1.38.4 OS_SEARCH_ALGO < 0
When this build option is negative, the algorithm used does not rely on an array, but instead maintains a 2-
dimensional linked list. The array used by the other algorithms is replaced by one dimension of the 2D
linked list.

The 2D linked list delivers opposite performance to what the array provides: determining the next task to
run is the fastest amongst all algorithms, but unblocking a task is slower, and the task switches during
round robin require more CPU.

4.1.39 OS_SEM_XTRA_FIELD
The build option OS_SEM_XTRA_FIELD is new in Abassi version 1.264.239 and mAbassi version 1.82.80.
When defined and set to a non-zero value, it informs Abassi to add in the semaphore / mutex descriptors
OS_SEM_XTRA_FIELD scratch pad entries. These entries are of standard “C” type intptr_t, meaning
they can hold either an int or any types of pointer. The data is accessed through the field XtraData[]
in the semaphore / mutex descriptor (of type SEM_t and MTX_t). The application usable entries in
XtraData[] are the first OS_SEM_XTRA_FIELD entries; if Abassi internally needs to use entries in
XtraData[] it adds extra entries and accesses the entries at and above index OS_SEM_XTRA_FIELD.

4.1.40 OS_STACK_CHECK
The build option OS_STACK_CHECK is one of the few options that is not required to be defined. When
defined and set to a non-zero value, it adds code to perform the monitor the stack usage of each task. If a
task encounters a stack overflow, right before a context switch, a logging message is generated (if logging
enable through OS_LOGGING_TYPE, see Section 4.1.17) and the application is stopped: the interrupts are
globally disabled and an infinite loop is entered. This method of trapping the stack overflows was selected
as the most likely need for the stack monitoring is during the development and debugging phase. One
must remember it is still possible that an application crash happens before the monitoring feature can trap
the stack overflow as the overflow could corrupt anything in the application. When an overflow is trapped,
the descriptor of task that has suffered the stack overflow is held in the RTOS internal global variable
G_OStaskNow.

When the stack monitoring is enable, this feature also give access to components to get the maximum stack
size that has been used and the minimum unused stack size (TSKstkFree() and TSKstkUsed(), see
section 6.3.27 and 6.3.28). Using these two components can greatly ease the process of selecting the
optimal stack size for each task.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 39

Releases on or after 2019 add the capability to check the stack of the current (or all cores in the case of
mAbassi) every time the kernel is entered (this does not apply when a kernel request is performed in an
interrupt). If the build option OS_STACK_CHECK is set to a positive value, only the stack of the task to be
blocked before the context switch is checked as was done in the original implementation. If the build
option OS_STACK_CHECK is set to a negative value, then the stack(s) is (are) is also checked every time the
kernel is entered. A total of -OS_STACK_CHECK words entries at the top of the stack are checked, up to a
maximum of 8 entries. If the value of OS_STACK_CHECK is less than -8 the number of words checked
remains at 8.

When a stack overflow is detected, the processor enters and remains in the function OStrap(). Refer to
OStrap() (Section 6.14.6) for a list of the errors that are trapped.

4.1.41 OS_STARVE_PRIO
When the task starvation protection (Modified Priority Aging) feature is enabled with the build option
OS_STARVE_WAIT_MAX (Section 4.1.43) set to a non-zero value, OS_STARVE_PRIO specifies the priority
threshold of the task starvation protection. All tasks operating at a priority lower than (or numerical value
larger than) OS_STARVE_PRIO become protected against the problem of task starvation. When these tasks
are in the ready to run state, but never achieve the running state, they get their priority increased by one
level every OS_STARVE_WAIT_MAX timer ticks (up to the priority OS_STARVE_PRIO). This priority
increase occurs until they reach the running state, and run long enough. Once their priority is
OS_STARVE_PRIO the task remains at that priority until it runs long enough.

If the value of this build option is negative, it enables the run-time setting of the priority threshold on a per
task basis. When negative, upon creation, all tasks have their priority threshold value set to
|OS_STARVE_PRIO| (absolute value), and this value can be modified during run-time for selected tasks.

Tasks at the lowest priority (OS_PRIO_MIN, Section 4.1.34) are never under starvation protection. This
was done since the Idle Task is the lowest priority task and, in many power sensitive applications, the Idle
Task is the task that puts the processor into sleep mode. Having the Idle Task under starvation protection
would periodically put the processor into sleep when it shouldn’t be.

If the build option OS_STARVE_WAIT_MAX (Section 4.1.43) is set to zero, which means the starvation
protection feature is not part of the build, then OS_STARVE_PRIO is internally forced to a zero value.

4.1.42 OS_STARVE_RUN_MAX
When the task starvation protection feature is enabled with the build option OS_STARVE_WAIT_MAX
(Section 4.1.43) set to a non-zero value, OS_STARVE_RUN_MAX specifies the maximum number of timer
ticks a task is allowed to run at an increased priority.

If the value of this build option is negative, it enables the run-time setting of the maximum run time on a
per task basis. Upon creation, all tasks have their maximum run time value set to |OS_STARVE_RUN_MAX|
(absolute value), and this value can be modified during run-time for selected tasks.

If the build option OS_STARVE_WAIT_MAX (Section 4.1.43) is set to zero, which means the starvation
protection feature is not part of the build, then OS_STARVE_RUN_MAX is internally forced to a zero value.

If the build option OS_STARVE_WAIT_MAX (Section 4.1.43) is set to non-zero, which means the starvation
protection feature is part of the build, then OS_STARVE_RUN_MAX must be set to a non-zero value.

4.1.43 OS_STARVE_WAIT_MAX
This build option enables the task starvation protection when it is set to a non-zero value. A non-negative
value specifies the maximum number of timer ticks a task can remain at the same priority level when stuck
in the ready to run state. If the task never achieves the running state during this time, the task gets its
priority level raised, and the sequence goes again until the task reaches the running state or the maximum
priority level specified by OS_STARVE_PRIO (Section 4.1.41).

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 40

When OS_STARVE_WAIT_MAX is set to a non-zero value, both build options OS_PRIO_CHANGE (Section
4.1.33) and OS_PRIO_SAME (Section 4.1.35) are internally forced to a non-zero value in order to allow
dynamic priority changes and the existence of tasks at the same priority. This is necessary because the task
starvation protection relies on raising the priority level of tasks one level at a time, and because of that, two
or more tasks will sometimes have the same priority.

If the value of this build option is negative, it enables the run-time setting of the maximum wait time on a
per task basis. Upon creation, all tasks will have their maximum wait time value set to
|OS_STARVE_WAIT_MAX|, (absolute value), and this value can be modified during run-time for selected
tasks.

If this build option is non-zero, the build option OS_TIMER_US (Section 4.1.59) must be set to the correct
value used in the application otherwise an error message will be generated at compile time.

4.1.44 OS_STATIC_BUF_MBLK
The build option OS_MEM_STATIC_BUF_MBLK is one of the few options that is not required to be defined.
When defined and set to a positive value it informs the Abassi RTOS to reserve memory at compile/link
time. This memory is used to hold the memory used for the buffers of all the memory block management
descriptor. The value specifies the total number of bytes to reserve for all memory block pool created in
the application. Refer to section 6.10 for more details on how to determine the minimum memory size that
must be reserved. If this build option is not defined or is defined and zero, OSalloc() (Section 6.14.3) is
used to dynamically allocate the memory at run time when the memory block management service are part
of the build when OS_MEM_BLOCK (Section 4.1.23) is set to a non-zero value.

If this build option is non-zero, then the build option OS_STATIC_MBLK (Section 4.1.46) must also be set
to a non-zero value.

If the build option OS_MEM_BLOCK (Section 4.1.23) is zero, this build option is internally forced to zero.

4.1.45 OS_STATIC_BUF_MBX
Setting this build option to a positive value informs the Abassi RTOS to reserve memory at compile/link
time. This memory is used to hold the buffers of all mailboxes. The value specifies the total number of
buffer elements (or messages) to reserve, and it must be set to a value greater or equal to the sum of all
mailbox buffer sizes. If this build option is zero, OSalloc() (Section 6.14.3) is used to dynamically
allocate the memory at run time.

If this build option is non-zero, then the build option OS_STATIC_MBX (Section 4.1.47) must also be set to
a non-zero value.

If the build option OS_MAILBOX (Section 4.1.18) is zero, this build option is internally forced to zero.

4.1.46 OS_STATIC_MBLK
The build option OS_MEM_STATIC_MBLK is one of the few options that is not required to be defined.
When defined and set to a positive value it informs the Abassi RTOS to reserve memory at compile/link
time. This memory is used to hold the descriptors of all the memory block management; this is not the
memory used by the buffers in the pool, it is the memory to hold the descriptor of the memory pools. The
value specifies the total number of memory block management descriptors to reserve, and it must be set to
a value greater or equal to the total number mailboxes in the application. If the build option is zero,
OSalloc() (Section 6.14.3) is used to dynamically allocate the memory at run time when the memory
block management service are part of the build when OS_MEM_BLOCK (Section 4.1.23) is set to a non-zero
value.

If the build option OS_MEM_BLOCK (Section 4.1.23) is zero, this build option is internally forced to zero

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 41

4.1.47 OS_STATIC_MBX
Setting this build option to a positive value informs the Abassi RTOS to reserve memory at compile/link
time. This memory is used to hold the descriptors of all mailboxes. The value specifies the total number
of mailbox descriptors to reserve, and it must be set to a value greater or equal to the total number
mailboxes in the application. If the build option is zero, OSalloc() (Section 6.14.3) is used to
dynamically allocate the memory at run time .

If the build option OS_MAILBOX (Section 4.1.18) is zero, this build option is internally forced to zero

This build option is not related in any way to the macro MBX_STATIC() (Section 6.7.2). The latter creates
and initializes a mailbox at compile/link time, while the build option OS_STATIC_MBX reserves the
memory used to create mailboxes at run time.

4.1.48 OS_STATIC_NAME
Setting this build option to a positive value informs the Abassi RTOS to reserve memory at compile/link
time. This memory is used to hold the names of all tasks, semaphores, mutexes and mailboxes. These
services are named when the build option OS_NAMES (Section 4.1.28) is non-zero. The memory reserved
by OS_STATIC_NAME is used when names strings are copied; i.e. when the build option OS_NAMES is
positive. The value of the build option OS_STATIC_NAME specifies the total number of characters
(including the terminating null characters) to reserve, and it must be greater or equal to the total memory
needed for all the names in the application. If the build option is zero, OSalloc() (Section 6.14.3) is
used to dynamically allocate the memory at run-time.

If the build option OS_NAMES is set to zero, then OS_STATIC_NAME is internally forced to zero.

4.1.49 OS_STATIC_SEM
Setting this build option to a positive value informs the Abassi RTOS to reserve memory at compile/link
time. This memory is used to hold the semaphore and mutex descriptors. The value specifies the total
number of semaphore and mutex descriptors to reserve, and it must be greater or equal to the total number
semaphores and mutexes in the application. If the build option is zero, OSalloc() (Section 6.14.3) is
used to dynamically allocate the memory at run time.

This build option is not related in any way to the macros SEM_STATIC() (Section 6.4.2) or
MTX_STATIC() (Section 6.5.2). SEM_STATIC and MBX_STATIC create and initialize a semaphore or
mutex at compile/link time, while the build option OS_STATIC_MBX reserves the memory used to create
these services at run-time.

4.1.50 OS_STATIC_STACK
Setting this build option to a positive value informs the Abassi RTOS to reserve the memory needed by the
stacks of all task (excluding Adam & Eve and the Idle Task; the size of the Idle Task stack is specified
with the build option OS_IDLE_STACK, see Section 4.1.16) at compile/link time. The value specifies the
number of char to reserve. There is no overhead to include to this number; e.g. if the application has 9
tasks requiring 1024 char each, the minimum value to specify is 9216 (9*1024). Specifying a larger value
will waste memory. If the build option is zero, OSalloc() (Section 6.14.3) is used to dynamically
allocate the stack memory at run-time.

The stack size reserved when using the special macro TSK_STATIC() (Section 6.3.2) that creates and
initializes tasks at compile/link does not use of the memory reserved by OS_STATIC_STACK.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 42

4.1.51 OS_STATIC_TASK
Setting this build option to a positive value informs the Abassi RTOS to reserve memory at compile/link
time. This memory is used to hold the task descriptors, and it must be greater or equal to the total number
of tasks in the application. The tasks associated to the functions IdleTask() and main() must be
included in this value. If the build option is zero, OSalloc() (Section 6.14.3) is used to dynamically
allocate the memory at run

This build option is not related in any way to the macro TSK_STATIC() (Section 6.3.2). The latter creates
and initializes a task at compile/link time, while the build option OS_STATIC_TASK reserves the memory
used to create tasks at run time.

Note: If the build option OS_STATIC_TASK is set to zero and the build option OS_IDLE_TASK (section
4.1.16) is non-zero, provision must be made to make sure enough data space is available for the
allocation of the memory required by the task descriptor used by the Idle Task. This specifically
applies when OS_ALLOC_SIZE (Section 4.1.1) is non-zero, then Idle Task descriptor will use
memory from this pre-allocate memory pool.

4.1.52 OS_STATIC_TIM_SRV
Setting this build option to a positive value informs the Abassi RTOS to reserve memory at compile/link
time. This memory is used to hold the timer service descriptors. The value specifies the total number of
timer services descriptors to reserve, and it must be greater or equal to the total number timer services in
the application. If the build option is zero, OSalloc() (Section 6.14.3) is used to dynamically allocate the
memory at run time.

This build option is not related in any way to the macro TIM_STATIC() (Section 6.9.1). TIM_STATIC
creates and initializes a timer service at compile/link time, while the build option OS_STATIC_TIM_SRV
reserves the memory used to create the timer services at run-time.

4.1.53 OS_SYS_CALL
The build option OS_SYS_CALL is optional and only needed when the Abassi System Calls Layer is
included in an application. When the System Calls Layer is one of the components of an application, then
OS_SYS_CALL must be defined and set to a non-zero value. For more information on the System Calls
Layer, refer to [R6].

4.1.54 OS_TASK_SUSPEND
If the application needs to put tasks in the suspended state, then this build option must be set to a non-zero
value. When tasks only suspend themselves, there is no need to turn on this feature; it is only needed when
Task A suspends Task B. When this build option is set to a non-zero value, a special feature is supported
in the Abassi RTOS that ensures when a task is to be suspended that it does not go into the suspended state
until it has unlocked all the mutexes it owns.

4.1.55 OS_TASK_XTRA_FIELD
The build option OS_TASK_XTRA_FIELD is new in Abassi version 1.255.277 and mAbassi version
1.67.66. When defined and set to a non-zero value, it informs Abassi to add in the task descriptors
OS_TASK_XTRA_FIELD scratch pad entries. These entries are of standard “C” type intptr_t, meaning
they can hold either an int or any types of pointer. The data is accessed through the field XtraData[]
in the task descriptor (of type TSK_t). The field XtraData[] is always located at the beginning of the task
descriptor data structure, right after the preserved stack pointer entry; therefore, if access to XtraData[]
must be performed in an assembly coded module, the location is not affected by any of the build options.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 43

There are some ports that could use the first few entries of the field XtraData[], although all
OS_TASK_XTRA_FIELD entries are available, the first available entry may not be at index 0. One example
is with GCC using the newlib “C” library; if re-entrance protection is enabled by setting the port specific
build option OS_NEWLIB_REENT to a non-zero value, then the first entry in XtraData[] is internally used
by Abassi. The “C” define OX_TASK_1ST_XTRA_FIELD is provided by Abassi to indicate the index of the
first free entry in XtraData[]; entries in XtraData[] at indexes less than OX_TASK_1ST_XTRA_FIELD
are not available and must never be modified.

4.1.56 OS_TIM_EXTRA_FIELD
The build option OS_TIM_XTRA_FIELD is new in Abassi version 1.264.239 and mAbassi version 1.82.80.
When defined and set to a non-zero value, it informs Abassi to add in the timer services descriptors
OS_TIM_XTRA_FIELD scratch pad entries. These entries are of standard “C” type intptr_t, meaning
they can hold either an int or any types of pointer. The data is accessed through the field XtraData[]
in the timer service descriptor (of type TIM_t). This build option is ignored if the build option
OS_TIMER_SRV (Section 4.1.59) is set to 0. The application usable entries in XtraData[] are the first
OS_TIM_XTRA_FIELD entries; if Abassi internally needs to use entries in XtraData[] it adds extra
entries and accesses the entries at and above index OS_TIM_XTRA_FIELD.

4.1.57 OS_TIMEOUT
The Abassi RTOS offers the option of using expiry timeouts when a task is waiting for a semaphore, trying
to lock a mutex, waiting for an event, or retrieving/depositing from/in a mailbox. Setting this build option
to a non-zero value includes the code to support this feature during the compilation.

When the timeout argument of components that require such information has a positive value positive, and
OS_TIMEOUT is set to a value of zero, it remaps the positive timeout value into a value of zero. When
OS_TIMEOUT is negative, the positive timeout value arguments are remapped to a negative value. More
information is given in Section 4.2.11.1 on the purpose of these two ways for disabling the timeouts.

If this build option is a positive value, the build option OS_TIMER_US (Section 4.1.59) must be set to the
correct value used in the application, otherwise an error message will be generated at compile time.

4.1.58 OS_TIMER_CB
This build option instructs the Abassi RTOS to perform a callback to a user function when the timer
facilities (see OS_TIMER_US, Section 4.1.59) are enabled. This function must be named TIMcallBack()
(Section 6.7.16). A value of zero disables the timer callback facilities. A positive value specifies the
period of the callback; e.g. if OS_TIMER_CB is set to a value of 4, it will make the timer service call
TIMcallBack() once every 4 timer periods, as specified by OS_TIMER_US build option. If the build
option OS_TIMER_CB is positive, OS_TIMER_US must be set to the correct value.

Note: The callback function always operates within the timer interrupt context.

4.1.59 OS_TIMER_SRV
This build option includes the code to support the timer services. The timer services allow an application
to perform a delayed operation or periodic operations.

4.1.60 OS_TIMER_US
If the timer facilities are used (see OS_ROUND_ROBIN, Section 4.1.36, OS_STARVE_WAIT_MAX, Section
4.1.43, OS_TIMEOUT, Section 4.1.57, and OS_TIMER_CB, Section 4.1.58), this build option specifies, in
microseconds, the period of the timer; a value of zero disables the timer facilities.

The value specified must be positive.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 44

4.1.61 OS_USE_TASK_ARG
Each task can be supplied with a pointer to any type of information. This feature is useful when the same
code/function is used to implement multiple tasks. A non-zero value for this build option enables this
capability.

Most RTOS supply this information as the argument to the task function. For code compatibility when this
feature is either enabled or disabled, the information is not exchanged through the function arguments, but
it is exchanged using the TSKsetArg() (Section 6.3.19) and TSKgetArg() (Section 6.3.6) components.

4.1.62 OS_WAIT_ABORT
The build option OS_WAIT_ABORT is an option that does not need to be defined. When defined and set to
a non-zero value, it make available components to force an un-blocking of all the tasks blocked on a
service. This is alike forcing a timeout expiry on all task blocked on a service, even if the blocking was a
forever blocking. The components made available are SEMabort(), MTXabort(), EVTabort() and
MBXabort(). If the build option OS_WAIT_ABORT is zero or it is not defined, then these four components
are not available.

4.2 Build Option Selection
This section explains, step by step, how to set each of the build options to configure the Abassi RTOS to
fulfill all the needs of the target application. Reading through every one of the following sub-section
should be sufficient for the reader to understand what values to set for each of the build options described
in the previous section.

4.2.1 Cooperative
If it is desired to have the Abassi RTOS operate in a cooperative mode (emulation of a cooperative RTOS),
set the build option OS_COOPERATIVE to a non-zero value, as shown in the following table:

Table 4-1 Build option cooperative mode

#define OS_COOPERATIVE 1 /* Operate in cooperative mode, not preemptive */

To have the RTOS operate in its native preemptive mode, set the build option OS_COOPERATIVE to a value
of zero, as shown in the following table:

Table 4-2 Build option for preemptive mode (native)

#define OS_COOPERATIVE 0 /* Operate in preemptive mode, not cooperative */

4.2.2 Priority Span
When an application is architected to use a RTOS, one key decision to make is to select the number of
different priority levels the application will require for all the tasks. Once this number is determined, the
Abassi RTOS is informed of that value through the build option OS_PRIO_MIN:

Table 4-3 Build option OS_PRIO_MIN

#define OS_PRIO_MIN PPP /* Lowest priority numerical value */

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 45

The value PPP to set for the build option OS_PRIO_MIN is the numerical value of the lowest task priority
required in the application, which is not exactly the number of priority levels. As the highest priority level
has a numerical value of 0, if an application requires N distinct priorities, then the build option
OS_PRIO_MIN must be set to N-1. OS_PRIO_MIN is the numerical priority value at which the Idle Task
operates.

4.2.3 One or multiple tasks at same priority
Abassi offers support of either a single task per priority or multiple tasks at the same priority. When a
single task per priority is selected, some code and CPU usage reduction is achieved. But if either round
robin or the task starvation protection mechanism is needed, the Abassi RTOS must be configured for
multiple tasks at the same priority. When any of the two previous features is activated, Abassi internally
overrides the OS_PRIO_SAME build option to force the system to use multiple tasks per priority.

If the system is configured for a single task per priority, and the priority inversion protection is enabled,
one must be very careful on the priority assigned to each task. More explanations are given in the Priority
Inversion section (Section 7) on how to deal with priority inversion protection in an application with one
task per priority.

To configure the RTOS to only support a single task per priority, the build option OS_PRIO_SAME must be
set to a value of zero, as shown in the following table:

Table 4-4 Build option for one task per priority

#define OS_PRIO_SAME 0 /* Do not support multiple tasks at the same priority */

If the application requires multiple tasks at the same priority, set the build option OS_PRIO_SAME to a non-
zero value, as shown in the next table:

Table 4-5 Build option for many tasks at the same priority

#define OS_PRIO_SAME 1 /* Support multiple tasks at the same priority */

4.2.4 Task suspension
Having Task A capable of suspending Task B is an optional feature in Abassi. It was decided to make it
optional as many applications do not need to suspend tasks.

Abassi offers a unique feature when a task is to be suspended: if the task to suspend locks one or more
mutexes, the suspension is postponed until the task relinquishes all locks on mutexes. This feature
safeguards the application against creating a mutex deadlock. If the application does not need to suspend
tasks, then disabling this feature saves code and CPU.

To configure the RTOS to not support task suspension, the build option OS_TASK_SUSPEND must be set to
a value of zero, as shown in the following table:

Table 4-6 Build option without task suspension

#define OS_TASK_SUSPEND 0 /* Tasks cannot be suspended */

If the application needs to suspend tasks, then set OS_TASK_SUSPEND to a non-zero value, as shown in the
next table:

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 46

Table 4-7 Build option with task suspension

#define OS_TASK_SUSPEND 1 /* Tasks can be suspended */

When the task suspension feature is not part of a build, it is still possible for a task to self-suspend. Having
the task still able to self-suspend was determined to be allowable as it is assumed that when the application
will need to have a task self-suspend, the operation will be only performed when the task does not lock any
mutexes.

4.2.5 Mailboxes
The mailbox service is an optional feature of the Abassi RTOS. If the application would benefit by having
access to a mailbox system, then set the OS_MAILBOX built option to a non-zero value, as shown in the
following table:

Table 4-8 Build option to include mailboxes

#define OS_MAILBOX 1 /* Enable the handling of mailboxes */

If there is no need for mailboxes in the application, set the build option OS_MAILBOX to zero, as shown in
the following table:

Table 4-9 Build option to not include mailboxes

#define OS_MAILBOX 0 /* Disable the handling of mailboxes */

4.2.6 Events
Events flags are a simple synchronization mechanism, and are another optional feature of the Abassi
RTOS. If the application would benefit by using event flags, then set the OS_EVENTS built option to a non-
zero value, as shown in the following table:

Table 4-10 Build option to include event flags

#define OS_EVENTS 1 /* Enable the handling of event flags */

If there is no need for event flags in the application, set the build option OS_EVENTS to zero, as shown in
the following table:

Table 4-11 Build option to not include event flags

#define OS_EVENTS 0 /* Disable the handling of event flags */

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 47

4.2.7 First Come First Served
By default, all blocking services unblock tasks in a priority ordering. This means that if two or more tasks
are blocked, when they try to access the same unavailable service, the first task to get unblocked upon
resource availability is the task with the highest priority amongst all blocked task. This mode of
unblocking can be modified to operate on a First Come First Served and enabled on a case by case basis.
When a resource is configured to operate in the First Come First Served mode, the first task that got
blocked is the first task to get unblocked. To be able to have services operate in a First Come First Served
mode, the build option OS_FCFS must be set to a non-zero value, as shown in the next table:

Table 4-12 Build option to support FCFS

#define OS_FCFS 1 /* Support the FCFS unblocking mode */

If there is no need for First Come First Serve unblocking ordering in the application, set the build option
OS_FCFS to zero, as shown in the following table:

Table 4-13 Build option to not support FCFS

#define OS_FCFS 0 /* Do not support the FCFS unblocking mode */

4.2.8 Task Arguments
It is possible to exchange information between tasks through the “Task Argument” feature. This is alike
what most RTOS offer, which is an argument to the function attached to the task. In Abassi it was decided
to not use the function arguments because if argument passing is never used, this means some code in the
RTOS is useless. As this is optional, passing information through the function argument becomes
problematic, as the function prototype is different if the feature is enable or disable. Instead, two RTOS
components (see TSKgetArg(), Section 6.3.6) and TSKsetArg(), Section 6.3.19) are supplied to perform
the exchange operation.

If there is a need to exchange arguments in the application, set the build option OS_USE_TASK_ARG to a
non-zero value:

Table 4-14 Build option to support task arguments

#define OS_USE_TASK_ARG 1 /* Support task arguments */

If there is no need to exchange arguments in the application, set the build option OS_USE_TASK_ARG to
zero:

Table 4-15 Build option to not support task Arguments

#define OS_USE_TASK_ARG 0 /* Do not support task arguments */

4.2.9 Data Memory
The Abassi RTOS requires memory to hold the information needed by the descriptors of all the services.
This data memory can be distributed using 4 different methods. The first 3 methods are used for run-time
creation of services, while the fourth method does not create the services at run-time but instead creates
them at compile/link time:

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 48

Ø Dynamically allocated through the generic malloc()facility

Ø Dynamically allocated through a facility internal to Abassi

Ø Reserved memory pool per service

Ø Static services created at compile and link time

Each method has advantages and disadvantages.

Ø malloc() uses the generic “C” library memory allocation facility and requires almost no set-up.
But, as malloc() is a is paired with free(), there is always extra memory allocated to manage the
allocation / release of the memory blocks. In the case of Abassi, as this memory is never released,
this extra memory becomes wasted data memory. If the target platform is tight on the data
memory available, malloc() may not be a good choice. If there is plenty of data memory, then
malloc() is quite likely the best choice. However, not all malloc() implementations are
multithread-safe. When Abassi internally uses malloc(), a mutex is assigned to malloc() to
protect it, but using malloc() anywhere else in the application is not protected. If it is necessary
to make malloc() multithread-safe, see Section 12, or use OSalloc (Section 6.14.3) instead.

Ø Abassi’s internal dynamic memory allocator operates exactly like malloc(), except it does not
use extra memory as malloc() does. Therefore, compared to malloc(), the data memory is
fully utilized without losses. The set-up for this memory allocation method is quite simple, but
when the memory is exhausted, there is no report on the condition.

Ø Instead of using dynamic memory allocation to retrieve from a common memory pool the
aggregate size needed for each service, dedicated memory pools can be created: one memory pool
for the tasks, another for the semaphores/mutexes, and one for the mailboxes. Compared to the
previous method, this method is a bit simpler to use, as it does not require the user to know what
are the memory sizes of the different services. The disadvantage of this method is that because
the memory is distributed amongst multiple pools, there is a need for very good planning of the all
the services needed in the application in order to determine the optimal sizes to reserve.

Ø The compile/link time creation of the services is the easiest and most optimal method as there is
never a danger of running out memory, and only the needed memory is reserved. The
disadvantage is that, depending on the compiler, it may not be possible to restart the application
without reloading the binary image on the processor. This situation happens if the compiler (or
compiler configuration) does not reload the initialized data upon start-up. When the compiler (or
compiler configuration) re-initializes data upon start-up, this means the pre-initialized data is kept
in a different part of the data memory, translating into a doubling of the required memory.

4.2.9.1 Data Memory with malloc()
To use malloc() for the run-time creation of services, the build options must be set as shown in the
following table. The comments on the right should be sufficient to allow the reader to understand what
Abassi is doing internally.

Table 4-16 Build options for data memory allocation with malloc()

#define OS_ALLOC_SIZE 0 /* No memory reserved for Abassi’s allocator */
#define OS_RUNTIME 1 /* Run-time memory allocation / service creation */
#define OS_STATIC_MBX 0 /* No memory reserved for this memory pool */
#define OS_STATIC_MBX_BUF 0 /* No memory reserved for this memory pool */
#define OS_STATIC_NAME 0 /* No memory reserved for this memory pool */
#define OS_STATIC_SEM 0 /* No memory reserved for this memory pool */
#define OS_STATIC_STACK 0 /* No memory reserved for this memory pool */
#define OS_STATIC_TASK 0 /* No memory reserved for this memory pool */

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 49

4.2.9.2 Data Memory with Abassi’s allocator
To use Abassi’s internal memory allocator for the run-time creation of services, the build options must be
set as shown in the following table. The comments on the right should be sufficient to allow the reader to
understand what Abassi is doing internally.

Table 4-17 Build options for Abassi’s data memory allocator

#define OS_ALLOC_SIZE NNN /* Memory (bytes) reserved for Abassi’s allocator */
#define OS_RUNTIME 1 /* Run-time memory allocation / service creation */
#define OS_STATIC_MBX 0 /* No memory reserved for this memory pool */
#define OS_STATIC_MBX_BUF 0 /* No memory reserved for this memory pool */
#define OS_STATIC_NAME 0 /* No memory reserved for this memory pool */
#define OS_STATIC_SEM 0 /* No memory reserved for this memory pool */
#define OS_STATIC_STACK 0 /* No memory reserved for this memory pool */
#define OS_STATIC_TASK 0 /* No memory reserved for this memory pool */

In the above table, the definition of OS_ALLOC_SIZE, set to NNN, must be a numerical value that fulfills
the needs of the application, meaning a numerical value specifying a memory size greater or equal to the
number of bytes (char) of all the descriptors, stacks, and name strings created in the application.

4.2.9.3 Data memory with memory pools
To make Abassi use individual memory pools for the run-time creation of services, the build options must
be set as shown in the following table. The comments on the right should be sufficient to allow the reader
to understand what Abassi is doing internally. Consult the previous section (Section 4.1) to obtain more
details on the numerical values to select.

Table 4-18 Build options for multiple memory pools

#define OS_ALLOC_SIZE 0 /* Memory (bytes) reserved for Abassi’s allocator */
#define OS_RUNTIME 1 /* Run-time memory allocation / service creation */
#define OS_STATIC_MBX AAA /* Number of mailboxes in the application */
#define OS_STATIC_MBX_BUF BBB /* Total number of buffers for the mailboxes */
#define OS_STATIC_NAME CCC /* Total number of bytes to hold the names */
#define OS_STATIC_SEM DDD /* Total number of semaphores & mutexes in the app */
#define OS_STATIC_STACK EEE /* Total number of bytes for all task stacks */
#define OS_STATIC_TASK FFF /* Total number of tasks in the application */
#define OS_STATIC_TIM_SRV GGG /* Total number of timer services in the app */

If a memory pool is set to zero (AAA -> FFF) and the corresponding service is created at run-time, then
dynamic memory allocation is used as a fall back mechanism. If the build option OS_ALLOC_SIZE is non-
zero, it will be Abassi’s internal memory allocator that will be used; if OS_ALLOC_SIZE is zero, then
malloc() is used.

4.2.9.4 Data memory at compile time
To not have Abassi create services at run-time, the build options must be set as shown in the following
table. When Abassi is configured this way, a significant amount of code is eliminated. The comments on
the right should be sufficient to allow the reader to understand what Abassi is doing internally.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 50

Table 4-19 Build options for allocation at compile / link time

#define OS_ALLOC_SIZE 0 /* Memory (bytes) reserved for Abassi’s allocator */
#define OS_RUNTIME 0 /* No Run-time memory allocation/service creation */
#define OS_STATIC_MBX 0 /* No memory reserved for this memory pool */
#define OS_STATIC_MBX_BUF 0 /* No memory reserved for this memory pool */
#define OS_STATIC_NAME 0 /* No memory reserved for this memory pool */
#define OS_STATIC_SEM 0 /* No memory reserved for this memory pool */
#define OS_STATIC_STACK 0 /* No memory reserved for this memory pool */
#define OS_STATIC_TASK 0 /* No memory reserved for this memory pool */
#define OS_STATIC_TIM_SRV 0 /* No memory reserved for this memory pool */

4.2.10 Idle Task
The Abassi RTOS needs to always have one or more tasks ready to run / running at the lowest priority
level. This task is known as the Idle Task, meaning it is a task that absorbs the left over CPU when the
application has nothing else to process. Abassi can automatically create the Idle Task, or the application
can “manually” create it. The choice is selected with the build option OS_IDLE_STACK.

To inform Abassi to not create the Idle Task, the OS_IDLE_STACK build option must be set to zero, as
shown in the following table:

Table 4-20 Build option to not create the Idle Task

#define OS_IDLE_STACK 0 /* Do not automatically create the Idle Task */

To inform Abassi to create the Idle Task and make it ready to run, the OS_IDLE_STACK build option must
be set to a non-zero value, as shown in the following table:

Table 4-21 Build option to create the Idle Task

#define OS_IDLE_STACK KKK /* Automatically create the Idle Task */

The KKK in the definition must be set to the numerical value specifying how many bytes (or char) to
reserve for the stack of the Idle Task.

4.2.11 Timer
The Abassi timer facility is required when an application uses any of the following services:

Ø Expiry timeout on blocking services

Ø Round Robin

Ø Task starvation protection

Ø Timer services

If none of the above services are needed in the application, then Abassi has no need for the timer facility,
and the build options should be set as shown in the following table:

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 51

Table 4-22 Build options when the RTOS timer is not used

#define OS_ROUND_ROBIN 0 /* No round robin */
#define OS_STARVE_PRIO 0 /* No starvation protection */
#define OS_STARVE_RUN_MAX 0 /* No starvation protection */
#define OS_STARVE_WAIT_MAX 0 /* No starvation protection */
#define OS_TIMEOUT 0 /* No timeout on blocking services */
#define OS_TIMER_CB 0 /* No timer, so no timer callback */
#define OS_TIMER_SRV 0 /* No timer, so no timer services */
#define OS_TIMER_US 0 /* The timer is not used */

If no timer dependent features are required, you can skip to Section 4.2.12, as the build options for timeout,
round robin, task starvation protection, and timer services are described in the following 4 sub-sections.

If the timer facility is required because one or more of the features requiring the timer are used in the
application, the build options for the timer should be set as shown in Table 4-23. The build options that
were specified in the previous table, that are not present in Table 4-23, are described in the next 4
sub-sections.

Table 4-23 Build options when the RTOS timer is used

#define OS_TIMER_CB NNN /* Timer period to perform the callbacks */
#define OS_TIMER_US MMM /* Timer is used and its period is MMM µs */

In the above example, MMM must be set to the numerical value that specifies the period of the timer in
microsecond units. If there is no need for a callback, set NNN to zero; otherwise, set NNN to the timer tick
period at which the application needs the callback. For example, if a callback is needed at every timer tick,
set NNN to 1; if a callback is needed only once every 10 timer ticks, set NNN to the value of 10.

One may wonder why OS_TIMER_US requires a value in microsecond units and not a simple Boolean flag,
since Abassi does not configure the timer peripheral that generates the timer interrupts. The numerical
value of OS_TIMER_US is used by the time converter components (Section 6.7.17) to give the designer
access to traditional time durations. Specifying time related constants using the converter components
instead of using the number of timer ticks makes the application independent from the timer period. This is
important if the timer period has to be changed at any time, since the application code can remain the same.

4.2.11.1 Timeout
The availability of timeouts on blocking services is controlled by the OS_TIMEOUT build option. If
timeouts are used in the application, set the OS_TIMEOUT build option to a non-zero value, as shown in the
next table:

Table 4-24 Build option when timeouts are used

#define OS_TIMEOUT 1 /* Enable timeouts on blocking services */

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 52

When the timeout argument of components that require such information is positive, and timeouts are
disabled, it is possible to either convert the positive timeout arguments into an infinite timeout (same as
setting the argument to a negative value) or to remap them to no timeout (same as setting the argument to a
value of 0). If OS_TIMEOUT is zero, positive timeout arguments are remapped to a zero argument. When
OS_TIMEOUT is set to a negative value, positive timeout arguments are remapped to a negative argument.
The purpose of this offering is to allow the disabling of timeouts in an application that was initially
developed using positive timeouts as a debugging mechanism. Setting OS_TIMEOUT to a value of zero
remaps the positive arguments to an abnormal condition, where the service should always be available.
With OS_TIMEOUT set to a negative value, it remaps the positive arguments into a normal condition, where
the service is not always immediately available but it will always become available within an acceptable
time window.

If timeouts are not needed by the application, set the OS_TIMEOUT build option to a non-positive, as shown
in the two next tables:

Table 4-25 Build option when timeouts are not used (+ve map to 0)

#define OS_TIMEOUT 0 /* No timeouts on blocking services */

Table 4-26 Build option when timeouts are not used (+ve map to -ve)

#define OS_TIMEOUT -1 /* No timeouts on blocking services */

4.2.11.2 Round Robin
When the RTOS timer is enabled, it is possible to apply round robin to tasks at the same priority that are
ready to run. If the build option OS_COOPERATIVE is non-zero, round robin is not available, therefore set
the build option OS_ROUND_ROBIN to a value of zero, as shown in the following table, and skip this
section.

Table 4-27 Round Robin setting when OS_COOPERATIVE is non-zero

#define OS_ROUND_ROBIN 0 /* Round Robin is not active */

The round robin can be configured in two ways: either all tasks are allocated the same time slice duration,
or the time slice duration can be individually set for each task. Round robin is enabled when the build
option OS_ROUND_ROBIN is set to a non-zero value. When the value is positive, all tasks are allocated a
fixed time slice duration in microseconds units, specified in the definition. When the value is negative, all
tasks upon creation have a default time slice duration of the absolute of the value, in microsecond units, but
can be later modified at run time on a per task basis.

Table 4-28 No Round Robin

#define OS_ROUND_ROBIN 0 /* Round Robin is not active */

Table 4-29 Fixed Round Robin

#define OS_ROUND_ROBIN UUU /* Round Robin time slices are fixed at UUU us */

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 53

Table 4-30 Programmable Round Robin

#define OS_ROUND_ROBIN -UUU /* RR time slice programmable, default is UUU us */

When round robin is enabled in the run-time configurable mode, it becomes possible to have co-existence
of round robin and running until blocking/completing for tasks at the same priority level (see Section 10).

4.2.11.3 Task Starvation Protection
When the RTOS timer is enabled, it is possible to activate a modified Priority Aging mechanism that is
unique to Abassi. This custom priority aging is called Task Starvation Protection and is configured with
three build options:

Ø OS_STARVE_PRIO

Ø OS_STARVE_RUN_MAX

Ø OS_STARVE_WAIT_MAX

The first build option, OS_STARVE_PRIO (Section 4.1.41), indicates the priority that tasks under starvation
protection cannot exceed. As the task starvation feature increases the priority of a starved task until it runs,
this build option specifies the priority level that cannot be exceeded. The build option is the numerical
value of the priority.

The build option OS_STARVE_RUN_MAX (Section 4.1.42) specifies the maximum number of timer ticks a
task under starvation protection will run at an increased priority.

Finally OS_STARVE_WAIT_MAX (Section 4.1.43) specifies the maximum number of timer ticks a task under
starvation protection will wait at a priority level before having its priority level increased by 1 level.

Each of these build options can be set to a positive or negative value. When the build option value is
positive, the value applies to all tasks and it cannot be modified at run-time. When the build option is
negative, all tasks upon creation have their task starvation parameter set to the absolute of the build option,
and the corresponding parameter is run-time modifiable on a per task basis.

Table 4-31 Task Starvation Protection

#define OS_STARVE_PRIO PPP /* Threshold priority */
#define OS_STARVE_RUN_MAX RRR /* Maximum run time at promoted priority */
#define OS_STARVE_WAIT_MAX WWW /* Maximum wait time at same priority */

Setting the build option OS_STARVE_PRIO to the same value as the build option OS_PRIO_MIN is set to
will disable the task starvation protection. This special condition is handled in such a way that the task
starvation protection code is not included in the build. On the other side, setting OS_STARVE_PRIO to
negative OS_PRIO_MIN specifies that all tasks, when created, are not under task starvation protection. But,
as the negative value indicates run-time modification of the parameter, the code for the task starvation
protection is part of the build and individual tasks can be set to be under the task starvation protection.

NOTE: Tasks at the lowest priority (OS_PRIO_MIN) are never put under starvation protection. This is
design intent as it provides a “class” of low priority tasks that are not put under protection when
the starvation build options are positive.

4.2.11.4 Timer Services
When the RTOS timer is enabled, it is possible to include an optional “timer services” module. This
module provides a simple way to add the functionality where operations can be delayed or performed
periodically. To include the code and API for the timer services, set the build option OS_TIMER_SRV to a
non-zero value, as shown in the following table:

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 54

Table 4-32 Timer Services

#define OS_TIMER_SRV 1 /* Timer services are included in the build */

4.2.12 Priority inversion protection
Abassi supports two of the most common priority inversion protection mechanisms: priority inheritance
and priority ceiling, with enhancements.

To disable the priority inversion protection mechanism, set the build option OS_MTX_INVERSION to a
value of zero, as shown in the following table:

Table 4-33 Priority Inversion Protection Disabled

#define OS_MTX_INVERSION 0 /* Priority Inversion Protection is de-activated */

To enable priority inversion protection and use the priority inheritance mechanism, set the build option
OS_MTX_INVERSION to a positive value, as shown in the following table:

Table 4-34 Priority Inheritance Enabled

#define OS_MTX_INVERSION 1 /* Priority Inheritance enabled */

To enable priority inversion protection and use Abassi’s intelligent priority ceiling mechanism, set the build
option OS_MTX_INVERSION to a negative value, as shown in the following table:

Table 4-35 Priority Ceiling Enable

#define OS_MTX_INVERSION -1 /* Priority Ceiling enabled */

When the priority inversion protection is enabled, it is either the priority ceiling mechanism or the priority
inheritance mechanism. These two mechanisms are mutually exclusive. Also, when one of the two
mechanisms is enabled, all mutexes in the application are under priority inversion protection; it is not
possible to apply the protection only on some mutexes and not others.

4.2.13 Mutex Deadlock protection
Abassi is capable of detecting a deadlock condition when a task tries to lock a mutex. A detailed
description on how Abassi’s mutex deadlock protection operates is given in Section 9. To disable the
mutex deadlock protection, set the build option OS_MTX_DEADLOCK to a value of zero as shown in the
following table:

Table 4-36 Disabling Mutex Deadlock Protection

#define OS_MTX_DEADLOCK 0 /* Mutex deadlock protection is NOT active */

To activate the mutex deadlock protection, set the build option OS_MTX_DEADLOCK to a non-zero value as
shown in the following table:

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 55

Table 4-37 Enabling Mutex Deadlock Protection

#define OS_MTX_DEADLOCK 1 /* Mutex deadlock protection is active */

4.2.14 Interrupt Queue sizing
In Abassi, in order for the kernel to never disable interrupts, and to allow the interrupt handler to operate as
fast as possible, when a kernel request is performed in an interrupt, the kernel request is queued for
processing outside of the interrupt context. Doing so shortens the duration of the interrupt processing and
minimizes the time required to enter the kernel when back-to-back interrupts occur. The requests are
queued, and the queue needs to be sized large enough to absorb the worst case of accumulation of kernel
requests. The word accumulation used here is important as the sizing for the worst case is not the largest
number of kernel requests done inside a single interrupt handler. One must understand that the queue is
filled when interrupts perform requests to the kernel, and these interrupts could occur non-stop, back-to-
back. The kernel retrieves the requests from the queue outside interrupt contexts, and depending on the rate
of arrival of the interrupts, the kernel may not be fast enough to empty all requests between interrupts.

Don’t be scared by this worst case situation, as it is really a worst case because the kernel typically
processes requests from interrupts within a few hundreds of CPU cycles. On most processors, this worst
case would require interrupts occurring constantly every 2 to 3 microseconds to starve the kernel1. One
way or another, as the queue elements are fairly small, it does not hurt to oversize this queue intentionally.

Table 4-38 Interrupt queue sizing

#define OS_MAX_PEND_RQST NN /* Size of the queue for the ISR kernel requests */

The numerical value NN must be set to one more than the strict minimum, because the extra one is needed
to implement the queue for maximum performance. So, if the application can have a maximum of 5
requests pending, then the queue size must be set to a value of 6. Also, setting the value to a power of 2 is
highly desirable as this reduces the number of CPU cycles needed to insert and retrieve the request to/from
the queue. In the previous example, the queue size would be set to 8, capable of holding 7 unprocessed
requests.

As an initial guideline, setting the queue to a value of 16 or 32 should be sufficient in most applications,
assuming the number of interrupt sources can be counted on your fingers.

4.2.15 Logging
To observe Abassi’s internal reaction to kernel requests, it is possible to enable a logging facility. If
logging is not needed, set the build option OS_LOGGING_TYPE to a value of zero, as shown in the following
table:

Table 4-39 Disabling the logging facilities

#define OS_LOGGING_TYPE 0 /* Kernel operations are not logged */

1 If an application has to continuously handle interrupts occurring constantly at such a fast rate, it may be
preferable to revert to the ubiquitous loop to implement such an application instead of utilizing a RTOS.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 56

There are two ways to extract the logging performed by the RTOS. The first and most simple method is to
have the kernel send the information over an ASCII output device. This logging mechanism is enabled by
setting the build option OS_LOGGING_TYPE to 1, as shown in the following table. The output device is
accessed through the RTOS component OSputchar() (Section 6.14.5).

Table 4-40 Activating the ASCII logging dump

#define OS_LOGGING_TYPE 1 /* Kernel operations are logged through OSputchar() */

The other logging mechanism collects the individual requests and reactions of the kernel in packets,
deposited in a circular buffer. The circular buffer content can be delivered to an output device at anytime,
using the logging buffer reader API. This type of logging is enabled by setting the build option
OS_LOGGING_TYPE to a value greater than 1, and the specified value informs Abassi about the circular
buffer size to reserve for the logging. The size indicated by the build option is the number of logging
packets, not the size in bytes (the packets hold 3 int and 1 pointer).

Table 4-41 Activating the buffered logging

#define OS_LOGGING_TYPE NN /* Kernel operations logged in a circular buffer */

4.3 Build Examples
There are a lot of options when configuring the Abassi RTOS, and at the beginning, selecting the correct
values for the desired build configuration can be a challenge. The previous section should have eliminated
much of the confusion. To further assist, a few examples are given in the following sub-sections.

4.3.1 Minimum feature set
A RTOS built with the minimum feature set offers unnamed semaphores, and unnamed tasks that cannot
have the same priority. In this example, the RTOS is build to supports 5 different priorities. The
descriptors are created using TSKcreate() (Section 6.3.2), SEMopen() (Section 6.4.5) or MTXopen()
(Section 6.5.11) using malloc(), with dynamic memory allocation, and the application supplies the Idle
Task function named IdleTask().

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 57

Table 4-42 Build with minimum feature set

 #define OS_ALLOC_SIZE 0 ß ==0, OS_RUNTIME & OS_STATC_???: use malloc
 #define OS_COOPERATIVE 0
 #define OS_EVENTS 0
 #define OS_FCFS 0
 #define OS_IDLE_STACK 512 ß IdleTask() created with stack of 512 bytes
 #define OS_LOGGING_TYPE 0
 #define OS_MAILBOX 0
 #define OS_MAX_PEND_RQST 32 ß ISR queue is 31 requests deep
 #define OS_MTX_INVERSION 0
 #define OS_NAMES 0
 #define OS_NESTED_INTS 0
 #define OS_PRIO_CHANGE 0
 #define OS_PRIO_MIN 4 ß Allowed priority values are 0,1,2,3,4
 #define OS_PRIO_SAME 0
 #define OS_ROUND_ROBIN 0
 #define OS_RUNTIME 1 ß Services are created at run time (malloc)
 #define OS_SEARCH_ALGO 0
 #define OS_STATIC_BUF_MBX 0 ß Services are created at run time (malloc)
 #define OS_STATIC_MBX 0 ß Services are created at run time (malloc)
 #define OS_STATIC_NAME 0 ß Services are created at run time (malloc)
 #define OS_STATIC_SEM 0 ß Services are created at run time (malloc)
 #define OS_STATIC_STACK 0 ß Services are created at run time (malloc)
 #define OS_STATIC_TASK 0 ß Services are created at run time (malloc)
 #define OS_TASK_SUSPEND 0
 #define OS_TIMEOUT 0
 #define OS_TIMER_CB 0
 #define OS_TIMER_US 0
 #define OS_USE_TASK_ARG 0

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 58

4.3.2 Minimum feature with static memory creation
The next example creates a RTOS with exactly the same feature set as the previous example, except this
time the task’s descriptor, stack, semaphores, and mutexes descriptors are created during run-time using
memory reserved at compile/link time. Dynamic memory allocation through OSalloc() (Section 6.14.3)
is not used anymore. The example reserves memory for 5 tasks, 3 semaphores/mutexes, and 4096 bytes for
the task stacks.

Table 4-43 Build with static memory

 #define OS_ALLOC_SIZE 0 ß See OS_RUNTIME / OS_STATIC_???: memory pools
 #define OS_COOPERATIVE 0
 #define OS_EVENTS 0
 #define OS_FCFS 0
 #define OS_IDLE_STACK 512
 #define OS_LOGGING_TYPE 0
 #define OS_MAILBOX 0
 #define OS_MAX_PEND_RQST 32
 #define OS_MTX_INVERSION 0
 #define OS_NAMES 0
 #define OS_NESTED_INTS 0
 #define OS_PRIO_CHANGE 0
 #define OS_PRIO_MIN 4
 #define OS_PRIO_SAME 0
 #define OS_ROUND_ROBIN 0
 #define OS_RUNTIME 1 ß at runtime, Memory pools non zero
 #define OS_SEARCH_ALGO 0
 #define OS_STATIC_BUF_MBX 0
 #define OS_STATIC_MBX 0
 #define OS_STATIC_NAME 0
 #define OS_STATIC_SEM 3 ß The application can have up to 3 semaphores
 #define OS_STATIC_STACK 4096 ß Memory available for all stacks is 4096 bytes
 #define OS_STATIC_TASK 5 ß The application can have up to 5 tasks
 #define OS_TASK_SUSPEND 0
 #define OS_TIMEOUT 0
 #define OS_TIMER_CB 0
 #define OS_TIMER_US 0
 #define OS_USE_TASK_ARG 0

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 59

4.3.3 Minimum feature with compiled time creation
The next example again creates a RTOS with exactly the same feature set as the previous example, except
this time the task descriptors, stack, and semaphores descriptors are created and initialized at compile time
using the macro definitions TSK_STATIC() (Section 6.3.2), SEM_STATIC() (Section 6.4.2) and
MTX_STATIC (sect 6.5.2). Run-time memory allocation/set-up is not used anymore.

Table 4-44 Build with compile time memory

 #define OS_ALLOC_SIZE 0 ß see OS_RUNTIME / OS_STATIC_???: compile time
 #define OS_COOPERATIVE 0
 #define OS_EVENTS 0
 #define OS_FCFS 0
 #define OS_IDLE_STACK 512
 #define OS_LOGGING_TYPE 0
 #define OS_MAILBOX 0
 #define OS_MAX_PEND_RQST 32
 #define OS_MTX_INVERSION 0
 #define OS_NAMES 0
 #define OS_NAMES 0
 #define OS_NAMES 0
 #define OS_NESTED_INTS 0
 #define OS_PRIO_CHANGE 0
 #define OS_PRIO_MIN 4
 #define OS_PRIO_SAME 0
 #define OS_ROUND_ROBIN 0
 #define OS_RUNTIME 0 ß is now 0
 #define OS_SEARCH_ALGO 0
 #define OS_STARVE_WAIT_MAX 0
 #define OS_STARVE_PRIO 0
 #define OS_STARVE_TIME_MAX 0
 #define OS_STATIC_BUF_MBX 0
 #define OS_STATIC_MBX 0
 #define OS_STATIC_NAME 0
 #define OS_STATIC_SEM 0 ß is now 0
 #define OS_STATIC_STACK 0 ß is now 0
 #define OS_STATIC_TASK 0 ß is now 0
 #define OS_TASK_SUSPEND 0
 #define OS_TIMEOUT 0
 #define OS_TIMER_CB 0
 #define OS_TIMER_US 0
 #define OS_USE_TASK_ARG 0

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 60

4.3.4 Adding the timer
The next example again creates a RTOS with exactly the same feature set as the previous example, except
this time the timer service is enabled. That is, timeouts are made available to the components that can
block tasks, and an application specific timer callback is used. The timer is configured to operate once
every 10 ms., the timer callback is configured to be entered once every second, and the round robin time
slicing allocates a maximum of 50 ms. per task. Having enabled the round robin feature, OS_PRIO_SAME
is automatically set internally but it is still set here for consistency.

Table 4-45 Build with timer

 #define OS_ALLOC_SIZE 0
 #define OS_COOPERATIVE 0
 #define OS_EVENTS 0
 #define OS_FCFS 0
 #define OS_IDLE_STACK 512
 #define OS_LOGGING_TYPE 0
 #define OS_MAILBOX 0
 #define OS_MAX_PEND_RQST 32
 #define OS_MTX_INVERSION 0
 #define OS_NAMES 0
 #define OS_NESTED_INTS 0
 #define OS_PRIO_CHANGE 0
 #define OS_PRIO_MIN 4
 #define OS_PRIO_SAME 1 ß Tasks can have the same priority
 #define OS_ROUND_ROBIN 50000 ß Round robin once every 50 ms (50000 µs)
 #define OS_RUNTIME 0
 #define OS_RUNTIME 0
 #define OS_RUNTIME 0
 #define OS_SEARCH_ALGO 0
 #define OS_STARVE_WAIT_MAX 0
 #define OS_STARVE_PRIO 0
 #define OS_STARVE_TIME_MAX 0
 #define OS_STATIC_BUF_MBX 0
 #define OS_STATIC_MBX 0
 #define OS_STATIC_NAME 0
 #define OS_STATIC_SEM 0
 #define OS_STATIC_STACK 0
 #define OS_STATIC_TASK 0
 #define OS_TASK_SUSPEND 0
 #define OS_TIMEOUT 1 ß Component expiry timeout enable
 #define OS_TIMER_CB 100 ß 1 s. period (once every 100 timer ticks)
 #define OS_TIMER_US 10000 ß Timer period 10 ms (10000 µs)
 #define OS_USE_TASK_ARG 0

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 61

4.3.5 Adding many features
The next example again creates a RTOS with exactly the same feature set as the previous example, except
this time many features have been enabled, and the run-time dynamic memory allocation is used.

Table 4-46 Build with many features

 #define OS_ALLOC_SIZE 0 ß With OS_RUNTIME & OS_STATIC_???: use malloc
 #define OS_COOPERATIVE 0
 #define OS_EVENTS 1 ß Event flags available
 #define OS_FCFS 1 ß First Come First Served available
 #define OS_IDLE_STACK 512
 #define OS_LOGGING_TYPE 0
 #define OS_MAILBOX 1 ß Mailboxes available
 #define OS_MAX_PEND_RQST 32
 #define OS_MTX_INVERSION 0
 #define OS_NAMES 1 ß Services have a name attached to them
 #define OS_NESTED_INTS 0
 #define OS_PRIO_CHANGE 1 ß Priority can be changed at run time
 #define OS_PRIO_MIN 4
 #define OS_PRIO_SAME 1
 #define OS_ROUND_ROBIN 50000
 #define OS_RUNTIME 1 ß Services created at run time
 #define OS_SEARCH_ALGO 0
 #define OS_STARVE_WAIT_MAX 0
 #define OS_STARVE_PRIO 0
 #define OS_STARVE_TIME_MAX 0
 #define OS_STATIC_BUF_MBX 0
 #define OS_STATIC_MBX 0
 #define OS_STATIC_NAME 0
 #define OS_STATIC_SEM 0
 #define OS_STATIC_STACK 0
 #define OS_STATIC_TASK 0
 #define OS_TASK_SUSPEND 1 ß Tasks can be suspended at run-time
 #define OS_TIMEOUT 1
 #define OS_TIMER_CB 100
 #define OS_TIMER_US 10000
 #define OS_USE_TASK_ARG 1 ß Tasks can have argument passed to them

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 62

5 Quick Start
Here is a small example with only 3 tasks. In main(), the Abassi RTOS is started by calling OSstart().
When OSstart() has initialized everything and returns, the main() function becomes attached to the
highest priority task in the application (priority numerical value is 0). Typically, all tasks would be created
in main().

In this example, 2 tasks and 1 semaphore are created. This example can use any set of build options that
were described in the previous section.

Table 5-1 Quick Start Example

#include “Abassi.h”

SEM_t *SemHi;

int main()
{
 OSstart(); /* RTOS initialization */

 SemHi = SEMopen("Sem Hi"); /* 1 semaphore in this application */

 TSKcreate("Lo Prio", 2, 1024, &FctLo, 1);
 TSKcreate("Hi Prio", 1, 1024, &FctHi, 1);

 TSKsetPrio(TSKmyID, OS_PRIO_MIN); /* Adam & Eve is converted to the Idle */

 for(;;); /* Infinite loop as Idle */
}

void FctLo(void) /* Low priority task */
{
 for (;;) {
 puts(“Low priority running”);
 SEMpost(SemHi);
 }
}

void FctHi(void) /* High priority task */
{
 for (;;) {
 puts(“High priority running”);
 SEMwait(SemHi, -1); /* -1 means waiting forever */
 }
}

One semaphore is created by using the component SEMopen() with the name of the semaphore, “Sem
Hi”. A NULL pointer could also have been used to create an unnamed semaphore. Two tasks are created
by using the component TSKcreate(). The arguments for TSKcreate() are from left to right: the name
of the task, the priority of the task, the stack size of the task, the function to use for the task, and a Boolean
indicating if the task is created in the ready to run state or in the suspended state. NULL pointers could
have been used instead of the names “Lo Prio” and “Hi Prio” to create unnamed tasks. Tasks are
requested to be created in the ready to run state, therefore TSKresume() is not needed to put them in that
state. At this point, both tasks remain in the ready to run state because the current task is Adam & Eve,
which is the highest priority task; all other tasks are at lower priority. Setting Adam & Eve priority to the
lowest priority level in the application allows the next highest lower priority task (than Adam & Eve) to
run.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 63

FctHi() is the highest priority ready to run task, so it becomes the running task, waiting forever on the
semaphore SemHi, which hasn’t been posted. FctHi() then blocks on the semaphore SemHi. The next
priority ready to run task is FctLo(), which becomes the running task. The semaphore SemHi is posted in
FctLo(), which unblocks FctHi(), pre-empting FctLo(), and remains ready to run. This sequence
continues indefinitely.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 64

6 Components
This section describes every one of the components the Abassi RTOS services offer. Many of these
components are not real functions but are defined as a call to Abassi(), with the appropriate arguments.
Abassi() is the sole function, providing all kernel functionality. Due to the complexity of the code in
Abassi(), this function is not described in this document. The components can be a real function, a
simple definition, or a more complex macro definition. Inline functions are not used as they are not
MISRA-C:2004 compliant.

Some components should never be used in interrupts, and others can be used with some care. For more
information about using components in an interrupt handler, refer to section 3.3.2.

6.1 Component Type
Components are implemented using many different programming techniques. The following sub-sections
described the possible ways components can be implemented and the short-comings.

The selection of what method to use to implement a component was determined with a single goal:
minimizing the overall code size of an application, and, similarly, the CPU requirements. All kernel
requests are implemented as “C” pre-processor definitions, thereby hiding the syntax for the kernel
request. Almost all other components are implemented using macro definitions. This was selected as the
preferred method since almost all components require only a few “C” statements. If, instead, a function
was used, the overall code size generated by the compiler would have most likely been significantly bigger
than what the macro delivers. This is due to the need for a function call set-up, which is typically not as
lightweight as inline code.

As an example of this, have a look at the two snippets of code below, both implementing a memory byte
filling operation:

Table 6-1 Function call

memset(Ptr, 0, 60);

Table 6-2 Code from a macro definition

do {
int _ii;
char *_Pch=(char *)(Ptr);

 for(_ii=0 ; _ii<60 ; _ii++) {
 *_Pch++ = 0;
 }

} while(0)

On some compilers/processors, both snippets of code are generated with exactly the same code size. When
the code size is identical or very close, there is no advantage to using a function. Because of their
extremely low complexity, almost all Abassi components fall under this advantage of a macro definition vs.
a function call. (In reality, the library function memset() may have been optimized for real-time, using 32
or 64 bit write to memory instead of 1 char per iteration, but the spirit of this example remains.)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 65

6.1.1 Atomic Macro
An Atomic macro is a “C” definition (or a macro definition) that performs a direct request to the kernel. It
can be a simple definition remapping one-to-one the component arguments into the kernel function
arguments, or it can be a macro definition with some pre-processing. Atomic macros components are
tagged as safe and unsafe. An unsafe Atomic macro component is simply an unsafe macro, where one or
more arguments are used multiple times in the definition, meaning they should never have a modifier such
as ++.

6.1.2 Function
A function component is simply a component implemented as a “C” function, or it could be a function
wrapped under a macro definition that maps one-to-one the arguments of the macro to the function
arguments.

6.1.3 Macro
A macro is a “C” definition (or a macro definition) that does not perform a request to the kernel. It can be a
simple definition remapping one-to-one the component arguments into the kernel function arguments, or it
can be a macro definition with some pre-processing. Macros components are tagged as safe and unsafe.
An unsafe macro component is simply an unsafe macro, where one or more arguments are used multiple
times in the definition, meaning they should never have a modifier such as ++.

6.1.4 Data Access
A data access component is a component that either reads from or writes to a data variable. The variable
can be a field in a service descriptor, or it can be one of the kernel variables.

6.2 System components
This section described all system-wide components. The system components that are described in the
following sub-sections are:

Table 6-3 System Component list

Section Name Description

6.2.2 OSstart Initialization of the Abassi RTOS

6.2.1 Description
There is a single system-wide component: OSstart(), which sets-up the Abassi RTOS operations. This
component initializes all the global variables to allow the Abassi RTOS to be restarted without reloading
the application binary image. It attaches the information needed by the Abassi RTOS to identify main()
as a task with the highest priority (numerical value of 0), and it optionally creates and resumes the Idle
Task (according to the build option OS_IDLE_STACK, Section 4.1.16).

OSstart() is the only component required to establish the Abassi RTOS environment and it must be
called before any Abassi RTOS component is used.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 66

6.2.2 OSstart

Synopsis
#include “Abassi.h”

void OSstart(void);

Description

The component OSstart()initializes the Abassi RTOS. It is the first component to activate
before using any other components of the Abassi RTOS. This is typically done as one of the
first statements in main(). In OSstart(), all internal variables used by the Abassi RTOS
are initialized, main() is set-up to be the running task, which is set to the highest priority,
and if the build option OS_IDLE_STACK is non-zero, the application supplied function
IdleTask() is assigned to a task with the lowest priority (OS_PRIO_MIN) and is put into the
ready to run state.

Availability

Always.

Arguments
void

Returns
void

Component type

Function

Options

Many build options affects the internal operations performed by OSstart(). From the user
point of view, this component is always used the same way, no matter what are the build
options.

Notes

Interrupts cannot be enabled until after the component OSstart() has been used. And when
interrupts are to be enabled, the component OSintOn() should be used.

See also

OS_IDLE_STACK (Section 4.1.16)
OS_PRIO_MIN (Section 4.1.34)
OSintOn() (Section 6.8.5)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 67

6.3 Task Components

This section describes all components related to the tasks. The task components described in the following
sub-sections are:

Table 6-4 Task Component list

Section Name Description

6.3.2 TSK_STATIC Create a task at compile / link time

6.3.3 TSK_SETUP Initialization of a task that was created at compile / link time

6.3.4 return Returning from a task and suspend it

6.3.5 TSKcreate Create a task at runtime

6.3.6 TSKgetArg Retrieve the argument in a task

6.3.7 TSKgetID Obtain the descriptor of another task

6.3.8 TSKgetPrio Get the current priority of a task

6.3.9 TSKgetRR Get the round robin slice time used by a task

6.3.10 TSKgetStrvPrio Get the starvation priority threshold used by a task

6.3.11 TSKgetStrvRunMax Get the starvation maximum run time allowed to a task

6.3.12 TSKgetStrvWaitMax Get the starvation maximum wait time allowed to a task

6.3.13 TSKisBlk Report if a task is in the blocked state

6.3.14 TSKisRdy Report if a task is in the ready to run state

6.3.15 TSKisSusp Report if a task is in the suspended state

6.3.16 TSKmyID Obtain the descriptor of the currently running task

6.3.17 TSKresume Resume a suspended task

6.3.18 TSKselfSusp Self-suspend a task

6.3.19 TSKsetArg Set the argument to a task

6.3.20 TSKsetPrio Set the current priority of a task

6.3.21 TSKsetRR Set the round robin slice time used by a task

6.3.22 TSKsetStrvPrio Set the starvation priority threshold used by a task

6.3.23 TSKsetStrvRunMax Set the starvation maximum run time allowed to a task

6.3.24 TSKsetStrvWaitMax Set the starvation maximum wait time allowed by a task

6.3.25 TSKsleep Set the current priority of a task

6.3.26 TSKstate Report the state of a task: ready to run, blocked or suspended

6.3.27 TSKstkFree Report the minimal amount of unused space on a task stack

6.3.28 TSKstkUsed Report the maximum amount of used space on a task stack

6.3.29 TSKsuspend Suspend a task

6.3.30 TSKtimeoutKill Terminate an active timeout that blocks a task

6.3.31 TSKtout Change an active timeout that blocks a task

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 68

6.3.32 TSKyield Yield the CPU

6.3.1 Description
The task components give access to all the resources needed to create, to modify the operation of, or to
retrieve information on tasks in an application. To exist, a task must first be created with the
TSKcreate() component or the TSK_STATIC() and TSK_SETUP() components. When a task is created,
a stack, a priority level, and a name (ignored if the build option OS_NAMES (Section 4.1.28) is zero) are
assigned to it. Newly created tasks are either in the suspended state or the ready to run / running state; the
after-creation state is selected with an argument to TSKcreate() or TSK_SETUP(). To make the task
running or ready to run when it was created in the suspended state, the component TSKresume() is used.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 69

6.3.2 TSK_STATIC

Synopsis
#include “Abassi.h”

TSK_STATIC(VarName, TskName, Prio, StackSize, Fct);

Description

TSK_STATIC() is a special component that creates a task and initializes the task descriptor.
It is a macro definition that creates a static object, so none of the arguments has a real data
type. The task is not created at run time; it is created at compile/link time.
It is not possible to completely initialize the stack of a task when it is created using
TSK_STATIC(). Therefore, it is absolutely necessary to use the component TSK_SETUP()
during run-time for each and every tasks that has been created using TSK_STATIC().

Availability

Always.

Arguments

VarName Name of the variable holding the pointer to the task descriptor to create /
initialize. This variable name is the pointer to the task descriptor used by all
task related components. This is a variable name, therefore do not put double
quotes around the name.

TskName Task name. This is not the variable name, but is the name attached to the task.
 As it is a “C” string, double quotes around the name are required.

G_OSnoName , and not NULL, should be used for an unnamed task.
Prio Priority to assign to the task (0 is highest, OS_PRIO_MIN the lowest) .
StackSize Number of char allocated to the task’s stack.
Fct Function to use for the task; this is not a pointer to the function, it is the name of

the function. The function prototype must be declared before TSK_STATIC()
uses it.

Returns

N/A

Component type

Macro (unsafe)

Options

If the build option OS_NAMES is set to a value of zero, the argument TskName is ignored but
must still be supplied.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 70

Notes

When a task has been created and initialized with TSK_STATIC(), and access to the task
descriptor is required in another file, the task descriptor must be imported as shown in the
following example:

Table 6-5 Usage of TSK_STATIC with TSK_SETUP

/* File #1 */

TSK_STATIC(MyTask, “Task Name”, 4, 512, &TaskFct);

/* File #2 */

extern TSK_t *MyTask;

A task created and initialized with TSK_STATIC() will not be part of the search done with
TSKgetID(). If the component TSKgetID() is used with the name of such a task, the
return value will be NULL, unless another task with the exactly the same name was created
using TSKcreate().
If tasks are created using the TSK_STATIC() component, it may not be possible to restart the
application without reloading the binary image on the processor. This situation happens if
the compiler (or compiler configuration) does not reload the initialized data upon start-up.

If Abassi is used in a C++ environment, the function attached to the task (the argument Fct)
must be declared with “C” linkage (see section 3.5), not as a regular C++ function.

See also

OS_IDLE_STACK (Section 4.1.16)
OS_NAMES (Section 4.1.28)
OS_PRIO_MIN (Section 4.1.34)
OS_RUNTIME (Section 4.1.37)
OSstart() (Section 6.2.2)
TSK_SETUP() (Section 6.3.3)
TSKcreate() (Section 6.3.5)
TSKgetID() (Section 6.3.7)
TSKresume() (Section 6.3.17)
G_OSnoName (Section 6.14.2)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 71

6.3.3 TSK_SETUP

Synopsis
#include “Abassi.h”

void TSK_SETUP(VarName, State);

Description

TSK_SETUP() is a special component that completes the initialization of a task statically
created and initialized at compile/link time with TSK_STATIC(). This component must
always be used when a task is created and initialized with the component TSK_STATIC(). It
completes the initialization and optionally resumes the task from the suspended state.
Contrary to TSK_STATIC(), which is a static declaration, TSK_SETUP() is a real-time
operation, therefore it must be run before any other component is used on the task. If the task
isn’t resumed with TSK_SETUP(), then TSK_SETUP() must run before the task is resumed
with TSKresume().

Availability

Always.

Arguments

VarName Name of the variable for the task descriptor. This must be exactly the same
name as the variable name (first argument) that was used in TSK_STATIC().
This is a variable name therefore do not put double quotes around the name.

State State of the task after initialization:
0 The task is set in the suspended state
non-0 The task is set in the ready to run or running state

Returns
void

Component type

Macro (unsafe)

Options

Notes

See also

TSK_STATIC() (Section 6.3.2)
TSKresume() (Section 6.3.17)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 72

6.3.4 return

Synopsis
return;

Description

When the statement return is used in the function that was attached to a task, the task gets
suspended.

Availability

Always

Arguments

N/A

Returns

N/A

Component type

N/A

Options

Notes

Never use the “C” statement return in the function main(), as the task associated to
main() is completely different from all other tasks. The function main() is not attached to
a task, but the task Adam & Eve is attached to the function. If return is used in Adam &
Eve, the application will exit, which means all operations will be terminated.
Depending on the setting of the build option OS_TASK_SUSPEND, either the component
TSKselfSusp() or the component TSKsuspend() is used after the return. A task where a
return was performed can always be resumed with the component TSKresume().

See also

OS_TASK_SUSPEND (Section 4.1.54)
TSKresume (Section 6.3.17)
TSKselfSusp (Section 6.3.18)
TSKsuspend (Section 6.3.29)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 73

6.3.5 TSKcreate

Synopsis
#include “Abassi.h”

TSK_t *TSKcreate (const char *Name, int Prio, int StackSize,

void(*Fct)(void), int State);

Description

TSKcreate() is the run-time component needed to create a new task. When a task is
created, its descriptor is allocated and initialized, a function is assigned to the task, a priority
is given to it, and a stack is allocated, initialized and attached to the task. After being created,
if the task was requested to be created in the suspended state, then it should later be moved to
the running or ready to run state with the component TSKresume().

Availability

TSKcreate() is only available when the build option OS_RUNTIME is non-zero.

Arguments

Name Name to associate to the task.
 NULL can be used for an unnamed task.
Prio Priority to assign to the task (a value of 0 is the highest priority) .
StackSize Number of char allocated to the task’s stack.
Fct Pointer to the function to attach to the task.
State State of the task after initialization:

0 The task is created in the suspended state
non-0 The task is created in the ready to run or running state

Returns

Task descriptor

Component type

Function
- Cannot be used in an interrupt -

Options

If the build option OS_NAMES is set to zero, the argument Name is ignored but must still be
provided.
If the build option OS_STATIC_TASK is non-zero, the task descriptor uses memory that was
allocated/reserved at compile/link time instead of memory dynamically allocated at run-time.
If the build option OS_STATIC_STACK is non-zero, the stack allocated to the task uses
memory that was allocated/reserved at compile/link time instead of memory dynamically
allocated at run-time.

Starting with Abassi version 1.273.262, mAbassi version 1.94.97, and µAbassi version
1.42.30, an optional extra argument is supported. When the argument StackSize, the base

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 74

of the stack buffer is supplied by the caller instead of being internally allocated by
TSKcreate(). The function prototype then becomes:

TSK_t *TSKcreate (const char *Name, int Prio, int StackSize,

void(*Fct)(void), int State, void *Buffer);

The stack size is – StackSize. The buffer specified by the argument Buffer must be
dimensioned to at least – StackSize bytes. If the target platform requires stack alignment,
Abassi will internally make sure the stack is properly aligned event if the supplied buffer
isn’t.

Notes

When using a statically allocated stack, as specified with OS_STATIC_STACK, the numerical
value of StackSize should always be set to an exact multiple of 4 or 8 (a multiple of 8 is
suggested). Many processors require access to memory aligned to the size of the data to
access. By allocating the stack size in multiples of 4 or 8, the processor alignment
restrictions will be respected. This is not required when using dynamic memory allocation
based on OSalloc(), as the latter guarantees proper alignment for all data types. This
constraint of stack size being a multiple of 4 or 8 could have been added in the code of
TSKcreate(), but it was decided not to for the two following reasons. First, it adds code
and second, when a designer sets the value of the build option OS_STATIC_STACK, the
rounding up of the amount of memory to allocate to a multiple of 4 or 8 could prematurely
exhaust the reserved stack memory without knowledge of the designer.
The numerical value for the argument Prio must never be greater than the value of the build
option OS_PRIO_MIN.

If Abassi is used in a C++ environment, the function attached to the task (the argument Fct)
must be declared with “C” linkage (see section 3.5), not as a regular C++ function.

See also

OS_NAMES (Section 4.1.28)
OS_PRIO_MIN (Section 4.1.34)
OS_RUNTIME (Section 4.1.37)
OS_STATIC_STACK (Section 4.1.50)
OS_STATIC_TASK (Section 4.1.51)
OSalloc() (Section 6.14.3)
TSKresume() (Section 6.3.17)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 75

6.3.6 TSKgetArg

Synopsis
#include “Abassi.h”

void *TSKgetArg(void);

Description

TSKgetArg() is a component that extracts an argument, which has been forwarded to a task
with the component TSKsetArg(). A generic void pointer is all that is forwarded to the
task. Therefore, this pointer, once casting has been applied to it, can refer to any type and
size of data. Using a forwarding approach, instead of passing arguments (alike the argc and
argv[] for main()) to the task’s function, was retained to first minimize the complexity of
passing arguments to a task, but mainly to allow dynamic changes of a task arguments. This
could be useful, for example, when suspending/resuming a task in order to modify its
behavior. Task arguments are very useful when a single function implements more than a
one task which operates a bit differently from task to task.

Availability

TSKgetArg() is only available when the build option OS_USE_TASK_ARG is non-zero.

Arguments
void

Returns

Last pointer used when the component TSKsetArg() was applied on the task.

Component type

Data access
- Meaningless in an interrupt -

Options

Notes

Any data type can be forwarded to a task using this component. One has to remember it is
the pointer that is forwarded, not the contents. Therefore the contents should not be modified
after having forwarded the pointer with TSKsetArg(), unless a dynamic change in the task
functionality is required.

See also

OS_USE_TASK_ARG (Section 4.1.61)
TSKsetArg() (Section 6.3.19)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 76

6.3.7 TSKgetID

Synopsis
#include “Abassi.h”

TSK_t *TSKgetID(const char *Name);

Description

TSKgetID() is the component to use in order to obtain the task descriptor of a named task.
One may desire to make use of this component to eliminate the sharing of variables (task
descriptors) across multiple files.

Availability

TSKgetID() is only available when the build options OS_NAMES and the build option
OS_RUNTIME are both non-zero.

Arguments

Name Name of the task to obtain the descriptor.
 If Name is a NULL pointer or an empty string (“”), then this component returns

the running task’s descriptor; this is the same behavior as using the TSKmyID()
component.

Returns

This component returns the descriptor of the named task. If there are no tasks that have the
name specified by the argument, a NULL pointer is returned. If two or more tasks have been
created with the same name, the descriptor returned is that of last task created (time-wise).

Component type

Function

Options

Notes

The pre-defined name for the task Adam & Eve, the task associated to main(), is “A&E” and
the name given to the Idle Task, that uses the function IdleTask(), is “Idle”.
Tasks created with the TSK_STATIC() component are not part of the search performed by
TSKgetID().

See also

OS_NAMES (Section 4.1.28)
OS_RUNTIME (Section 4.1.37)
TSK_STATIC (Section 6.3.2)
TSKcreate() (Section 6.3.5)
TSKmyID() (Section 6.3.16)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 77

6.3.8 TSKgetPrio

Synopsis
#include “Abassi.h”

int TSKgetPrio(TSK_t *Task);

Description

TSKgetPrio() is the component used to obtain the current priority of a task. The priority
returned is the current priority of the task, which is not necessary the priority assigned to it
when it was created. The priority could differ because either the priority inversion protection
and/or the task starvation protection is operating on the task.

Availability

Always.

Arguments

Task Descriptor of the task to retrieve the current priority value.

Returns

The numerical value of the task’s priority.

Component type

Data access

Options

Notes

The priority of the running task can be obtained with:

Table 6-6 Retrieving the priority of the running task

Priority = TSKgetPrio(TSKmyID());

See also

TSKmyID() (Section 6.3.16)
TSKgetID() (Section 6.3.7)
TSKsetPrio() (Section 6.3.20)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 78

6.3.9 TSKgetRR

Synopsis
#include “Abassi.h”

unsigned int TSKgetRR(TSK_t *Task);

Description

TSKgetRR() is the component used to obtain the current maximum time slice duration a task
can use when part of a round robin group of tasks. The returned value is in number of timer
tick units.

Availability

TSKgetRR() is only available when the build options OS_ROUND_ROBIN and OS_TIMER_US
are non-zero.

Arguments

Task Descriptor of the task to retrieve the time slice duration value from.

Returns

The maximum number of timer ticks a task can use when involved in round robin.
When OS_ROUND_ROBIN is positive, the value returned is always OS_ROUND_ROBIN divided
by OS_TIMER_US.

Component type

Data access

Options

Notes

If the build option OS_ROUND_ROBIN is positive, the value returned is always the value
OS_ROUND_ROBIN divided by OS_TIMER_US.
If the build option OS_ROUND_ROBIN is negative, the value returned is negative
OS_ROUND_ROBIN divided by OS_TIMER_US, if TSKsetRR() hasn’t been applied on the
task, otherwise it is the last value used with TSKsetRR() was applied on the task.

See also

OS_ROUND_ROBIN (Section 4.1.36)
OS_TIMER_US (Section 4.1.59)
TSKsetRR() (Section 6.3.21)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 79

6.3.10 TSKgetStrvPrio

Synopsis
#include “Abassi.h”

int TSKgetStrvPrio(TSK_t * Task);

Description

TSKgetStrvPrio() is the component used to obtain the starvation priority threshold used
by the task specified in the argument. The starvation priority threshold is the priority
numerical value at which a task under starvation protection will stop getting its running
priority level increased.

Availability

TSKgetStrvPrio() is only available when the build option OS_STARVE_WAIT_MAX is non-
zero.

Arguments

Task Descriptor of the task to retrieve the starvation priority threshold.

Returns

Starvation priority threshold the task uses when it goes under starvation protection.
When OS_STARVE_PRIO is positive, the value returned is always OS_STARVE_PRIO.

Component type

Data Access

Options

Notes

When the build option OS_STARVE_PRIO is positive, the value returned is always the value
OS_STARVE_PRIO is set to.
If the build option OS_STARVE_PRIO is negative, the value returned is negative
OS_STARVE_PRIO if TSKsetStrvPrio() hasn’t been applied on the task, otherwise it’s
the last value used with TSKsetStrvPrio() when applied on the task.

See also

OS_STARVE_PRIO (Section 4.1.41)
OS_STARVE_WAIT_MAX (Section 4.1.43)
TSKsetStrvPrio (Section 6.3.22)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 80

6.3.11 TSKgetStrvRunMax

Synopsis
#include “Abassi.h”

int TSKgetStrvRunMax(TSK_t *Task);

Description

TSKgetStrvRunMax() is the component used to obtain the maximum running time a task
can run when under the starvation protection mechanism. The value reported is in number
of timer tick units.

Availability

TSKgetStrvRunMax() is only available when the build option OS_STARVE_WAIT_MAX is
non-zero.

Arguments

Task Descriptor of the task to retrieve the maximum run time when under starvation
protection.

Returns

The maximum number of timer ticks a task can use when it has its priority level increased by
to the task starvation protection mechanism.
When OS_STARVE_RUN_MAX is positive, the value returned is always OS_STARVE_RUN_MAX.

Component type

Data access

Options

Notes

When the build option OS_STARVE_RUN_MAX is positive, the value returned is always the
value OS_STARVE_RUN_MAX is set to.
If the build option OS_STARVE_RUN_MAX is negative, the value returned is negative
OS_STARVE_RUN_MAX if TSKsetStrvRunMax() hasn’t been applied on the task, otherwise
it’s the last value used with TSKsetStrvRunMax() when applied on the task.

See also

OS_STARVE_RUN_MAX (Section 4.1.42)
OS_STARVE_WAIT_MAX (Section 4.1.43)
TSKsetStrvRunMax (Section 6.3.23)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 81

6.3.12 TSKgetStrvWaitMax

Synopsis
#include “Abassi.h”

int TSKgetStrvWaitMax(TSK_t *Task);

Description

TSKgetStrvWaitMax() is the component used to obtain the maximum time a task remains
at the same priority when supervised by the starvation protection mechanism. If the task has
not run for the required run time duration, the priority level of the task gets increased after the
maximum waiting time. The value reported is in number of timer tick units.

Availability

TSKgetStrvWaitMax() is only available when the build option OS_STARVE_WAIT_MAX is
non-zero.

Arguments

Task Descriptor of the task to retrieve the maximum wait time when under starvation
protection.

Returns

The maximum number of timer ticks a task remains at the same priority level when
supervised by starvation protection mechanism.
When OS_STARVE_WAIT_MAX is positive, the value returned is always
OS_STARVE_WAIT_MAX.

Component type

Data access

Notes

When the build option OS_STARVE_WAIT_MAX is positive, the value returned is always the
value OS_STARVE_WAIT_MAX is set to.
If the build option OS_STARVE_WAIT_MAX is negative, the value returned is negative
OS_STARVE_WAIT_MAX if TSKsetStrvWaitMax() hasn’t been applied on the task,
otherwise it’s the last value used with TSKsetStrvWaitMax() when applied on the task.

See also

OS_STARVE_WAIT_MAX (Section 4.1.43)
TSKsetStrvWaitMax (Section 6.3.24)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 82

6.3.13 TSKisBlk

Synopsis
#include “Abassi.h”

int TSKisBlk(TSK_t *Task);

Description

TSKisBlk() reports if a task is currently in the blocked state or not.

Availability

Always

Arguments

Task Descriptor of the task to obtain information on its current state.

Returns

0 The task is not in the blocked state
non-0 The task is in the blocked state

Component type

Macro (unsafe)

Options

Notes

When the component TSKsuspend() (if OS_TSK_SUSPEND is non-zero) is applied on a task,
this task will remain in the blocked state until it becomes running and then it will get
immediately suspended. So until the task ran, the state of the task reported will be the
blocked state, not the suspended state.

See also

OS_TASK_SUSPEND (Section 4.1.54)
TSKisRdy() (Section 6.3.14)
TSKisSusp() (Section 6.3.15)
TSKstate() (Section 6.3.26)
TSKsuspend() (Section 6.3.29)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 83

6.3.14 TSKisRdy

Synopsis
#include “Abassi.h”

int TSKisRdy(TSK_t *Task);

Description

TSKisRdy() reports if a task is currently in the ready to run state or not.

Availability

Always

Arguments

Task Descriptor of the task to obtain information on its current state.

Returns

0 The task is not in the ready to run state
non-0 The task is in the ready to run state

Component type

Macro (safe)

Options

Notes

When the component TSKsuspend() (if OS_TASK_SUSPEND is non zero) is applied on a
task that locks one or more mutexes, this task will remain in the ready to run / running state
until it does not lock any mutexes, and will then immediately get suspended. So until the
task releases all the locks it applies on mutexes, the state of the task reported will be the
ready to run / running state.

See also

OS_TASK_SUSPEND (Section 4.1.54)
TSKisBlk() (Section 6.3.13)
TSKisSusp() (Section 6.3.15)
TSKstate() (Section 6.3.26)
TSKsuspend) (Section 6.3.29)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 84

6.3.15 TSKisSusp

Synopsis
#include “Abassi.h”

int TSKisSusp(TSK_t *Task);

Description

TSKisSusp() reports if a task is currently suspended or not.

Availability

Always

Arguments

Task Descriptor of the task to obtain information on its current state.

Returns

0 The task is not suspended
non-0 The task is suspended

Component type

Macro (unsafe)

Options

Notes

When the component TSKsuspend() (if OS_TASK_SUSPEND is non zero) is applied on a
task that locks one or more mutexes, this task will remain in the ready to run / running state
until it does not lock any mutexes, and will then immediately get suspended. So until the
task releases all the locks it applies on mutexes, the state of the task reported will be the
ready to run / running state.

See also

OS_TASK_SUSPEND (Section 4.1.54)
TSKisBlk() (Section 6.3.13)
TSKisRdy() (Section 6.3.14)
TSKstate() (Section 6.3.26)
TSKsuspend) (Section 6.3.29)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 85

6.3.16 TSKmyID

Synopsis
#include “Abassi.h”

TSK_t *TSKmyID(void);

Description

TSKmyID() is the component used to obtain the pointer to the descriptor of the running task.

Availability

Always.

Arguments
void

Returns

This component returns the descriptor of the running task.

Component type

Data access
- Meaningless in an interrupt -

Options

Notes

Contrary to the component TSKgetID(), this component does not rely on task names (if
OS_NAMES is non-zero), which means it is always available.

See also

OS_NAMES (Section 4.1.28)
TSKgetID() (Section 6.3.7)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 86

6.3.17 TSKresume

Synopsis
#include “Abassi.h”

void TSKresume(TSK_t *Task);

Description

In order to change the state of a task from the suspended state to the running or ready to run
state, TSKresume() is the component to use.

Availability

Always

Arguments

Task Descriptor of the task to resume.

Returns

void

Component type

Atomic macro (safe)

Options

Notes

When tasks are created in the suspended state, with TSK_STATIC()/TSK_SETUP() or
TSKcreate(), TSKresume() must be used on these tasks before they can operate or before
any other components are used on them; the same applies when a task is in the suspended
state because TSKsuspend() or TSkselfSusp() was applied on it.
If a task is not suspended, or is not in the process of getting suspended, using TSKresume()
on it will do nothing. Applying multiple TSKresume() on a task does not create cumulative
action. This means no matter how many TSKresume() are applied on a task, the effect
remains the same as if TSKresume() was used only once.
When a task that was required to get suspended is still ready to run / running because it locks
one or more mutexes, applying TSKresume() on such a task cancels the suspension in
progress.

See also

TSKcreate() (Section 6.3.5)
TSKselfSusp() (Section 6.3.18)
TSKstate() (Section 6.3.26)
TSKsuspend() (Section 6.3.29)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 87

6.3.18 TSKselfSusp

Synopsis
#include “Abassi.h”

void TSKselfSusp(void);

Description

TSKselfSusp() is a component that changes the state of the running task from the running
state to the suspended state. Contrary to TSKsuspend(), TSKselfSusp() immediately
suspends the running task. See Notes below for the pitfalls.

Availability

Always.

Arguments
void

Returns

void

Component type

Atomic macro (safe)
- Cannot be used in an interrupt -

Options

Notes

TSKselfSusp() does not use the same internal mechanism to suspend a task as the
component TSKsuspend() uses (if OS_TASK_SUSPEND is non-zero). The later suspends a
task only when all the mutexes the task locks have been released. In the case of
TSKselfSusp(), the running task gets immediately suspended. Therefore, when
TSKselfSusp() is used, all mutexes locked by the running task should be unlocked before
using TSKselfSusp(). Not doing so will block other tasks when they try to lock the
mutex(es) owned by the suspended task. These tasks will remain blocked on the mutex(es)
until the suspended task is resumed and then unlocks the mutex(es).

See also

OS_TASK_SUSPEND (Section 4.1.54)
TSKresume() (Section 6.3.17)
TSKsuspend() (Section 6.3.29)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 88

6.3.19 TSKsetArg

Synopsis
#include “Abassi.h”

void TSKsetArg(TSK_t *Task, void *Ptr);

Description

TSKsetArg() is the component to use to forward arguments, indicated by Ptr, to the task,
specified by Task. Using a forwarding approach, instead of passing argument to the task
function, was first retained to minimize the complexity of passing arguments to a task, but
also to allow dynamic changes of a task argument. This could be useful, for example, when
suspending/resuming a task in order to modify its behavior.

Availability

TSKsetArg() is only available when the build option OS_TASK_ARG is non-zero.

Arguments

Task Descriptor of the task to assign the argument.
Ptr Pointer to any type of argument to pass to the target task.

Returns
void

Component type

Data access

Options

Notes

Any data type can be forwarded to a task using this component. One has to remember it is
the pointer that is forwarded, not the contents. Therefore the contents should not be modified
after using TSKsetArg(), unless a dynamic change in the task functionality is desired.

See also

OS_TASK_ARG (Section 4.1.61)
TSKgetArg() (Section 6.3.6)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 89

6.3.20 TSKsetPrio

Synopsis
#include “Abassi.h”

void TSKsetPrio(TSK_t *Task, int Prio);

Description

TSKsetPrio() is a component used to dynamically change the priority of a task.

Availability

TSKsetPrio() is only available when the build option OS_PRIO_CHANGE is non-zero.

Arguments

Task Descriptor of the task to set the priority.
Prio New priority of the task, a numerical value of 0 is the highest priority.

Returns
void

Component type

Atomic macro (safe)

Options

Notes

The highest priority of a task in an application is always 0. The lowest priority value is
defined by the build option OS_PRIO_MIN. Therefore, the range of values for the argument
Prio must be bounded between 0 and OS_PRIO_MIN. Setting Prio to any values outside
this range will quite likely crash the Abassi RTOS.
If the priority of a task currently involved in a mutex priority inversion protection is
modified, the change of priority is immediately applied, possibly modifying the priority of
the task locking the mutex.
If the priority of a task that is currently supervised by the starvation protection is modified,
this change of priority, no matter what is the new priority level, triggers the starvation
protection mechanism to momentary stop monitoring that task. The task is put back into the
starvation queue, if the new priority level is below the starvation priority threshold.

See also

OS_PRIO_CHANGE (Section 4.1.33)
OS_PRIO_MIN (Section 4.1.34)
TSKgetPrio() (Section 6.3.8)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 90

6.3.21 TSKsetRR

Synopsis
#include “Abassi.h”

void TSKsetRR(TSK_t *Task, unsigned int Time);

Description

TSKsetRR() is the component used to dynamically change the round-robin time slice
duration allocated to a task.

Availability

TSKsetRR()is only available when the build option OS_TIMER_US is non-zero, and the
build option OS_ROUND_ROBIN is negative.

Arguments

Task Task to set a new round-robin time slice value.
Time Time slice duration, in number of timer ticks.
 If Time is zero, the task runs until blocked, or preempted, or relinquishes the

CPU through the TSKyield() component.

Returns
void

Component type

Data access

Options

Notes

Upon creation, all tasks are allocated a time slice duration, indicated in microseconds, which
is the absolute value of OS_ROUND_ROBIN. When the component TSKsetRR() is used on a
task, it reconfigure the round robin time slice duration allocated to the task. Note that
TSKsetRR() requires the time in number of timer ticks, and not in microseconds, as the units
for the time slice duration. The time conversion components can be used to convert seconds
or fraction into number of timer ticks.
When the component TSKsetRR() is applied by and to the running task, and the running
task is currently involved in round robin, the new value takes effect when the next timer tick
interrupt occurs.
When the argument Time has a value of zero, if the task is preempted, it will not relinquish
the CPU to another task at the same priority when the preemption ends. To relinquish the
CPU to another task at the same priority, the task must become blocked or voluntarily
relinquish the CPU through the TSKyield() component.

See also

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 91

OS_ROUND_ROBIN (Section 4.1.36)
OS_TIMER_US (Section 4.1.59)
OS_MS_TO_TICK (Section 6.7.17.3)
OS_SEC_TO_TICK (Section 6.7.17.5)
TSKyield (Section 6.3.32)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 92

6.3.22 TSKsetStrvPrio

Synopsis
#include “Abassi.h”

void TSKsetStrvPrio(TSK_t *Task, int Prio);

Description

TSKsetStrvPrio() is the component that sets the starvation priority threshold used by the
task specified in the argument. The starvation priority threshold is the priority at which a
task under starvation protection will stop getting its running priority level increased.

Availability

TSKsetStrvPrio() is only available when the build option OS_STARVE_WAIT_MAX is set
to a non-zero value and the build option OS_STARVE_PRIO is set to a negative value.

Arguments

Task Descriptor of the task to set a new starvation priority threshold.
Prio Numerical value of the new priority threshold of the task.
 If Prio is set to OS_PRIO_MIN or higher (a higher numerical value is a lower

priority), the task starvation protection is disabled on this task.

Returns
void

Component type

Data Access

Options

Notes

The highest priority of a task in an application is always 0. The lowest priority value is
defined by the build option OS_PRIO_MIN. With this component, there is no restriction on
what the value the argument Prio can be set to. If the numerical value of Prio is greater or
equal to the value of the regular run-time priority of the task specified in the argument Task,
it informs the kernel to disable the task starvation protection for the task. As a simple
guideline, if it is desired to disable the task starvation protection on a task, setting its
starvation priority threshold to OS_PRIO_MIN is the best way to achieve this.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 93

If the TSKsetStrvPrio() component is used on the task which is the task currently being
supervised by the task starvation mechanism, three things can happen:

Ø The new priority level is the same or is above the current priority threshold: the
operation of the starvation protection mechanism remain the same but, with the new
priority threshold.

Ø The new priority level is below the current priority threshold and above the run-time
priority of the task: the task remains at its currently promoted priority until it
succeed at reaching the running state and is removed from supervision.

Ø The new priority level is equal or below the current run-time starvation priority of
task: the task will be removed from supervision when it has expired the maximum
waiting time at the current promoted priority.

See also

OS_PRIO_MIN (Section 4.1.34)
OS_STARVE_PRIO (Section 4.1.41)
OS_STARVE_WAIT_MAX (Section 4.1.43)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 94

6.3.23 TSKsetStrvRunMax

Synopsis
#include “Abassi.h”

void TSKsetStrvRunMax(TSK_t *Task, int Time);

Description

TSKsetStrvRunMax() is the component that sets the maximum running time when a task is
running due to the starvation protection mechanism. The task selected to set the maximum
run-time value is specified by the argument Task and the maximum starvation run-time is
specified by the argument Time. The numerical value to set Time must be specified in
number of timer ticks unit.

Availability

TSKsetStrvRunMax() is only available when the build option OS_STARVE_WAIT_MAX is
non-zero and the build option OS_STARVE_RUN_MAX is negative.

Arguments

Task Descriptor of the task to set the maximum starvation run time when under
starvation protection.

Time Maximum starvation protection run time, indicated in number of timer ticks
units. If Time value is zero or negative, is it is the same as setting Time to 1.

Returns
void

Component type

Data access

Options

Notes

If the TSKsetStrvRunMax() component is used on the task that is the task currently being
supervised by the task starvation mechanism, three things can happen:

Ø The task has not ran yet since it is has been under starvation protection: when the
task will run, it will use the new value set with TSKsetStrvRunMax().

Ø The task has been running, but for less time than the new value: the task will be
running according the previous setting for the maximum run time.

Ø The task has been running for a longer time than the new value (the new value is
less than it was before): the task will be running according the previous setting for
the maximum run time.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 95

See also

OS_STARVE_RUN_MAX (Section 4.1.42)
OS_STARVE_WAIT_MAX (Section 4.1.43)
TSKgetStrvRunMax (Section 6.3.11)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 96

6.3.24 TSKsetStrvWaitMax

Synopsis
#include “Abassi.h”

void TSKsetStrvWaitMax(TSK_t *Task, int Time);

Description

TSKsetStrvWaitMax() is the component to use to set the maximum time a task remains at
the same priority level when it is under the starvation protection mechanism. The task
selected to set the maximum starvation wait time value is specified by the argument Task,
and the time by the argument Time. The value to set Time to must represent a number of
timer ticks units.

Availability

TSKsetStrvWaitMax() is only available when the build option OS_STARVE_WAIT_MAX is
negative.

Arguments

Task Descriptor of the task to set the maximum wait time when it is under starvation
protection.

Time Maximum starvation protection wait time, indicated in number of timer ticks
units. If Time value is zero or negative, is it is the same as setting Time to 1.

Returns
void

Component type

Data access

Options

Notes

If the TSKsetStrvWaitMax() component is used on the task which is the task currently
being supervised by the task starvation mechanism, then it will always complete the wait
time it was originally programmed to. Then, when a priority level promotion occurs, it will
start using the new wait time settings.

See also

OS_STARVE_WAIT_MAX (Section 4.1.43)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 97

6.3.25 TSKsleep

Synopsis
#include “Abassi.h”

int TSKsleep(int Time);

Description

TSKsleep() is a component that temporary blocks the running task for a fixed amount of
time. It is possible to abort a task sleep in progress by using the TSKtimeoutKill()
component.

Availability

TSKsleep() is only available if the build option OS_TIMEOUT and the build option
OS_TIMER_US are both non-zero.

Arguments

Time Number of timer ticks to force the task to remain in the blocked state.
 If Time is zero, it is a do nothing operation.
 If Time is negative, TSKsleep() is replaced by the component

TSKselfSusp().

Returns

0 The task was unblocked before reaching the total of Time timer ticks. This
happens if the component TSKtimeoutKill() was applied on the task.

non-0 The task became normally unblocked after the requested count of timer ticks.

Component type

Atomic macro (safe)
- Cannot be used in an interrupt -

Options

If the build option OS_TIMEOUT is zero, then when the argument Time is set to a positive
value, TSKsleep() behaves the same as if the Time argument had been set to zero.
If the build option OS_TIMEOUT is a negative value, then when the argument Time is set to a
positive value, TSKsleep() behaves the same as if the component TSKselfSusp() had
been used.

Notes

When the argument Time is negative, in order to remain consistent with the meaning of a
negative timeout as used in all other blocking services, TSKsleep() remaps to
TSKselfSusp(), which then exhibits exactly the same pitfalls TSKselfSusp() has. Refer
to the description of TSKselfSusp() to gain awareness .

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 98

See also

OS_TIMEOUT (Section 4.1.57)
OS_TIMER_US (Section 4.1.59)
TSKselfSusp() (Section 6.3.18)
TSKtimeoutKill() (Section 6.3.30)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 99

6.3.26 TSKstate

Synopsis
#include “Abassi.h”

int TSKstate(TSK_t *Task);

Description

TSKstate() is a component that reports the current state of a task.

Availability

Always.

Arguments

Task Descriptor of the task to obtain the operating state

Returns

0 The task is in the ready to run state
Negative The task is in the suspended state
Positive The task is in the blocked state

Component type

Macro definition (unsafe)

Options

Notes

When the component TSKsuspend() (when OS_TASK_SUSPEND is non-zero) is applied on a
blocked task, this task will remain in the blocked state until it becomes running which will
then get it immediately suspended. So until the task ran, the state of the task reported will be
the blocked state.
When the component TSKsuspend()(when OS_TASK_SUSPEND is non-zero) is applied on a
task that locks one or more mutexes, this task will remain in the ready to run / running state
until it does not lock any mutexes, which will then get it immediately suspended. So until the
task gets rid of all the locks it applies on mutexes, the state of the task reported will be the
ready to run / running state.

See also

TSKisBlk() (Section 6.3.13)
TSKisRdy() (Section 6.3.14)
TSKisSusp() (Section 6.3.15)
TSKsuspend() (Section 6.3.29)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 100

6.3.27 TSKstkFree

Synopsis
#include “Abassi.h”

int TSKstkFree(TSK_t *Task);

Description

This is the component used to obtain a measurement on the minimum space that has never
been used on a task’s stack.
.

Availability

Only available when OS_STACK_CHECK is defined and set to non-zero

Arguments

Task Descriptor of the task to monitor

Returns

The amount of stack of the task Task that has never been used (in bytes)
-1 : for the Adam & Eve task when its stack cannot be monitored

Component type

Function

Options

Notes

For most ports, the stack of the Adam & Eve task cannot be monitored. There are two
reasons for that. The first one is the base and the top of the stack associated to the function
main() is not always available at run time. The second and most important is that Adam &
Eve is a special task, as it is not created from the ground up. Due to this, the task’s stack is
already in use and it becomes a bit convoluted to try to fill the un-used part of the stack with
the monitoring data.
.

See also

OS_STACK_CHECK (Section 4.1.40)
TSKstkUsed() (Section 6.3.28)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 101

6.3.28 TSKstkUsed

Synopsis
#include “Abassi.h”

int TSKstkUsed(TSK_t *Task);

Description

This is the component used to obtain a measurement on the maximum space that has been
used on a task’s stack.
.

Availability

Only available when OS_STACK_CHECK is defined and set to non-zero

Arguments

Task Descriptor of the task to monitor

Returns

The amount of stack of the task Task that has been used (in bytes)
-1 : for the Adam & Eve task when its stack cannot be monitored

Component type

Function

Options

Notes

For most ports, the stack of the Adam & Eve task cannot be monitored. There are two
reasons for that. The first one is the base and the top of the stack associated to the function
main() is not always available at run time. The second and most important is that Adam &
Eve is a special task, as it is not created from the ground up. Due to this, the task’s stack is
already in use and it becomes a bit convoluted to try to fill the un-used part of the stack with
the monitoring data.
.

See also

OS_STACK_CHECK (Section 4.1.40)
TSKstkFree() (Section 6.3.27)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 102

6.3.29 TSKsuspend

Synopsis
#include “Abassi.h”

void TSKsuspend(TSK_t *Task);

Description

This is the component used to put a task in the suspended state. The task to suspend may run
for a while if it owns/locks mutexes. Only when all mutexes owned by the task are released
does the suspending occurs.
If the task to suspend is in the blocked state, the task will have to reach the running state and
then will immediately get suspended.

Availability

Only available when OS_TASK_SUSPEND is set to non-zero

Arguments

Task Descriptor of the task to suspend.

Returns

void

Component type

Atomic macro (safe)

Options

Notes

A task must become running before reaching the suspended state. Therefore if this
component is applied on a task in the blocked state, the task will remain in the blocked state
until it gets unblocked, then it will then immediately go into the suspended state.
As explained in Description, a task suspension triggered by TSKsuspend() happens only
when the task to suspend has released all locks it has on mutexes. This restriction was added
as a safety mechanism because if a task goes into the suspended state while it locks one or
more mutexes, then other tasks in the application that try to get a lock on these mutexes will
effectively becomes suspended due to the deadlock. The component TSKselfSusp() does
not provide this protection.
Another safeguard applied to TSKsuspend() is related to the interrupts. When the interrupts
are disabled, a task will not get suspended as long as the interrupts are disabled. This is
added to protect against a task disabling for a short time the interrupt and while the interrupts
are disabled, it gets forced by another one to be suspended. If this safety was not present, the
interrupts would remain disabled until the task gets resumed.

See also

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 103

OS_TASK_SUSPEND (Section 4.1.54)
TSKresume() (Section 6.3.17)
TSKselfSusp() (Section 6.3.18)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 104

6.3.30 TSKtimeoutKill

Synopsis
#include “Abassi.h”

void TSKtimeoutKill(TSK_t *Task);

Description

TSKtimeoutKill() is the component to use to prematurely unblock a task that has been put
in the blocked state through the component TSKsleep(), or if the task is blocked with a
timeout, waiting on a semaphore, a mutex lock, or reading/writing a mailbox.

Availability

TSKtimeoutKill() is only available if the build option OS_TIMEOUT and OS_TIMER_US
are both non-zero

Arguments

Task Descriptor of the task to unblock from an expiry timeout.

Returns
void

Component type

Atomic macro (safe)

Options

Notes

Nothing happens if the task is not currently blocked through the use of the TSKsleep()
component, or blocked with timeout through the use of the SEMwait(), SEMwaitBin(),
MTXlock(), EVTwait(), MBXput(), or MBXget() components. This applies to the
running task, a ready to run task, or a task suspended by TSKsuspend().
If a task is blocked on any of the previous components with a negative timeout (meaning no
expiry timeout), then TSKtimeoutKill()has absolutely no effect.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 105

See also

OS_TIMEOUT (Section 4.1.57)
OS_TIMER_US (Section 4.1.59)
EVTwait() (Section 6.6.8)
MBXget() (Section 6.7.5)
MBXput() (Section 6.7.9)
MTXlock() (Section ·)
SEMwait() (Section 6.4.11)
SEMwaitBin() (Section 6.4.12)
TSKsleep() (Section 6.3.25)
TSKtout() (Section 6.3.31)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 106

6.3.31 TSKtout

Synopsis
#include “Abassi.h”

void TSKtout(TSK_t *Task, int TimeOut);

Description

TSKtout() is the component to use to modify the timeout of a task blocked with a timeout,
waiting on a semaphore, a mutex lock, or reading/writing a mailbox. When TSKtout() is
used, the current time left in the timeout is replaced by the value provided by the argument
TimeOut.

Availability

TSKtout() is only available if the build option OS_TIMEOUT and OS_TIMER_US are both
non-zero

Arguments

Task Descriptor of the task to unblock from an expiry timeout.
TimeOut New expiry timeout.

Returns
void

Component type

Atomic macro (safe)

Options

Notes

Nothing happens if the task is not currently blocked through the use of the TSKsleep()
component, or blocked with timeout through the use of the SEMwait(), SEMwaitBin(),
MTXlock(), EVTwait(), MBXput(), or MBXget() components. This applies to the
running task, a ready to run task, or a task suspended by TSKsuspend().
If a task is blocked on any of the previous components with a negative timeout (meaning no
expiry timeout), then TSKtout()has absolutely no effect.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 107

See also

OS_TIMEOUT (Section 4.1.57)
OS_TIMER_US (Section 4.1.59)
EVTwait() (Section 6.6.8)
MBXget() (Section 6.7.5)
MBXput() (Section 6.7.9)
MTXlock() (Section ·)
SEMwait() (Section 6.4.11)
SEMwaitBin() (Section 6.4.12)
TSKsleep() (Section 6.3.25)
TSKtimeoutKill() (Section 6.3.30)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 108

6.3.32 TSKyield

Synopsis
#include “Abassi.h”

void TSKyield(void);

Description

TSKyield() is the component to use by the running task to yield the CPU to another ready
to run task. The running task can yield the CPU under only 2 scenarios:

Ø The kernel is operating in the cooperative mode with the build option
OS_COOPERATIVE set to a non-zero value. Under these conditions, the next task to
run is the ready to run task with the highest or same priority level as the task
yielding the CPU.

Ø The kernel is not in the cooperative mode. Under these conditions, the next task
ready to run, which is at the same priority as the yielding task, will get the CPU.

Availability

Arguments

None

Returns
void

Component type

Atomic macro (safe)
- Cannot be used in an interrupt -

Options

Notes

In the cooperative mode, the CPU is not relinquished when the component TSKyield() is
used and there are no ready to run tasks that have a priority level equal or greater than the
running task.
When not in the cooperative mode, the CPU is not relinquished if there are no other tasks
ready to run at the same priority, or if the build option OS_PRIO_SAME is set to zero

See also

OS_COOPERATIVE (Section 4.1.4)
OS_PRIO_SAME (Section 4.1.35)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 109

6.3.33 Examples

6.3.33.1 Static task
This example shows a snippet of code that creates a task at compile/link time. The variable name for the
task descriptor is Task1, and its runtime name is “Task #1”. The run-time priority value is 1 (one level
below the maximum priority level), and a stack of 512 bytes is allocated to the task, which operates as the
function FctTask1().

Table 6-7 Static Task definition example

#include “Abassi.h”

STATIC_TASK(Task1, “Task #1”, 1, 512, FctTask1);

main()
{
 OSstart(); /* RTOS set-up */

 TSK_SETUP(Task1, 0); /* TSK_SETUP must be used on all static tasks */

 TSKresume(Task1); /* This task was created suspended */

 …

6.3.33.2 OS_IDLE_STACK set to 0
This example shows code where the build option OS_IDLE_STACK is set to 0. This means OSstart()
does not deal with the creation of the Idle Task, so the function IdleTask() does not need to be supplied
by the application. Instead, the Adam & Eve task operating with main(), which is the task with the
highest priority as set-up by OSstart(), gets its priority changed to OS_PRIO_MIN, which effectively
convert it into the Idle Task. All there is to do is to use the TSKsetPrio() component for the priority
change. When TSKsetPrio() is used, the task associated with main() is set to the lowest priority in the
application.

Table 6-8 OS_IDLE_STACK set to 0 example

#include “Abassi.h”

main()
{
 OSstart();

 … /* Perform any initialization required */

 TSKcreate("Fct Hi", 3, 1024, &FctHi, 1); /* Create a task in ready to run state */

 TSKsetPrio(TSKmyID(), OS_PRIO_MIN); /* Is now operating at lowest priority */

 …

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 110

6.4 Semaphore Components
This section describes all components related to the semaphores. The semaphore components described in
the following sub-sections are:

Table 6-9 Semaphore Component list

Section Name Description

6.4.2 SEM_STATIC Creation of a semaphore at compile / link time

6.4.3 SEMabort Unblock all tasks blocked on a semaphore

6.4.4 SEMnotFCFS Set a semaphore to operate in the Priority mode

6.4.5 SEMopen Create a semaphore / obtain the descriptor of a semaphore

6.4.6 SEMopenFCFS Create a semaphore to operate in First Come First Served mode

Obtain the descriptor of a semaphore

6.4.7 SEMpost Post a semaphore

6.4.8 SEMpostAll Post a semaphore multiple times to unblock all tasks

6.4.9 SEMreset Remove the excess count of a semaphore

6.4.10 SEMsetFCFS Set a semaphore to operate in the First Come First Served mode

6.4.11 SEMwait Wait on (Acquire) a semaphore

6.4.12 SEMwaitBin Wait on (Acquire) a binary semaphore

6.4.1 Description
The semaphore service is the heart of the Abassi RTOS as semaphores are the sole blocking mechanism
internally used. Semaphores are always counting semaphores, but they can operate as binary semaphore
upon waiting. Also, by default, semaphores operate in a Priority mode, which means that when multiple
tasks are blocked on the same semaphore, the task with the highest priority level is the first to get
unblocked upon posting of the semaphore. Although by default they operate in Priority mode, individual
semaphores can be optionally set to operate in a First Come First Served mode, where the first task
blocked (time-wise) by a semaphore is the first task to get unblocked upon posting of the semaphore. A
semaphore operating in the First Come First Served mode can be returned to the Priority mode at any time
and vice-versa.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 111

6.4.2 SEM_STATIC

Synopsis
#include “Abassi.h”

SEM_STATIC(VarName, SemName);

Description

SEM_STATIC() is a special component that creates a semaphore and initializes its descriptor.
It is a macro definition creating a static object, so none of the arguments has a real data type.
The semaphore is not created/initialized at run time; everything is done at compile/link time.

Availability

Always.

Arguments

VarName Name of the variable holding the pointer to the semaphore descriptor to create /
initialize. This is a variable name therefore do not put double quotes around the
name.

SemName Semaphore name. This is not the variable name, it is the name attached to the
semaphore. As it is a “C” string, the double quotes around the name are
required.
G_OSnoName , and not NULL, should be used for an unnamed semaphore.

Returns

N/A

Component type

Macro (safe)

Options

If the build option OS_NAMES is set to a value of zero, the argument SemName is ignored but
must still be supplied.

Notes

If one or more semaphores are created using the SEM_STATIC() component, it may not be
possible to restart the application without reloading the binary image on the processor. This
situation happens if the compiler (or compiler configuration) does not reload the initialized
data upon start-up.
A semaphore created and initialized with SEM_STATIC() will not be part of the search done
with SEMopen() or SEMopenFCF().
A semaphore created with this component is always created to operate in the Priority mode.
If the build option OS_FCFS is non-zero, and a semaphore created with SEM_STATIC() is
targeted to operate in the First Come First Served mode, use the component SEMsetFCFS()
on the semaphore in main(), once the component OSstart() has been used.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 112

See also

OS_FCFS (Section 4.1.6)
OS_NAMES (Section 4.1.28)
SEMopen() (Section 6.4.5)
SEMopenFCFS() (Section 6.4.6)
SEMsetFCFS() (Section 6.4.10)
G_OSnoName (Section 6.14.2)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 113

6.4.3 SEMabort

Synopsis
#include “Abassi.h”

void SEMabort(SEM_t *Sema);

Description

SEMabort() is a component that unblocks all tasks that are blocked on the semaphore Sema.
This is alike applying the component TSKtimeoutKill() on all the tasks blocked on the
semaphore Sema with the extra capability to also unblocked tasks blocked with an infinite
timeout. SEMabort() has no effect on a task blocked on a group the semaphore is attached
to.

Availability

SEMabort() is only available when the build option OS_WAIT_ABORT is defined and
non-zero.

Arguments

Sema Descriptor of the semaphore to unblock all the tasks that are blocked on.

Returns

void

Component type

Atomic macro (safe)

Options

Notes

All tasks that blocked on the SEMwait() or SEMwaitBin() components are unblocked
when the component SEMabort() is used on the semaphore. The SEMwait() or
SEMwaitBin() components then return a non-zero value to indicate a timeout occurred,
even if the wait time requested was infinite.

SEMabort() applied on a semaphore that is attached to a group will not unblock a task
waiting on that group. The reason is the task is blocked on the group, not blocked on the
semaphore. If there are one or more tasks blocked on the same semaphore (non-group
blocking is authorized on a semaphore already attached to a group), then these tasks will get
unblocked.

If there are no tasks blocked on the semaphore Sema, the use of SEMabort() on Sema has no
effects.

See also

OS_WAIT_ABORT (Section 4.1.62)
SEMwait() (Section 6.4.11)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 114

SEMwaitBin() (Section 6.4.12)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 115

6.4.4 SEMnotFCFS

Synopsis
#include “Abassi.h”

void SEMnotFCFS(SEM_t *Sema);

Description

SEMnotFCFS() is a component that configures an existing semaphore to operate in the
Priority mode instead of the First Come First Served mode. When a semaphore operating in
Priority mode is posted and tasks are blocked on it, the highest priority task blocked is
always the next task that will be unblocked first.

Availability

SEMnotFCFS() is only available when the build option OS_FCFS is non-zero.

Arguments

Sema Descriptor of the semaphore to configure into the Priority mode.

Returns

void

Component type

Data access

Options

Notes

If the semaphore is already operating in the Priority mode, using this component has no
effect on the semaphore.
If the semaphore is operating in the First Come First Served mode, using this component will
not re-order the tasks that are currently blocked on the semaphore. Newly blocked tasks will
be inserted in a Priority ordering amongst the already First Come First Served ordered
blocked tasks. This means there may be a transient phase before the semaphore truly
operates in a Priority mode.

See also

OS_FCFS (Section 4.1.6)
SEMopenFCFS() (Section 6.4.6)
SEMsetFCFS() (Section 6.4.10)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 116

6.4.5 SEMopen

Synopsis
#include “Abassi.h”

SEM_t *SEMopen(const char *Name);

Description

SEMopen() is the component to use to create a semaphore, and is also the component to use
to obtain the descriptor of an already existing semaphore (when OS_NAMES is non-zero). All
semaphores created with SEMopen() operate upon creation in the Priority mode.

Availability

SEMopen() is only available when the build option OS_RUNTIME is non-zero.

Arguments

Name Name of the semaphore to create or to obtain the descriptor of.

Returns

Descriptor of the semaphore

Component type

Function
- Cannot be used in an interrupt -

Options

When the build option OS_NAMES is zero, the argument Name is ignored but must still be
supplied. In a build where OS_NAMES is zero, all semaphores are unnamed and every use of
SEMopen() creates a new semaphore.
If the build option OS_NAMES is non-zero, then SEMopen() will either return the descriptor
of an existing semaphore (previously created with SEMopen() or SEMopenFCFS()), or when
no semaphore with the specified name exists, it will create a new semaphore. This approach
makes the creation and opening of semaphores run-time safe. If that feature was not part of
the SEMopen() component, it would be imperative to either create the semaphore
immediately at start-up or to guarantee the first task (using the semaphore) to reach the
running state is the one creating the semaphore. With the run-time safe feature, it does not
matter which task is the first to open/create the semaphore.
If the build option OS_STATIC_SEM is non-zero, the semaphore descriptor uses memory that
was allocated/reserved at compile/link time instead of memory dynamically allocated at run-
time.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 117

Notes

One should avoid setting the argument Name to NULL when the build option OS_NAMES is
zero. The reasoning behind this is: if logging ever needs to be turned on, it becomes
impossible to differentiate amongst all unnamed semaphores. This is also the reason why the
function prototype for this component was kept the same, irrespective of the setting of the
build option OS_NAMES.
Be aware, if the build option OS_FCFS is non-zero, when the semaphore already exists, there
is no guarantee the semaphore is operating in a Priority mode as it may have been created
with SEMopenFCFS() or it may have been set to operate in First Come First Served mode
with SEMsetFCFS().
At any time a semaphore operating in the Priority mode can be modified to operate in the
First Come First Served mode by using the SEMsetFCFS() component when the build
option OS_FCFS is non-zero.
Semaphores created with the SEM_STATIC() component are not part of the search performed
by SEMopen().

See also

OS_FCFS (Section 4.1.6)
OS_NAMES (Section 4.1.28)
OS_RUNTIME (Section 4.1.37)
SEMopenFCFS() (Section 6.4.6)
SEMsetFCFS() (Section 6.4.10)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 118

6.4.6 SEMopenFCFS

Synopsis
#include “Abassi.h”

SEM_t *SEMopenFCFS(const char *Name);

Description

SEMopenFCFS() is the component to use to create a semaphore operating in a First Come
First Served mode, and is also the component to use to obtain the descriptor of an already
existing semaphore (when OS_NAMES is non-zero).

Availability

SEMopenFCFS() is only available when the build options OS_RUNTIME and OS_FCFS are
both non-zero.

Arguments

Name Name of the semaphore to create or to obtain the descriptor of.

Returns

Descriptor of the semaphore

Component type

Function
- Cannot be used in an interrupt -

Options

When the build option OS_NAMES is zero, the argument Name is ignored but must still be
supplied. In a build where OS_NAMES is zero, all semaphores are unnamed and every use of
SEMopenFCFS() creates a new semaphore.
If the build option OS_NAMES is non-zero, then SEMopenFCFS() will either return the
descriptor of an existing semaphore (previously created with SEMopen() or
SEMopenFCFS()), or when no semaphore with the specified name exists, it will create a new
semaphore. This approach makes the creation and opening of semaphores run-time safe. If
that feature was not part of the SEMopenFCFS() component, it would be imperative to either
create the semaphore immediately at start-up or to guarantee the first task (using the
semaphore) to reach the running state is the one creating the semaphore. With the run-time
safe feature, it does not matter which task is the first to use the semaphore.
If the build option OS_STATIC_SEM is non-zero, the semaphore descriptor uses memory that
was allocated/reserved at compile/link time instead of memory dynamically allocated at run-
time.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 119

Notes

One should avoid setting the argument Name to NULL when the build option OS_NAMES is
zero. The reasoning behind this is: if logging ever needs to be turned on, it becomes
impossible to differentiate amongst all unnamed semaphores. This is also the reason why the
function prototype for this component was kept the same, irrespective of the setting of the
build option OS_NAMES.
Be aware, when the semaphore already exists, there is no guarantee the semaphore is
operating in a First Come First Served mode as it may have been created with SEMopen()or
it may have been set to operate in Priority mode with SEMnotFCFS().
At any time a semaphore operating in the First Come First Served mode can be modified to
operate in the Priority mode by using the SEMnotFCFS() component.
Semaphores created with the SEM_STATIC() component are not part of the search performed
by SEMopenFCFS().

See also

OS_FCFS (Section 4.1.6)
OS_NAMES (Section 4.1.28)
OS_RUNTIME (Section 4.1.37)
SEMnotFCFS() (Section 6.4.4)
SEMopen() (Section 6.4.5)
SEMsetFCFS() (Section 6.4.10)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 120

6.4.7 SEMpost

Synopsis
#include “Abassi.h”

void SEMpost(SEM_t *Sema);

Description

SEMpost() is the component to use to post a semaphore.

Availability

Always.

Arguments

Sema Descriptor of the semaphore to post.

Returns
void

Component type

Atomic macro (safe)

Options

Notes

Semaphores are internally always operating as counting semaphores, meaning each posting
increments a count register, but binary semaphores are also supported. When a semaphore is
posted, it is always operating as a counting semaphore. The difference between a counting
and binary semaphore occurs only when waiting on the semaphore. A single use of
SEMwaitBin() on a semaphore will zero the internal counter.
A safety mechanism exists in the Abassi RTOS to saturate the internal counter when it
reaches the largest int value.

See also

SEMpostAll() (Section 6.4.8)
SEMwait() (Section 6.4.11)
SEMwaitBin() (Section 6.4.12)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 121

6.4.8 SEMpostAll

Synopsis
#include “Abassi.h”

void SEMpostAll(SEM_t *Sema);

Description

SEMpostAll() is sort of a superset of SEMpost(). When SEMpost() is used and one or
more tasks are blocked on Sema, only a single task gets unblocked. If SEMpostAll() is
used instead, then all tasks blocked on Sema gets unblocked. When there are no tasks
blocked on Sema, SEMpostAll() behaves exactly the same way as SEMpost().

Availability

Available since 2019

Arguments

Sema Descriptor of the semaphore to post one or multiple times

Returns
void

Component type

Atomic macro (safe)

Options

Notes

See also

SEMpost() (Section 6.4.7)
SEMwait() (Section 6.4.11)
SEMwaitBin() (Section 6.4.12)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 122

6.4.9 SEMreset

Synopsis
#include “Abassi.h”

void SEMreset(SEM_t *Sema);

Description

SEMreset() is the component to use to remove the excess count of a semaphore.

Availability

Always.

Arguments

Sema Descriptor of the semaphore to remove the excess count.

Returns
void

Component type

Atomic macro (unsafe)

Options

Notes

SEMreset() is used to remove the excess postings that could have been done on a
semaphore. If there are no excess postings or if one or more tasks are blocked on the
semaphore, SEMreset() does not change the semaphore count.

See also

SEMpost() (Section 6.4.7)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 123

6.4.10 SEMsetFCFS

Synopsis
#include “Abassi.h”

void SEMsetFCFS(SEM_t *Sema);

Description

SEMsetFCFS() is the component that configures an existing semaphore to operate in a First
Come First Served mode. When a semaphore operating in First Come First Served mode is
posted and tasks are blocked on it, the oldest task that was blocked (time-wise) becomes
running/ready to run.

Availability

SEMsetFCFS() is only available when the build option OS_FCFS is non-zero.

Arguments

Sema Descriptor of the semaphore to set to a First Come First Served mode.

Returns
void

Component type

Data access

Options

Notes

If the semaphore is already operating in the First Come First Served mode, using this
component has no effect on such a semaphore.
If the semaphore is operating in the Priority mode, using this component will not re-order the
tasks that are currently blocked on the semaphore. Newly blocked tasks will be inserted in a
First Come First Served ordering behind the already Priority ordered blocked tasks. This
means there may be a transient phase before the semaphore truly operates in a First Come
First Served mode.

See also

OS_FCFS (Section 4.1.6)
SEMnotFCFS() (Section 6.4.4)
SEMopenFCFS() (Section 6.4.6)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 124

6.4.11 SEMwait

Synopsis
#include “Abassi.h”

int SEMwait(SEM_t *Sema, int Timeout);

Description

SEMwait() is the component to use to wait on / acquire a semaphore. Through the argument
Timeout, it is possible to request to block until the acquisition succeeds, or to block with
timeout, or no blocking at all.

Availability

Always, but see Options

Arguments

Sema Descriptor of the semaphore to acquire.
Timeout Negative Infinite blocking
 0 Never blocks
 Positive Number of timer ticks before expiry

Returns

0 The semaphore was acquired.
Non-zero The semaphore was not acquired. This will occur when the argument Timeout

is non-negative. Either Timeout was zero and the semaphore wasn’t acquired,
or Timeout was positive and the semaphore wasn’t acquired within Timeout
number of timer ticks (or the component TSKtimeoutKill() was applied to
the task blocked on the semaphore.

Component type

Atomic macro (safe)
- Cannot be used in an interrupt -

Options

If the build option OS_TIMEOUT is set to zero, then when the argument Timeout is set to a
positive value, SEMwait() behaves the same as if the Timeout argument had been set to
zero.
If the build option OS_TIMEOUT is set to a negative value, then when the argument Timeout
is set to a positive value, SEMwait() behaves the same as if the Timeout argument had been
set to a negative value.
If the build option OS_FCFS is non-zero and the semaphore was opened with
SEMopenFCFS(), or if SEMsetFCFS()was used on the semaphore, the unblocking operates
on a First Come First Served basis instead of the highest Priority first.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 125

Notes

Unless Timeout is negative, always verify the return value: a non-zero value means the
semaphore was not acquired and zero means it was acquired, even if the Timeout was set to
zero.
When Timeout is set to a negative value, the component TSKtimeoutKill() cannot
unblock the task waiting on the semaphore, as an infinite timeout request does not involve the
timer service.

Never use SEMwait() in an ISR unless Timeout is set to zero. In an interrupt, the value
returned by SEMwait() is always 0, even if the semaphore was not acquired. If the
semaphore was truly acquired its internal count will be decremented. If the semaphore was
not acquired, the internal count is left unmodified.

See also

OS_FCFS (Section 4.1.6)
OS_TIMEOUT (Section 4.1.57)
SEMopenFCFS() (Section 6.4.6)
SEMpost() (Section 6.4.7)
SEMsetFCFS() (Section 6.4.10)
SEMwaitBin() (Section 6.4.12)
TSKtimeoutKill() (Section 6.3.30)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 126

6.4.12 SEMwaitBin

Synopsis
#include “Abassi.h”

int SEMwaitBin(SEM_t *Sema, int Timeout);

Description

SEMwaitBin() is the component to use to wait on / acquire a semaphore, treating the
semaphore in a binary fashion. Through the argument Timeout, it is possible to request to
block until the acquisition succeeds, or to block with timeout, or no blocking at all.

Availability

Always, but see Options

Arguments

Sema Descriptor of the semaphore to acquire
Timeout Negative Infinite blocking
 0 Never blocks
 Positive Timer ticks before expiry

Returns

0 The semaphore was acquired.
Non-zero The semaphore was not acquired. This will occur when the argument Timeout

is non-negative. Either Timeout was zero and the semaphore wasn’t acquired,
or Timeout was positive and the semaphore wasn’t acquired within Timeout
number of timer ticks (or the component TSKtimeoutKill() was applied to
the task blocked on the semaphore).

Component type

Atomic macro (safe)
- Cannot be used in an interrupt -

Options

If the build option OS_TIMEOUT is set to zero, then when the argument Timeout is set to a
positive value, SEMwaitBin() behaves the same as if the Timeout argument had been set
to zero.
If the build option OS_TIMEOUT is set to a negative value, then when the argument Timeout
is set to a positive value, SEMwaitBin() behaves the same as if the Timeout argument had
been set to a negative value.
If the build option OS_FCFS is non-zero and the semaphore was opened with
SEMopenFCFS(), or if SEMsetFCFS()was used on the semaphore, the unblocking operates
on a First Come First Served basis instead of the highest Priority first.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 127

Notes

Unless Timeout is negative, always verify the return value: a non-zero value means the
semaphore was not acquired and zero means it was acquired, even if the Timeout was set to
zero.
When Timeout is set to a negative value, the component TSKtimeoutKill() cannot
unblock the task waiting on the semaphore, as an infinite timeout request does not involve the
timer service.
Semaphores are typically counting semaphores, meaning each posting increments a count
register. When a semaphore is posted, it is always as a counting semaphore. The difference
between a counting and binary semaphore occurs only when waiting on the semaphore. A
single use of SEMwaitBin() on a semaphore will zero the internal counter.

 Never use SEMwaitBin() in an ISR unless Timeout is set to zero. . In an interrupt, the
value returned by SEMwaitBin() is always 0, even if the semaphore was not acquired. If
the semaphore was truly acquired its internal count will be decremented. If the semaphore
was not acquired, the internal count is left unmodified.

See also

OS_FCFS (Section 4.1.6)
OS_TIMEOUT (Section 4.1.57)
SEMopenFCFS() (Section 6.4.6)
SEMpost() (Section 6.4.7)
SEMsetFCFS() (Section 6.4.10)
SEMwait() (Section 6.4.11)
TSKtimeoutKill() (Section 6.3.30)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 128

6.4.13 Examples

6.4.13.1 Semaphore Flushing
Semaphore flushing is an expression that means to bring back the semaphore internal counter to zero. This
operation translates into dropping all previous accumulated postings. There is no dedicated component
supplied to perform this operation because SEMwaitBin() (Section 6.4.12) performs a superset of this
operation. All there is to do is as follows:

 SEMwaitBin(Semaphore, 0);

This will reset the internal counter to zero. Calling SEMwaitBin() as such does not change the behavior
of the semaphore nor the tasks that are blocked on it.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 129

6.5 Mutex Components
This section describes all components related to the mutexes. The mutexes components described in the
following sub-sections are:

Table 6-10 Mutex Component List

Section Name Description

6.5.2 MTX_STATIC Creation of a mutex at compile / link time

6.5.3 MTXabort Unblock all tasks blocked on a mutex

6.5.4 MTXcheckOwn Allow only the task locking (owner of) a mutex to unlock it

6.5.5 MTXgetCeilPrio Get the current ceiling priority attached to a mutex

6.5.6 MTXgetPrioInv Get the current on/off of the priority inversion protection

6.5.7 MTXignoreOwn Allow any task to unlock a mutex

6.5.8 MTXisChkOwn Report if a mutex is under owner unlocking protection

6.5.9 MTXlock Lock / acquire a mutex

6.5.10 MTXnotFCFS Set a mutex to operate in the Priority mode

6.5.11 MTXopen Create a mutex / obtain the descriptor of a mutex

6.5.12 MTXopenFCFS Create a mutex to operate in First Come First Served mode

Obtain the descriptor of a mutex

6.5.13 MTXowner Report if a mutex is locked

Report the task descriptor of the locker of a mutex

6.5.14 MTXprioInvOff Disable the mutex priority inversion protection

6.5.15 MTXprioInvOn Enable the mutex priority inversion protection

6.5.16 MTXsetCeilPrio Set the ceiling priority attached to a mutex

6.5.17 MTXsetFCFS Set a semaphore to operate in the First Come First Served mode

6.5.18 MTXunlock Unlock / procure a mutex

6.5.1 Description
As stated in a previous section, mutexes are simply semaphores in disguise. Almost everything explained
about the Abassi semaphores in Section 6.4 applies to mutexes. The only differences between mutexes
and semaphores are the followings:

Ø Mutexes always operate in a binary fashion

Ø Mutexes are created with a single initial “posting”

Ø All mutexes are reentrant mutexes: the mutex locker can apply multiple locks on a
mutex without getting blocked on that mutex

Ø Mutexes can trigger priority inheritance / priority ceiling on the owning task when
the feature is enabled

Ø A task that locks one or more mutexes will not get suspended as long as it locks the
mutex(es), if this feature is enabled by setting the build option OS_TASK_SUSPEND
to a non-zero value

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 130

• NOTE: If for a reason or another non-reentrant mutexes are required in the application all there
is to do is to use a semaphore as a replacement. After the creation of a semaphore perform a
“dummy” SEMpost() on it. After tha, a SEMwait() is equivalent to a mutex lock and a
SEMpost() the equivalent to a mutex unlock. As it is a semaphore, then it is not possible to
protect it against priority inversion protection or to detect a deadlock on it.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 131

6.5.2 MTX_STATIC

Synopsis
#include “Abassi.h”

MTX_STATIC(VarName, MtxName);

Description

MTX_STATIC() is a special component that creates a mutex and initializes its descriptor. It
is a macro definition creating a static object, so none of the arguments has a real data type.
The mutex is not created/initialized at run time; everything is done at compile/link time.

Availability

Always

Arguments

VarName Name of the variable holding the pointer to the mutex descriptor to create /
initialize. This is a variable name therefore do not put double quotes around the
name.

MtxName Mutex name. This is not the variable name, it is the name attached to the
mutex. As it is a “C” string, the double quotes around the name are required.
G_OSnoName , and not NULL, should be used for an unnamed mutex

Returns

N/A

Component type

Macro (safe)

Options

If the build option OS_NAMES is set to a value of zero, the argument MtxName is ignored but
must still be supplied.

Notes

A mutex created and initialized with MTX_STATIC() will not be part of the search done with
MTXopen()or MTXopenFCFS(), unless another mutex (or semaphore) with the exactly the
same name was created using MTXopen() or MTXopenFCFS().
All mutexes created with MTX_STATIC() are set to operate in the Priority mode upon
creation. To make a mutex created with MTX_STATIC() operate in the First Come First
Seerved mode, apply the component MTXsetFCFS() on the mutex.
If mutexes are created using the MTX_STATIC() component, it may not be possible to restart
the application without reloading the binary image on the processor. This situation happens
if the compiler (or compiler configuration) does not reload the initialized data upon start-up.

See also

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 132

OS_NAMES (Section 4.1.28)
MTXsetFCFS() (Section 6.5.17)
MTXopen() (Section 6.5.11)
MTXopenFCFS() (Section 6.5.12)
G_OSnoName (Section 6.14.2)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 133

6.5.3 MTXabort

Synopsis
#include “Abassi.h”

void MTXabort(MTX_t *Mutex);

Description

MTXabort() is a component that unblocks all tasks that are blocked trying to lock the mutex
Mutex. This is alike applying the component TSKtimeoutKill() on all the tasks blocked
on the mutex Mutex with the extra capability to also unblocked tasks blocked with an infinite
timeout.

Availability

MTXabort() is only available when the build option OS_WAIT_ABORT is defined and
non-zero.

Arguments

Mutex Descriptor of the mutex to unblock all the tasks that are blocked on.

Returns

void

Component type

Atomic macro (safe)

Options

Notes

All tasks that blocked on the MTXlock() component are unblocked when the component
MTXabort() is used on the mutex. The MTXlock() component then returns a non-zero
value to indicate a timeout occurred, even if the wait time requested was infinite. The task
that owns the lock on the mutex still owns the lock on that mutex once the component
MTXabort() has been used; it does not lose the lock as the owner is not blocked on the
mutex.

If there are no tasks blocked on the mutex Mutex, the use of MTXabort() on Mutex has no
effects.

See also

OS_WAIT_ABORT (Section 4.1.62)
MTXlock() (Section 6.5.9)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 134

6.5.4 MTXcheckOwn

Synopsis
#include “Abassi.h”

void MTXcheckOwn(MTX_t *Mutex);

Description

MTXcheckOwn() is a component that enables a feature where only the task that locks (the
mutex owner) can unlock a mutex. When this feature is enabled, a mutex can always be
unlocked in an interrupt handler.

Availability

MTXcheckOwn() is only available when the build option OS_MTX_OWN_UNLOCK is set to a
negative value. By default, all new mutexes have the protection enabled.

Arguments

Mutex Descriptor of the mutex to enable ownership validation on.

Returns

void

Component type

Data access

Options

Notes

See also

OS_MTX_OWN_UNLOCK (Section 4.1.27)
MTXignoreOwn() (Section 6.5.7)
MTXisChkOwn() (Section 6.5.8)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 135

6.5.5 MTXgetCeilPrio

Synopsis
#include “Abassi.h”

int MTXgetCeilPrio(MTX_t *Mutex);

Description

MTXgetCeilPrio() is a component that reports the current ceiling priority value attached to
a mutex. The ceiling priority value is the priority a task will be promoted to run at when it is
locking a mutex with one or more tasks blocked on it.

Availability

MTXgetCeilPrio() is only available when the build option OS_MTX_INVERSION is set to a
negative value.

Arguments

Mutex Descriptor of the mutex to retrieve the current ceiling priority value.

Returns

Current value of the ceiling priority

Component type

Data access

Options

Notes

See also

OS_MTX_INVERSION (Section 4.1.26)
MTXsetCeilPrio() (Section 6.5.16)
Priority Inversion (Section 7)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 136

6.5.6 MTXgetPrioInv

Synopsis
#include “Abassi.h”

int MTXgetPrioInv(MTX_t *Mutex);

Description

MTXgetPrioInv() is a component that reports the priority inversion protection setting of a
mutex..

Availability

MTXprioInvOff() is only available when the build option OS_MTX_INVERSION is either
set to a value greater than 999 or to a value less than -999.

Arguments

Mutex Descriptor of the mutex to retrieve the current priority inversion protection
setting.

Returns

0 The mutex is not under priority inversion protection
Non-zero The mutex is under priority inversion protection

Component type

Data access

Options

Notes

See also

OS_MTX_INVERSION (Section 4.1.26)
MTXprioInvOff() (Section 6.5.14)
MTXprioInvOn() (Section 6.5.15)
Priority Inversion (Section 7)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 137

6.5.7 MTXignoreOwn

Synopsis
#include “Abassi.h”

void MTXignoreOwn(MTX_t *Mutex);

Description

MTXignoreOwn() is a component that disables a feature where only the task that locks (the
mutex owner) can unlock a mutex. Therefore using the component MTXignoreOwn on a
mutex allows all tasks to unlock the mutex, even if the task is not the owner of the mutex.

Availability

MTXignoreOwn() is only available when the build option OS_MTX_OWN_UNLOCK is set to a
negative value. By default, all new mutexes have the protection enabled.

Arguments

Mutex Descriptor of the mutex to disable ownership validation on.

Returns

void

Component type

Data access

Options

Notes

See also

OS_MTX_OWN_UNLOCK (Section 4.1.27)
MTXcheckOwn() (Section 6.5.4)
MTXisChkOwn() (Section 6.5.8)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 138

6.5.8 MTXisChkOwn

Synopsis
#include “Abassi.h”

int MTXisChkOwn(MTX_t *Mutex);

Description

MTXisChkOwn() is a component that reports if the feature where only the task that locks (the
mutex owner) can unlock a mutex is active or not.

Availability

MTXisChkOwn() is only available when the build option OS_MTX_OWN_UNLOCK is set to a
negative value.

Arguments

Mutex Descriptor of the mutex to retrieve the ownership validation status for.

Returns

0 The mutex is not protected against a non-owner task unlocking it
Non-zero The mutex is protected against a non-owner task unlocking it

Component type

Data access

Options

Notes

See also

OS_MTX_OWN_UNLOCK (Section 4.1.27)
MTXcheckOwn() (Section 6.5.4)
MTXignoreOwn() (Section 6.5.7)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 139

6.5.9 MTXlock

Synopsis
#include “Abassi.h”

int MTXlock(MTX_t *Mutex, int Timeout);

Description

MTXlock() is the component to use to acquire a lock on a mutex. Through the argument
Timeout, it is possible to request to block until the acquisition succeeds, or to block with
timeout, or no blocking at all.

Availability

Always, but see Options

Arguments

Mutex Descriptor of the mutex to try to acquire a lock on.
Timeout Negative Infinite blocking
 0 Never blocks
 Positive Timer ticks before expiry

Returns

0 The lock was acquired.
Non-zero The lock was not acquired. Either Timeout was zero and the mutex is already

locked by another task, or Timeout was positive and the mutex lock wasn’t
acquired within Timeout number of timer ticks (or the component
TSKtimeoutKill() was applied to the task blocked on the mutex). A lock
failure can also occur when a mutex deadlock condition is detected (this feature
is enabled when the build option OS_MTX_DEADLOCK set to non-zero).

Component type

Atomic macro (safe)
- Cannot be used in an interrupt -

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 140

Options

If the build option OS_TIMEOUT is set to zero, then when the argument Timeout is set to a
positive value, MTXlock() behaves the same as if the Timeout argument had been set to
zero.
If the build option OS_TIMEOUT is set to a negative value, then when the argument Timeout
is set to a positive value, MTXlock() behaves the same as if the Timeout argument had been
set to a negative value.
If the build option OS_FCFS is non-zero and the mutex was opened with MTXopenFCFS(),
or modified with MTXsetFCFS(), the time order of the unblocking is on a First Come First
Served basis instead of the highest Priority first.
If the build option OS_MTX_INVERSION is positive, then priority inheritance is applied on all
mutexes.
If the build option OS_MTX_INVERSION is negative, then priority ceiling is applied on all
mutexes.

Notes

Even if Timeout is negative, always verify the return value: a non-zero value means the
mutex was not locked, zero means it was acquired, even if the Timeout was set to zero. An
infinite timeout (Timeout is negative) would report a lock failure if a mutex deadlock is
detected (when this feature is enabled).
When Timeout is set to a negative value, the component TSKtimeoutKill() cannot
unblock the task trying to lock the mutex, as an infinite timeout request does not involve the
timer service.

Never use MTXlock() in an ISR unless Timeout is set to zero.

See also

OS_FCFS (Section 4.1.6)
OS_MTX_DEADLOCK (Section 4.1.25)
OS_MTX_INVERSION (Section 4.1.26)
OS_TIMEOUT (Section 4.1.57)
MTXopenFCFS() (Section 6.5.12)
MTXsetFCFS() (Section 6.5.17)
MTXunlock() (Section 6.5.18)
TSKtimeoutKill() (Section 6.3.30)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 141

6.5.10 MTXnotFCFS

Synopsis
#include “Abassi.h”

void MTXnotFCFS(MTX_t *Mutex);

Description

MTXnotFCFS() is the component to use to configure a mutex to operate in the Priority
mode. The unblocking order of such a mutex is always the highest priority task first.

Availability

MTXnotFCFS() is only available when the build option OS_FCFS is non-zero.

Arguments

Mutex Descriptor of the mutex to set to the Priority mode.

Returns
void

Component type

Data access

Options

Notes

If the mutex was already operating in the Priority mode, using this component has no effect
on the mutex.
If the mutex was operating in the First Come First Served mode, using this component will
not re-order tasks that are currently blocked on the mutex. Newly blocked tasks will be
inserted in a Priority ordering amongst the already First Come First Served ordered blocked
tasks. This means there may be a transient phase before the mutex truly operates in a Priority
mode.

See also

OS_FCFS (Section 4.1.6)
MTXopenFCFS() (Section 6.5.12)
MTXsetFCFS() (Section 6.5.17)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 142

6.5.11 MTXopen

Synopsis
#include “Abassi.h”

MTX_t *MTXopen(const char *Name);

Description

MTXopen() is the component to use to create a mutex, and is also the component to use to
obtain the descriptor of an already existing mutex.

Availability

MTXopen() is only available when the build option OS_RUNTIME is non-zero.

Arguments

Name Name of the mutex to create or to obtain the descriptor of.

Returns

Descriptor of the mutex

Component type

Function
- Cannot be used in an interrupt -

Options

When the build option OS_NAMES is zero, the argument Name is ignored but must still be
supplied. In a build where OS_NAMES is zero, all mutexes are unnamed and every use of
MTXopen() creates a new mutex.
If the build option OS_NAMES is non-zero, then MTXopen() will either return the descriptor
of an existing mutex (previously created with MTXopen() or MTXopenFCFS(), Section
6.5.12), or when no mutex with the specified name exists, it will create a new mutex. This
approach makes the creation and opening of mutexes run-time safe. If that feature was not
part of the MTXopen() component, it would be imperative to either create the mutex
immediately at start-up or to guarantee the first task (using the mutex) to reach the running
state is the one creating the mutex. With the run-time safe feature, it does not matter which
task is the first to use the mutex.
When the build option OS_MTX_INVERSION value is either greater than 999 or less than -
999, the mutex is always created with the priority inversion protection enable. If the
protection is not required, the component MTXprioInvOff() must be applied on the mutex
to disable the priority inversion protection.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 143

Notes

One should avoid setting the argument Name to NULL when the build option OS_NAMES is
zero. The reasoning behind this is: if logging ever needs to be turned on, it becomes
impossible to differentiate amongst all the unnamed mutexes. This is also the reason why the
function prototype for this component was kept the same, irrespective of the setting of the
build option OS_NAMES.
Be aware, if the build option OS_FCFS is non-zero, when the mutex already exists, there is no
guarantee the mutex is operating in a Priority mode as it may have been created with
MTXopenFCFS() or it may have been set to operate in First Come First Served mode with
MTXsetFCFS().
At any time a mutex operating in the Priority mode can be modified to operate in the First
Come First Served mode by using the MTXsetFCFS() component when the build option
OS_FCFS is non-zero.
Mutexes created with the MTX_STATIC() component are not part of the search performed by
MTXopen().

See also

OS_FCFS (Section 4.1.6)
OS_MTX_INVERSION (Section 4.1.26)
OS_NAMES (Section 4.1.28)
OS_RUNTIME (Section 4.1.37)
MTXprioInvOff() (Section 6.5.14)
MTXprioInvOn() (Section 6.5.15)
MTXopenFCFS() (Section 6.5.12)
MTXsetFCFS() (Section 6.5.17)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 144

6.5.12 MTXopenFCFS

Synopsis
#include “Abassi.h”

MTX_t *MTXopenFCFS(const char *Name);

Description

MTXopenFCFS() is the component to use to create a mutex operating in a First Come First
Served mode, and is also the component to use to obtain the descriptor of an already existing
mutex.

Availability

MTXopenFCFS() is only available when the build options OS_RUNTIME and OS_FCFS are
non-zero.

Arguments

Name Name of the mutex to create or to obtain the descriptor of.

Returns

Descriptor of the mutex

Component type

Function
- Cannot be used in an interrupt -

Options

When the build option OS_NAMES is zero, the argument Name is ignored but must still be
supplied. In a build where OS_NAMES is zero, all mutexes are unnamed and every use of
MTXopenFCFS() creates a new mutex.
If the build option OS_NAMES is non-zero, then MTXopenFCFS() will either return the
descriptor of an existing mutex (previously created with MTXopen() or MTXopenFCFS()),
or when no mutex with the specified name exists, it will create a new mutex. This approach
makes the creation and opening of mutexes run-time safe. If that feature was not part of the
MTXopenFCFS() component, it would be imperative to either create the mutex immediately
at start-up or to guarantee the first task (using the mutex) to reach the running state is the one
creating the mutex. With the run-time safe feature, it does not matter which task is the first to
use the mutex.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 145

Notes

One should avoid setting the argument Name to NULL when the build option OS_NAMES is
zero. The reasoning behind this is: if logging ever needs to be turned on, it becomes
impossible to differentiate amongst all the unnamed mutexes. This is also the reason why the
function prototype for this component was kept the same, irrelevant to the setting of the build
option OS_NAMES.
Be aware, if the build option OS_FCFS is non-zero, when the mutex already exists, there is no
guarantee the mutex is operating in a First Come First Served mode as it may have been
created with MTXopen() or it may have been set to operate in Priority mode with
MTXnotFCFS().
At any time, a mutex operating in the First Come First Served mode can be modified to
operate in the Priority mode by using the MTXnotFCFS() component when the build option
OS_FCFS is non-zero.
Mutexes created with the MTX_STATIC() component are not part of the search performed by
MTXopenFCFS().

See also

OS_FCFS (Section 4.1.6)
OS_NAMES (Section 4.1.28)
OS_RUNTIME (Section 4.1.37)
MTXnotFCFS() (Section 6.5.10)
MTXopen() (Section 6.5.11)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 146

6.5.13 MTXowner

Synopsis
#include “Abassi.h”

TSK_t *MTXowner(MTX_t *Mutex);

Description

MTXowner() is the component that reports if a mutex is currently locked and, if so, what is
the task locking the mutex.

Availability

Always

Arguments

Mutex Descriptor of the mutex to retrieve the lock status and locker information.

Returns

NULL The mutex is not locked
Non-NULL Descriptor of the task that currently has a lock on the mutex

Component type

Data access

Options

Notes

See also

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 147

6.5.14 MTXprioInvOff

Synopsis
#include “Abassi.h”

void MTXprioInvOff(MTX_t *Mutex);

Description

MTXprioInvOff() is a component that disable the priority inversion, be either priority
ceiling or priority inheritance, on the mutex specified by the argument Mutex

Availability

MTXprioInvOff() is only available when the build option OS_MTX_INVERSION are is
either set to a value greater than 999 or to a value less than -999.-zero.

Arguments

Mutex Descriptor of the mutex to disable the priority inversion protection.

Returns
void

Component type

Macro (safe)

Options

Notes

If the mutex is already locked and the locking task has its priority increased due to priority
inversion protection, using the component MTXprioInvOff() on the mutex will not bring
back the priority of the locking task to its original value. Only when the task unlocks the
mutex will it go back to its original priority. Undr the same condition, if more task at higher
priority get blocked trying to lock the mutex, the current owner will not gets its priority
changed.
If the priority inversion protection of the mutex is already disabled, the use of the component
MTXprioInvOff() on the mutex has no impact.

See also

OS_MTX_INVERSION (Section 4.1.26)
MTXgetPrioInv() (Section 6.5.6)
MTXprioInvOn() (Section 6.5.15)
Priority Inversion (Section 7)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 148

6.5.15 MTXprioInvOn

Synopsis
#include “Abassi.h”

void MTXprioInvOn(MTX_t *Mutex);

Description

MTXprioInvOff() is a component that enable the priority inversion, be either priority
ceiling or priority inheritance, on the mutex specified by the argument Mutex

Availability

MTXprioInvOn() is only available when the build option OS_MTX_INVERSION are is either
set to a value greater than 999 or to a value less than -999.-zero.

Arguments

Mutex Descriptor of the mutex to disable the priority inversion protection.

Returns
void

Component type

Macro (safe)

Options

Notes

When the mutex priority inversion protection is disabled and if the mutex is already locked
and other higher priority task are blocked trying to lock the mutex, then using the component
MTXprioInvOn() on the mutex will not change the priority of the locking task. The priority
change will only occur if a new task of higher priority gets blocked trying to lock the mutex.
When the locking task unlock the mutex, the new locking task will be handled according to
the selected priority inversion protection scheme.
If the priority inversion protection of the mutex is already enable, the use of the component
MTXprioInvOn() on the mutex has no impact.

See also

OS_MTX_INVERSION (Section 4.1.26)
MTXgetPrioInv() (Section 6.5.6)
MTXprioInvOff() (Section 6.5.14)
Priority Inversion (Section 7)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 149

6.5.16 MTXsetCeilPrio

Synopsis
#include “Abassi.h”

void MTXsetCeilPrio(MTX_t *Mutex, int Prio);

Description

MTXsetCeilPrio() is a component that sets the current ceiling priority value attached to a
mutex. The ceiling priority value is the promoted priority a task will run at when it is locking
a mutex with one or more tasks blocked on.

Availability

MTXsetCeilPrio() is only available when the build option OS_MTX_INVERSION is set to a
negative value.

Arguments

Mutex Descriptor of the mutex to set the current priority ceiling value.
Prio New ceiling priority to attach to the mutex

Returns
void

Component type

Data access

Options

Notes

Modifying the ceiling priority of a mutex does not stop the automatic priority increase
performed by the priority ceiling mechanism; it simply updates the ceiling prioriy of the
mutex. There could be two reasons why one would set a ceiling priority on a mutex. The
first would be to deal with the situation where a high priority level task, which was one that
could lock the mutex, gets suspended. It does not make sense to keep raising the priority of
tasks locking the mutex to such a high priority level when no tasks at that priority would lock
the mutex anymore. The second case would be to set the mutex to the final ceiling priority;
the one matching the priority of the highest priority task that locks this mutex. The latter case
is a bit irrelevant as there is no CPU saving doing so.
When the ceiling priority is modified on a mutex that is currently operating in the priority
ceiling mechanism, nothing changes until the current locker of the mutex unlocks it. Then
the new setting for the ceiling priority is taken into account.

See also

OS_MTX_INVERSION (Section 4.1.26)
MTXgetCeilPrio() (Section 6.5.5)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 150

Priority Inversion (Section 7)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 151

6.5.17 MTXsetFCFS

Synopsis
#include “Abassi.h”

void MTXsetFCFS(MTX_t *Mutex);

Description

MTXsetFCFS() is the component to use to configure a mutex to operate in a First Come
First Served mode.

Availability

MTXsetFCFS() is only available when the build option OS_FCFS is non-zero.

Arguments

Mutex Descriptor of the mutex to set into a First Come First Served mode.

Returns
void

Component type

Definition

Options

Notes

If the mutex was already operating in the First Come First Served mode, using this
component has no effect on the mutex.
If the mutex was operating in the Priority mode, using this component will not re-order tasks
that are currently blocked on the mutex. Newly blocked tasks will be inserted in a First
Come First Served ordering amongst the already Priority ordered blocked tasks. This means
there may be a transient phase before the mutex truly operates in a First Come First Served
mode.

See also

OS_FCFS (Section 4.1.6)
MTXnotFCFS() (Section 6.5.10)
MTXopenFCFS() (Section 6.5.12)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 152

6.5.18 MTXunlock

Synopsis
#include “Abassi.h”

int MTXunlock(MTX_t *Mutex);

Description

MTXunlock() is the component that relinquishes the lock on a mutex.

Availability

Always

Arguments

Mutex Descriptor of the mutex to unlock.

Returns

0 When the build option OS_MTX_OWN_UNLOCK is disabled: always
0 When the build option OS_MTX_OWN_UNLOCK is enabled: the mutex has been

successfully unlocked.
!= 0 When the build option OS_MTX_OWN_UNLOCK is enabled: the mutex has been

not been unlocked (the task performing the unlock operaton does not own the
mutex.

Component type

Atomic macro (safe)

Options

If the build option OS_MTX_INVERSION is positive, then priority inheritance is applied on all
mutexes.
If the build option OS_MTX_INVERSION is negative, then priority ceiling is applied on all
mutexes.

Notes

Mutexes operate the same way as binary semaphores. This means if MTXunlock() is
repeatedly used without a matching count of MTXlock(), a single lock will be available; not
the difference of counts.
When the locker of a mutex has applied more than one MTXlock() on the mutex, exactly the
same number of MTXunlock() must be applied before the mutex gets unlocked.

When the build option OS_MTX_OWN_UNLOCK is enabled MTXunlock() should not be used
inside interrupts. The build option OS_MTX_OWN_UNLOCK restricts the unlocking operations
of a mutex to the task that locks the mutex, as such, interrupts have to be considered as not
owning the lock on any mutexes.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 153

See also

OS_MTX_INVERSION (Section 4.1.26)
OS_MTX_OWN_UNLOCK (Section 4.1.27)
MTXlock() (Section 6.5.9)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 154

6.5.19 Examples

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 155

6.6 Event Components
This section describes all components related to the event flags. The event flags components described in
the following sub-sections are:

Table 6-11 Event Component List

Section Name Description

6.6.2 EVTabort Unblock a task blocked on its events

6.6.3 EVTget Retrieve the event flags that validated the last mask conditions

6.6.4 EVTgetAcc Retrieve the current event flags

6.6.5 EVTreset Clear the event flags that validated the last mask conditions

6.6.6 EVTresetAcc Clear the current event flags

6.6.7 EVTset Set event flags

6.6.8 EVTwait Wait for event flags to validate mask conditions

6.6.1 Description
What are named Events in the Abassi RTOS are a group of flags (bits). These bits are used as a
synchronization mechanism in which each task owns a unique event register (register holding the flags). A
task may check or get blocked until a selected combination of flags has been set in its event register. Any
task can set the flags in any task’s register, but individual flags cannot be reset. A task can be blocked
until one out of two conditions on the flags are met: one condition is an AND mask where the bits set in
the mask specifies that all the corresponding flags must be set, and the other condition is an OR mask,
where the bits set in the mask specifies that any of the flags must be set. When one or both conditions are
true, the task can retrieve the flags received.

To better understand how to use the Event component in the Abassi RTOS, here is a description on the
internals. Each task possesses 4 registers dedicated for the events handling:

Ø AND Mask register

Ø OR Mask register

Ø Event Accumulation register

Ø Event Received register

When a task needs to get synchronized on events, EVTwait() is used. Using this component sets the
values in the OR and the AND mask registers, and a timeout. Neither the Event Accumulation register nor
the Event Received register are cleared when EVTwait() is used; past flags that were set are kept as is.
Any task can set one or more events flags, which are always set in the Event Accumulation register, but
only the event owner can reset the flags in this register. Every time a task sets flags and the event owner is
waiting on the events, the contents of the Event Accumulation register is verified against the two Mask
registers. When the flags fulfill one of the two masks conditions, and the flag owner use the component
EVTwait(), the following occurs:

Ø The Event Accumulation register is copied into the Event Received register

Ø The Event Accumulation register is zeroed

Ø The AND mask register is zeroed

Ø The OR mask register is zeroed

Ø The task gets unblocked (if was blocked on the events)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 156

If the component EVTwait() is used with a timeout and the waiting expires before the flag conditions are
met, only 2 operations are performed: the AND mask and the OR mask registers are zeroed. The Event
Accumulation and the Event Received registers remain untouched.

To retrieve the contents of the Event Received register, the component EVTget() is used. And at any
time it is possible to peek at the contents of the Event Accumulation register by using the component
EVTgetAcc().

There is no special component for events (a component that would be named EVT_STATIC()) like there
are for the other services. As the event registers are part of the task descriptors, events are statically
created/initialized when TSK_STATIC() (Section 6.3.2) is used.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 157

6.6.2 EVTabort

Synopsis
#include “Abassi.h”

void EVTabort(TSK_t *Task);

Description

EVTabort() is a component that unblocks a task that is blocked waiting on its event flags.
The task to unblock is specified with the argument Task. This is alike applying the
component TSKtimeoutKill() on the task blocked on its events with the extra capability to
also unblocked a task blocked with an infinite timeout

Availability

EVTabort() is only available when the build option OS_WAIT_ABORT is defined and non-
zero and the build option OS_EVENTS is non-zero.

Arguments

Task Descriptor of the task to unblock when it’s waiting on its events.

Returns

void

Component type

Atomic macro (safe)

Options

Notes

A task that blocked on the EVTget() or MBXput() component is unblocked when the
component EVTabort() is used on the task. The EVTwait() component then returns a
non-zero value to indicate a timeout occurred, even if the wait time requested was infinite.

If the task Task is not blocked on its events, the use of EVTabort() on it has no effects.

See also

OS_WAIT_ABORT (Section 4.1.62)
EVTwait() (Section 6.6.8)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 158

6.6.3 EVTget

Synopsis
#include “Abassi.h”

int EVTget(void);

Description

EVTget() is the component to use to retrieve the most recent event flags that have met the
last AND / OR conditions when EVTwait()was successful. No task descriptor needs to be
supplied to EVTget() because only the task owning the event registers can read the flags.

Availability

EVTget()is only available if the build option OS_EVENTS is non-zero

Arguments
void

Returns

The contents of the Event Received register.

Component type

Data access
- Meaningless in an interrupt -

Options

Notes

This component does not wait, nor set the conditional masks. Its only use is to read the last
flags set that met the AND / OR conditions.
If EVTwait() times out before having received the flags that meet the AND / OR flags
conditions, the event received register is neither zeroed, nor does it inherit the contents of the
event accumulation register: the event register always holds the last successful valid flags
combination.

See also

OS_EVENTS (Section 4.1.5)
EVTset() (Section 6.6.7)
EVTwait() (Section 6.6.8)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 159

6.6.4 EVTgetAcc

Synopsis
#include “Abassi.h”

int EVTgetAcc(void);

Description

EVTgetAcc() is the component to use to peek at the flags that have been set since the last
successful call to EVTwait(). No task descriptor needs to be supplied to EVTgetAcc()
because only the task owning the events can read the flags.

Availability

EVTgetAcc() is only available if the build option OS_EVENTS is non-zero.

Arguments
void

Returns

The contents of the Event Accumulation register.

Component type

Data access
- Meaningless in an interrupt -

Options

Notes

This component does not wait, nor set the conditional masks. Its only use is to read the
current flags that have been set since the last use of EVTreset() or the last successful use of
EVTwait(). If EVTwait() times out before having received the flags that meet the AND /
OR flags conditions, the contents of event accumulation register is not forced to zero but
remain at its current setting.

See also

OS_EVENTS (Section 4.1.5)
EVTget() (Section 6.6.3)
EVTreset() (Section 6.6.5)
EVTset() (Section 6.6.7)
EVTwait() (Section 6.6.8)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 160

6.6.5 EVTreset

Synopsis
#include “Abassi.h”

void EVTreset(void);

Description

EVTreset() is used to clear the contents of the Event Receive register. No task descriptor
needs to be supplied to EVTreset() because only the task owning the events register can
clear the flags.

Availability

EVTreset() is only available if the build option OS_EVENTS is non-zero.

Arguments
void

Returns
void

Component type

Data access
- Cannot be used in an interrupt -

Options

Notes

When EVTwait() is used and the flags meet the AND / OR mask conditions, the Event
Receive register holds the flags that has validated the mask conditions. EVTreset()
usefulness is to remove the flags in the received register since the last successful use of
EVTwait().
Only the owner of the event flags can reset the flags. If other tasks were able to reset flags, it
could provoke a synchronization issue. For example, if a task is waiting on a single flag, and
then gets it, it would go into the ready to run state. If higher priority tasks are using the CPU
and one of these tasks resets the flag, then from the event owner this would have to be
declared a false synchronization trigger.

See also

OS_EVENTS (Section 4.1.5)
EVTget() (Section 6.6.3)
EVTset() (Section 6.6.7)
EVTwait() (Section 6.6.8)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 161

6.6.6 EVTresetAcc

Synopsis
#include “Abassi.h”

void EVTresetAcc(void);

Description

EVTresetAcc() is used to clear the contents of the Event Accumulation register. No task
descriptor needs to be supplied to EVTresetAcc() because only the task owning the events
register can clear the flags.

Availability

EVTresetAcc() is only available if the build option OS_EVENTS is non-zero.

Arguments
void

Returns
void

Component type

Data access
- Cannot be used in an interrupt -

Options

Notes

When EVTwait() is used and the flags meet the AND / OR mask conditions, the Event
Receive register holds the flags that has validated the mask condition. On the counterpart,
the event accumulation register holds the flags that were set that still have not matched a
mask condition. EVTresetAcc() usefulness is to remove the flags in the accumulation
register that have been set since the last successful use of EVTwait().
Only the owner of the event flags can reset the flags in the accumulation register

See also

OS_EVENTS (Section 4.1.5)
EVTget() (Section 6.6.3)
EVTset() (Section 6.6.7)
EVTwait() (Section 6.6.8)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 162

6.6.7 EVTset

Synopsis
#include “Abassi.h”

void EVTset(TSK_t *Task, int Bits);

Description

EVTset() is used to set the event flags in the Event Accumulation register of the task
specified with the argument Task.

Availability

EVTset()is only available if the build option OS_EVENTS is non-zero.

Arguments

Task Descriptor of the task to set the event flags.
Bits Data of type int that specifies which flags to set. Bits set to 1 in Bits activate

the respective flag in the event accumulation register of the task indicated by
the argument Task.

Returns
void

Component type

Atomic macro (safe)

Options

Notes

See also

OS_EVENTS (Section 4.1.5)
EVTget() (Section 6.6.3)
EVTset() (Section 6.6.7)
EVTwait() (Section 6.6.8)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 163

6.6.8 EVTwait

Synopsis
#include “Abassi.h”

int EVTwait(int ANDmask, int ORmask, int Timeout);

Description

EVTwait() is the component used to synchronize a task with the validation of event flags.
An event is validated when all the bits in the ANDmask are set, or any of the bits in the
ORmask are set. Through the argument Timeout, it is possible to request to block until the
acquisition succeeds, or to block with timeout, or no blocking at all.

Availability

EVTwait() is only available if the build option OS_EVENTS is non-zero; also see Options.

Arguments

ANDmask Bit field mask where the bit(s) set to 1 must cumulatively be set with EVTset()
to validate the event.

ORmask Bit field mask where any of the bit(s) set to 1 must be set with EVTset() to
validate the event.

Timeout Negative Infinite blocking
 0 Never blocks
 Positive Timer ticks before expiry

Returns

0 The event flags conditions have matched the AND / OR masks.
Non-zero The event flags did not meet the AND / OR conditions. This will occur if the

argument Timeout is non-negative. Either Timeout was zero and the event
flags didn’t match the masks, or Timeout was positive and the event flags have
not yet matched the masks within Timeout number of timer ticks (or when the
component TSKtimeoutKill() is applied to the task that owns the events).

Component type

Atomic macro (unsafe)
- Cannot be used in an interrupt -

Options

If the build option OS_TIMEOUT is set to zero, then when the argument Timeout is set to a
positive value, EVTwait() behaves the same as if the Timeout argument had been set to
zero.
If the build option OS_TIMEOUT is set to a negative value, then when the argument Timeout
is set to a positive value, EVTwait() behaves the same as if the Timeout argument had been
set to a negative value.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 164

Notes

Unless Timeout is negative, always verify the return value: a non-zero value means the flags
have not met the condition, zero means the flag matched to conditions, even if the Timeout
was set to zero.
When timeout is negative, the component TSKtimeoutKill() cannot unblock the task
blocked on the events, as an infinite timeout request does not involve the timer service.
When the event flags match the mask conditions, both masks are reset to zero, the contents of
the Event Accumulation register is copied into the Event Received register, and the Event
Accumulation register is reset to zero.
If the blocking expires before the flags have met the conditions, the masks are also reset to
zero, but the contents of the Event Accumulation register and the Event Received register are
left untouched.
To obtain the flags that have matched the two masks conditions, the component EVTget() is
used.

EVTwait() should never be used in an ISR since the component always applies to the
currently running task.

See also

OS_EVENTS (Section 4.1.5)
OS_TIMEOUT (Section 4.1.57)
EVTget() (Section 6.6.3)
EVTset() (Section 6.6.7)
TSKtimeoutKill() (Section 6.3.30)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 165

6.6.9 Examples

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 166

6.7 Mailboxes components
This section describes all components related to the mailboxes. The mailbox components described in the
following sub-sections are:

Table 6-12 Mailbox Component List

Section Name Description

6.7.2 MBX_STATIC Creation of a mailbox at compile / link time

6.7.3 MBXabort Unblock all tasks blocked on a mailbox

6.7.4 MBXavail Report how many element are free in a mailbox

6.7.5 MBXget Retrieve one message from a mailbox

6.7.6 MBXnotFCFS Set a mailbox to operate in the Priority mode

6.7.7 MBXopen Create a mailbox / obtain the descriptor of a mailbox

6.7.8 MBXopenFCFS Create a mailbox to operate in First Come First Served mode

Obtain the descriptor of a mailbox

6.7.9 MBXput Insert one message in a mailbox

6.7.10 MBXputInISR Enable the validation of the return value when MBXput() is
called from within an interrupt handler.

6.7.11 MBXsetFCFS Set a mailbox to operate in the First Come First Served mode

6.7.12 MBXused Report how many elements are in used in a mailbox

6.7.1 Description
A mailbox is a mechanism to communicate information between tasks, where the reader retrieves the
information in a first in, first out manner. Compared to a queue, a mailbox conveys fixed sized messages
between tasks. In the case of the Abassi RTOS, the message size is always of type intptr_t, which
means it can be either an int or a pointer. The individual messages have a pre-defined data type, but a
mailbox can be created to hold as many messages as needed.

One important point to remember about mailboxes it that they are a one-reader / multiple-writer system,
and that is how the Abassi RTOS has been designed to handle mailboxes. If multiple readers are accessing
the same mailbox, the mailbox system operates correctly, but the behavior will quite likely not be as
desired as two or more tasks can empty the mailbox at will; much like your neighbor stealing your
morning newspaper.

A mailbox reader can block when the mailbox is empty. The same applies when the mailbox is full;
writers can block. Mailboxes can operate in two different modes: the writers (and readers, if more than
one) get either blocked in a First Come First Served fashion or they get blocked in a Priority based
fashion. The former mode is normally used with time sensitive information, when the latter is typically
used for critical information.

The exact size of the buffer holding the message of a mailbox is always one more than the size requested at
mailbox creation. This was chosen for 2 reasons. First, it simplifies the determination if a mailbox is
empty or full. Second, and more importantly, because mailboxes are expected to be the core resource
when queues need to be implemented. With queues, it becomes necessary to make sure that when the
reader gets a queue buffer, that this buffer does not becomes re-used by a writer during the time the reader
accesses the buffer. That extra buffer element in the mailbox is the safeguard against the possible buffer
clash between reader and writer.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 167

Queues are not supported by the Abassi RTOS, but it is quite straightforward to create queues using the
mailbox service. Section 6.7.13.3 gives example on how to create queues based on the Abassi RTOS
mailboxes.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 168

6.7.2 MBX_STATIC

Synopsis
#include “Abassi.h”

MBX_STATIC(VarName, MbxName, Size);

Description

MBX_STATIC() is a special component that creates a mailbox and the associated circular
buffer, and that initializes its descriptor. It is a macro definition creating a static object, so
none of the arguments has a real data type. The mailbox is not created/initialized at run time;
everything is done at compile/link time.

Availability

Only available when the build option OS_MAILBOX is non-zero.

Arguments

VarName Name of the variable holding the pointer to the mailbox descriptor to create /
initialize. This is a variable name therefore do not put double quotes around the
name.

MbxName Mailbox name. This is not the variable name, it is the name attached to the
mailbox. As it is a “C” string, the double quotes around the name are required.
G_OSnoName , and not NULL, should be used for an unnamed mailbox.

Size Maximum number of messages in the mailbox.

Returns

N/A

Component type

Macro (Unsafe)

Options

If the build option OS_NAMES is set to a value of zero, the argument MbxName is ignored but
must still be supplied.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 169

Notes

A mailbox created and initialized with MBX_STATIC() will not be part of the search done
with MBXopen() or MBXopenFCFS(), unless another mailbox with the exactly the same
name was created using MBXopen() or MBXopenFCFS().
If mailboxes are created using the MBX_STATIC() component, it may not be possible to
restart the application without reloading the binary image on the processor. This situation
happens if the compiler (or compiler configuration) does not reload the initialized data upon
start-up.
A mailbox created with this component is always created to operate in the Priority mode. If
the build option OS_FCFS is non-zero and a mailbox created with MBX_STATIC() is targeted
to operate in the First Come First Served mode, use the component MBXsetFCFS() on the
mailbox in main(), once the component OSstart() has been used.

See also

OS_MAILBOX (Section 4.1.18)
OS_NAMES (Section 4.1.28)
MBXopen() (Section 6.7.7)
MBXopenFCFS() (Section 6.7.8)
MBXsetFCFS() (Section 6.7.11)
G_OSnoName (Section 6.14.2)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 170

6.7.3 MBXabort

Synopsis
#include “Abassi.h”

void MBXabort(MBX_t *Mbox);

Description

MBXabort() is a component that unblocks all tasks that are blocked trying to either write in
a mailbox that is full or trying to read a mailbox that is empty. The mailbox is specified with
the argument Mbox. This is alike applying the component TSKtimeoutKill() on all the
tasks blocked on the mailbox Mbox with the extra capability to also unblocked tasks blocked
with an infinite timeout. MBXabort() has no effect on a task blocked on a group the
mailbox is attached to.

Availability

MBXabort() is only available when the build option OS_WAIT_ABORT is defined and non-
zero and the build option OS_MAILBOX is non-zero.

Arguments

Mbox Descriptor of the mailbox to unblock all the tasks that are blocked on.

Returns

void

Component type

Atomic macro (safe)

Options

Notes

All tasks that blocked on the MBXget() or MBXput() components are unblocked when the
component MBXabort() is used on the mailbox Mbox. The MBXget() or MBXput()
components then return a non-zero value to indicate a timeout occurred, even if the wait time
requested was infinite. The contents of the mailbox is left untouched once the component
MBXabort() has been used.

MBXabort() applied on a mailbox that is attached to a group will not unblock a task
waiting on that group. The reason is the task is blocked on the group, not blocked on the
mailbox. If there are one or more tasks blocked on the same mailbox (non-group blocking is
authorized on a mailbox already attached to a group), then these tasks will get unblocked.

If there are no tasks blocked on the mailbox Mbox, the use of MBXabort() on Mbox has no
effects.

See also

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 171

OS_WAIT_ABORT (Section 4.1.62)
MBXget() (Section 6.7.5)
MBXput() (Section 6.7.9)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 172

6.7.4 MBXavail

Synopsis
#include “Abassi.h”

int MBXavail(MBX_t *Mbox);

Description

MBXavail() is a component that reports how many elements in the mailbox that are not
used. It’s the number of free elements in the mailbox Mbox.

Availability

MBXavail() is only available when the build option OS_MAILBOX is non-zero in. It is not
available in any releases before Abassi version 1.273.262 and mAbassi version 1.94.97.

Arguments

Mbox Descriptor of the mailbox to report the number of free elements.

Returns

Number of free elements in Mbox.

Component type

Atomic macro (unsafe)

Options

Notes

See also

MBXget() (Section 6.7.5)
MBXput() (Section 6.7.9)
MBXused() (Section 6.7.12)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 173

6.7.5 MBXget

Synopsis
#include “Abassi.h”

int MBXget(MBX_t *Mbox, intptr_t *Msg, int Timeout);

Description

MBXget() is used to retrieve a message from a mailbox. The oldest message (time-wise)
held in the mailbox is retrieved and written to the location indicated by the argument Msg.
When the mailbox is empty, it is possible to request to block until a message is deposited in
the mailbox, or to block with timeout, or no blocking at all.

Availability

MBXget() is available only if the build option OS_MAILBOX is non-zero. Depending on the
setting of the build option OS_TIMEOUT, the meaning of the argument Timeout slightly
changes. See Options below.

Arguments

Mbox Descriptor of the mailbox to read the message from.
Msg Pointer to the location the message is written into.
Timeout Negative Infinite blocking
 0 Never blocks
 Positive Number of timer ticks before expiry

Returns

0 The message in the location pointed by Msg is valid.
Non-zero A new message was not available. This will occur if the argument Timeout is

non-negative. Either Timeout was zero and there was no message, or
Timeout was positive and no new message was deposited in the mailbox
within Timeout number of timer ticks (or when the component
TSKtimeoutKill() is applied to the task that is waiting on the mailbox). If
an application ever has multiple readers for a mailbox, blocked readers will
unblock in a priority ordering (or request order if FCFS) depending on the mode
of operation of the mailbox.

Component type

Function.

Options

If the build option OS_TIMEOUT is zero, then when the argument Timeout is set to a positive
value, MBXget() behaves the same as if the Timeout argument had been set to zero.
If the build option OS_TIMEOUT is a negative value, then when the argument Timeout is set
to a positive value, MBXget() behaves the same as if the Timeout argument had been set to
a negative value.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 174

Notes

Unless Timeout is negative, always verify the return value: a non-zero value means the
mailbox is empty, zero means a message was retrieved, even if the timeout was set to zero.
When timeout is negative, the component TSKtimeoutKill() cannot unblock the task
waiting to obtain a message, as an infinite timeout request does not involve the timer service.

MBXget() can be used in an ISR as this component has special hooks added to it for this
purpose. When used in an ISR, the argument Timeout is ignored and is always considered
being equal to zero. The return value for this component is valid in an ISR. Only one ISR
handler can use MBXget() on a mailbox. If two or more ISR handlers apply the MBXget()
component on the same mailbox, message losses or message duplication may occur.

See also

OS_MAILBOX (Section 4.1.18)
OS_TIMEOUT (Section 4.1.57)
MBXopen() (Section 6.7.7)
MBXput() (Section 6.7.9)
TSKtimeoutKill() (Section 6.3.30)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 175

6.7.6 MBXnotFCFS

Synopsis
#include “Abassi.h”

void MBXnotFCFS(MBX_t *Mbox);

Description

MBXnotFCFS() is the component to use to configure a mailbox to operate in the Priority
mode. The unblocking order of such a mailbox is always the highest priority task that is
blocked. This mode of operation only applies to the tasks that write messages into the
mailbox through MBXput() (Section 6.7.9), or in the not-obvious case when multiple readers
are blocked through MBXget() (Section 6.7.5).

Availability

MBXnotFCFS() is only available when the build options OS_MAILBOX and OS_FCFS are both
non-zero.

Arguments

Mbox Descriptor of the mailbox to set the operation to the Priority mode.

Returns
void

Component type

Data access

Options

Notes

If the mailbox was already operating in the Priority mode, using this component has no effect
on such a mailbox.
If the mailbox was operating in the First Come First Served mode, using this component will
not re-order tasks that are currently blocked on the mailbox. Newly blocked tasks will be
inserted in a Priority ordering amongst the already First Come First Served ordered blocked
tasks. This means there may be a transient phase before the mailbox cold truly operates in a
Priority mode.

See also

OS_FCFS (Section 4.1.6)
OS_MAILBOX (Section 4.1.18)
MBXopen() (Section 6.7.7)
MBXsetFCFS() (Section 6.7.11)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 176

6.7.7 MBXopen

Synopsis
#include “Abassi.h”

MBX_t *MBXopen(const char *Name, int Size);

Description

MBXopen() is the component to use to create a mailbox, and is also the component to use to
obtain the descriptor of an already existing mailbox. When a mailbox is created with
MBXopen(), it operates in the Priority mode (for the writers and reader).

Availability

MBXopen() is only available if the build option OS_MAILBOX and OS_RUNTIME are both
non-zero.

Arguments

Name Name of the mailbox to create or to obtain the descriptor of.
Size Maximum number of messages the mailbox can hold.

Returns

Descriptor of the mailbox

Component type

Function
- Cannot be used in an interrupt -

Options

When the build option OS_NAMES is zero, the argument Name is ignored but must still be
supplied. In a build when OS_NAMES is zero, all mailboxes are unnamed and every use of
MBXopen() creates a new mailbox.
If the build option OS_NAMES is non-zero, then MBXopen() will either return the descriptor
of an existing mailbox (previously created with MBXopen()or MBXopenFCFS()), or when no
mailbox with the specified name exists, it will create a new mailbox. This approach makes
the creation and opening of mailboxes run-time safe. If that feature were not part of the
MBXopen() component, it would be imperative to either create the mailbox immediately at
start-up, or to guarantee the first task (using the mailbox) to reach the running state is the one
creating the mailbox. With the run-time safe feature, it does not matter which task is the first
to use the mailbox.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 177

Notes

One should avoid setting the argument Name to NULL when the build option OS_NAMES is
zero. The reasoning behind this is: if logging ever needs to be turned on, it becomes
impossible to differentiate amongst all the unnamed mailboxes. This is also the reason why
the function prototype for this component was kept the same, irrespective of the setting of the
build option OS_NAMES.
Be aware, if the build option OS_FCFS is non-zero, when the mailbox already exists, there is
no guarantee the mailbox is operating in a Priority mode, as it may have been created with
MBXopenFCFS()or it may have been set to operate in First Come First Served mode with
MBXsetFCFS().
Also, if a mailbox already exists, the requested size may not be the size of the existing
mailbox.
At any time, a mailbox operating in the Priority mode can be modified to operate in the First
Come First Served mode by using the MBXsetFCFS() component when the build option
OS_FCFS is non-zero.
Mailboxes created with the MBX_STATIC() component are not part of the search performed
by MBXopen().

See also

OS_FCFS (Section 4.1.6)
OS_MAILBOX (Section 4.1.18)
OS_NAMES (Section 4.1.28)
OS_RUNTIME (Section 4.1.37)
MBXget() (Section 6.7.5)
MBXopenFCFS() (Section 6.7.8)
MBXput() (Section 6.7.9)
MBXsetFCFS() (Section 6.7.11)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 178

6.7.8 MBXopenFCFS

Synopsis
#include “Abassi.h”

MBX_t *MBXopenFCFS(const char *Name, int Size);

Description

MBXopenFCFS() is the component to use to create a mailbox, and also the one to use to
obtain the descriptor of an already existing mailbox. When a mailbox is created with
MBXopenFCFS(), it operates in the First Come First Served mode (for the writers and
reader).

Availability

MBXopenFCFS() is only available if the build options OS_MAILBOX, OS_RUNTIME, and
OS_FCFS are all non-zero.

Arguments

Name Name of the mailbox to create or to obtain the descriptor of.
Size Maximum number of messages the mailbox can hold.

Returns

Descriptor of the mailbox

Component type

Function
- Cannot be used in an interrupt -

Options

When the build option OS_NAMES is zero, the argument Name is ignored but must still be
supplied. In this kind of build of the Abassi RTOS, all mailboxes are unnamed and every use
of MBXopenFCFS() creates a new mailbox.
If the build option OS_NAMES is non-zero, then MBXopenFCFS() will either return the
descriptor of an existing mailbox (previously created with MBXopen() or MBXopenFCFS())
otherwise it will create a new mailbox. This approach makes the creation and opening of
mailboxes run-time safe. If that feature were not part of the MBXopenFCFS() component, it
would be imperative to either create the mailbox immediately at start-up, or to guarantee the
first task (using the mailbox) to reach the running state is the one creating the mailbox. With
the run-time safe feature, it does not matter which task is the first to use the mailbox.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 179

Notes

One should avoid setting the argument Name to NULL when the build option OS_NAMES is
zero. The reasoning behind this is: if logging ever needs to be turned on, it becomes
impossible to differentiate amongst all the unnamed mailboxes. This is also the reason why
the function prototype for this component was kept the same, irrespective of the setting of the
build option OS_NAMES.
When the mailbox already exists, there is no guarantee the mailbox is operating in a First
Come First Served mode, as it may have been created with MBXopen()or it may have been
set to operate in Priority mode with MBXnotFCFS().
Also, if a mailbox already exists, the requested size may not be the size of existing mailbox.
At any time, a mailbox operating in the First Come First Served mode can be modified to
operate in the Priority mode by using the MBXnotFCFS() component.
Mailboxes created with the MBX_STATIC() component are not part of the search performed
by MBXopenFCFS().

See also

OS_FCFS (Section 4.1.6)
OS_MAILBOX (Section 4.1.18)
OS_NAMES (Section 4.1.28)
OS_RUNTIME (Section 4.1.37)
MBXget() (Section 6.7.5)
MBXnotFCFS() (Section 6.7.6)
MBXopen() (Section 6.7.7)
MBXput() (Section 6.7.9)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 180

6.7.9 MBXput

Synopsis
#include “Abassi.h”

int MBXput(MBX_t *Mbox, intptr_t Msg, int Timeout);

Description

MBXput() is used to deposit a message into a mailbox. When the mailbox is full, it is
possible to request to block until there is room in the mailbox, or to block with timeout, or no
blocking at all.

Availability

MBXput() is available if the build option OS_MAILBOX is non-zero.

Arguments

Mbox Descriptor of the mailbox to put the message in.
Msg Message to insert in the mailbox.
Timeout Negative Infinite blocking
 0 Never blocks
 Positive Timer ticks before expiry

Returns

0 The message was added in the mailbox.
Non-zero The message was not added in the mailbox. This will occur if the argument

Timeout is non-negative. Either Timeout was zero and there was no room in
the mailbox to add the message, or Timeout was positive and no room became
available in the mailbox within Timeout number of timer ticks (or when the
component TSKtimeoutKill() is applied to the task that waits on the
mailbox). The room availability is dependent on the priority ordering (or
request order if FCFS) of the writing task when one or more tasks are blocked

Component type

Inline function

Options

If the build option OS_TIMEOUT is zero, then when the argument Timeout is set to a positive
value, MBXput() behaves the same as if the Timeout argument had been set to zero.
If the build option OS_TIMEOUT is a negative value, then when the argument Timeout is set
to a positive value, MBXput() behaves the same as if the Timeout argument had been set to
a negative value.

Notes

The message Msg is copied into the mailbox. But if Msg is a pointer, the pointer is copied but
the memory pointed by Msg is NOT copied.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 181

Unless Timeout is negative, always verify the return value: a non-zero value means the
mailbox is full and the message hasn’t been written, zero means a message was written, even
if the timeout was set to zero.
When timeout is negative, the component TSKtimeoutKill() cannot unblock the task
waiting to write a message, as an infinite timeout request does not involve the timer service.

MBXput() can safely be used in an ISR as this component was specially modified to ignore
the value of the argument Timeout when applied in an ISR. The return value when this
component is used in an ISR is always zero, no matter if the mailbox is full or not.

It is possible to make MBXput(), when called in an ISR, return the information if the
mailbox is full or not. This is achieved by setting the build option OS_MBXPUT_ISR to a
non-zero value and applying the component MBXputInISR() on the mailbox right after
creation/opening.

See also

OS_MAILBOX (Section 4.1.18)
OS_MBXPUT_ISR (Section 4.1.22)
OS_TIMEOUT (Section 4.1.57)
MBXget() (Section 6.7.5)
MBXopen() (Section 6.7.7)
MBXopenFCFS() (Section 6.7.8)
MBXputInISR() (Section 6.7.10)
TSKtimeoutKill() (Section 6.3.30)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 182

6.7.10 MBXputInISR

Synopsis
#include “Abassi.h”

void MBXputInISR(MBX_t *Mbox);

Description

MBXputInISR() is used to configure a mailbox to return a valid result when called from
within an interrupt handler. It will report if the mailbox is not full, and the message will land
in the mailbox, or if the mailbox is full, and the message will not land in the mailbox.

Availability

MBXputInISR() is available if the build option OS_MBX_ISR is defined and non-zero.

Arguments

Mbox Descriptor of the mailbox to enable the feature.

Returns
void

Component type

Macro (safe)

Options

Notes

This component is only available when the build option OS_MAILBOX is non-zero and the
build option OS_MBXPUT_ISR is defined and set to a non-zero value. When
OS_MBXPUT_ISR is non-zero, none of the mailboxes upon creation (or start-up for statically
defined mailboxes) have the MBXput() in an ISR return full/not full feature enabled. Each
mailbox must have this feature individually enabled, through MBXputInISR(), to have
MBXput() used in an ISR return if the mailbox is full or not.

The component MBXputInISR() MUST be used immediately after the creation/opening of
the mailbox, before the mailbox is ever used. If this condition is not fulfilled, the operation
of the mailbox will most likely be faulty, There is no way to recover from a faulty set-up.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 183

The reason to make the application enable the validation of the return value of MBXput() in
an ISR is to optimize the real-time performance and minimize the duration interrupts are
disabled. When MBXputInISR() is applied to a mailbox, it drastically changes the behavior
of the components MBXget() and MBXput() used on that mailbox: interrupts are constantly
getting disable/restored (plus a spinlock lock/unlock in multi-core) when any of these two
components are used on the mailbox. Because the disabling/restoring of the interrupts
directly impacts the interrupt response time of Abassi, by only enabling the feature on the
mailboxes that require it reduces the number of times the interrupts are disabled/restored,
minimizing the impact on the interrupt response time.

See also

OS_MAILBOX (Section 4.1.18)
OS_MBXPUT_ISR (Section 4.1.22)
MBXget() (Section 6.7.5)
MBXput() (Section 6.7.9)
MBXopen() (Section 6.7.7)
MBXopenFCFS() (Section 6.7.8)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 184

6.7.11 MBXsetFCFS

Synopsis
#include “Abassi.h”

void MBXsetFCFS(MBX_t *Mbox);

Description

MBXsetFCFS() is the component to use to configure a mailbox to operate in the First Come
First Served mode. The unblocking order of such a mailbox is always the oldest task that
was blocked is unblocked first. This mode of operation only applies to the tasks that write
messages into the mailbox through MBXput() (Section 6.7.9), or in the not-obvious case
when multiple readers are blocked through MBXget() (Section 6.7.5).

Availability

MBXsetFCFS() is only available when the build options OS_MAILBOX and OS_FCFS are
both non-zero.

Arguments

Mbox Descriptor of the mailbox to set into a First Come First Served mode.

Returns
void

Component type

Definition

Options

Notes

If the mailbox was already operating in the First Come First Served mode, using this
component has no effect on such a mailbox.
If the mailbox was operating in the Priority mode, using this component will not re-order
tasks that are currently blocked on the mailbox. Newly blocked tasks will be inserted in a
First Come First Served ordering amongst the already Priority ordered blocked tasks. This
means there may be a transient phase before the mailbox truly operates in a First Come First
Served mode.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 185

See also

OS_FCFS (Section 4.1.6)
OS_MAILBOX (Section 4.1.18)
MBXget() (Section 6.7.5)
MBXnotFCFS() (Section 6.7.6)
MBXopen() (Section 6.7.7)
MBXput() (Section 6.7.9)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 186

6.7.12 MBXused

Synopsis
#include “Abassi.h”

int MBXused(MBX_t *Mbox);

Description

MBXavail() is a component that reports how many elements in held in the mailbox Mbox.

Availability

MBXused() is only available when the build option OS_MAILBOX is non-zero in. It is not
available in any releases before Abassi version 1.273.262 and mAbassi version 1.94.97.

Arguments

Mbox Descriptor of the mailbox to report the number of elements in use.

Returns

Number of elements held in Mbox.

Component type

Atomic macro (unsafe)

Options

Notes

See also

MBXavail() (Section 6.7.4)
MBXget() (Section 6.7.5)
MBXput() (Section 6.7.9)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 187

6.7.13 Examples
The mailbox component queue is capable of holding a maximum number of elementary data types, which
can be either an integer or a pointer. If pointers are passed through a mailbox, it is quite straightforward to
create a data queue to hold a number of buffers. The following example explains how to handle a data
queue and mainly explains how to allocate enough buffers to not have buffer trampling by the queue
reader(s) and writer(s).

6.7.13.1 Buffers
The mailboxes are designed to hold intptr_t type of data. This means the elements can be either an
integer or a pointer. To create a data queue, pointers to buffers are used. One must remember only the
pointer, not the buffer contents, is copied and held inside the mailbox during the exchanges between the
writer(s) and reader(s). When working with a pre-allocated set of buffers, e.g. using Abassi’s memory
block component, there is a minimum number of buffers required to not run out of buffers before the
mailbox becomes full.

6.7.13.2 Buffer count
When a mailbox is dimensioned to size S, it means the mailbox can hold a maximum of S elements. So at
first there is a minimum of S buffers required to not starve the filling of the mailbox. In addition to the
mailbox holding capability, it is desirable to allow the writer(s) to prepare new buffers to be sent through
the mailbox even when the mailbox is full. This pipelines the mailbox filling, which helps reduce the
processing latency. If extra buffer(s) were not available for the writer(s) when the mailbox is full, the
writer task(s) would then have to block waiting for the availability of a new buffer. Once it gets the buffer
it would fill it and send it through the mailbox. The latency added in this case is the processing time
involved between the availability of the buffer and the sending to the mailbox. Extra buffer(s) should also
be allocated to allow the reader to process the received buffer. In this case, the purpose of extra buffer(s)
for the reader(s) is to maximize the holding capability of the mailbox. If there are no extra buffer(s)
allocated for the reader(s), then when a reader is using a buffer, before it returns it to the pool of buffers, it
would possibly starve the writer(s) from being capable of processing buffers in advance.

So a mailbox sized to S elements should be associated with the following number of buffers:
Nblk = S + Nrd + Nwrt

Where:

 Nblk : Number of buffers required to not starve the mailbox operations

 S : Size of the mailbox (as set when using the MBXopen() component)

 Nrd : Total number of tasks that can read from the mailbox

 This includes an interrupt if the mailbox is read in an interrupt

 Nwrt : Total number of tasks that can write to the mailbox

 This includes the number of interrupts if the mailbox is written in interrupts

6.7.13.3 Example code
The following example shows how to use a mailbox to create a data queue. This example relies on the
run-time safe creation feature of Abassi, meaning the build option OS_NAMES must be set to a non-zero
value.

The example code assumes only one task writes to the mailbox and only one task reads the mailbox. As
previously explained, the optimal number of buffer to be made available is the mailbox size + 2.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 188

The writer task simply performs the following:

 - Create / open (run-time creation safe) the mailbox to write to

 - Create / open (run-time creation safe) the memory block management to use

 - Infinite loop

 - Get a new buffer

 - Process and fill the buffer

 - Send the buffer through the mailbox

As the memory block management service is created with 2 more buffers than the mailbox can hold, the
call to the service MBLKalloc() can never block the task. The task will only block if the mailbox is full.

Table 6-13 Queue writer code

#include “MyApp.h”

void WriterTask(void)
{
int Buffer; /* Buffer to process / queued */
MBX_t MyMbx; /* Mailbox written to */
MBLK_t MyPool; /* Memory block pool used here */

 /* Create / open the mailbox */
 MyMbx = MBXopen(MBX_DATA1_NAME, MBX_DATA1_NBUF);
 if (MyMbx == (MBX_t *)NULL) {
 …. /* ERROR */
 }
 /* Create / open the memory block */
 MyPool = MBLKopen(MBLK_DATA1_NAME, MBX_DATA1_NBUF+2, MBX_DATA1_BSIZE*sizeof(int));
 if (MyPool == (MBLK_t *)NULL) {
 … /* ERROR */
 }

 for (;;) {
 Buffer = MBLKalloc(MyPool, -1); /* Get a new buffer to fill */

 … /* PROCESSING */

 MBXput(MyMbx, (intptr_t)Buffer, -1); / Send it to the mailbox */
 }
}

The reader task simply performs the following:

 - Create / open (run-time creation safe) the mailbox to read from

 - Create / open (run-time creation safe) the memory block management to use

 - Infinite loop

 - Get a new buffer from the mailbox

 - Process and fill the buffer

 - Return the buffer to the pool of memory

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 189

Table 6-14 Queue reader code

#include “MyApp.h”

void ReaderTask(void)
{
int Buffer; /* Buffer to process / queued */
MBX_t MyMbx; /* Mailbox read from */
MBLK_t MyPool; /* Memory block pool used here */

 /* Create / open the mailbox */
 MyMbx = MBXopen(MBX_DATA1_NAME, MBX_DATA1_NBUF);
 if (MyMbx == (MBX_t *)NULL) {
 …. /* ERROR */
 }
 /* Create / open the memory block */
 MyPool = MBLKopen(MBLK_DATA1_NAME, MBX_DATA1_NBUF+2, MBX_DATA1_BSIZE*sizeof(int));
 if (MyPool == (MBLK_t *)NULL) {
 … /* ERROR */
 }

 for (;;) {
 / Read fromt the mailbox */
 Buffer = (int *)MBXget(MyMbx, (intptr_t)Buffer, -1);

 … /* PROCESSING */

 MBLKfree(MyPool, Buffer); /* Return the buffer to the pool */
 }
}

NOTE: Although the example uses an integer buffer, nothing prevents the application from exchanging a
data structure alike:

Table 6-15 Data structure buffers

typedef struct {
 int Size; /* # of valid entries in Buffer */
 int Buffer[10]; /* Data buffer */
} Xchg_t;

 …

Xchg_t Data; / Local data structure pointer */

 MyPool = MBLKopen(MBLK_DATA1_NAME, MBX_DATA1_NBUF+2, MBX_DATA1_BSIZE*sizeof(Xchg_t));

 …

 MBXput(MyMbx, (intptr_t)Data, -1);

 …

 Data = (Xchg_t *)MBXget(MyMbx, (intptr_t)Buffer, -1);

 …

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 190

 Timer Components

6.7.14 OS_TIM_TICK_ACK

Synopsis
#ifdef OS_TIM_TICK_ACK
 OS_TIM_TICK_ACK;
#endif

Description

OS_TIM_TICK_ACK is an optional pre-processor statement that can be used when the RTOS
timer tick interrupt source needs an acknowledgement operation. The code described in the
Synopsis is what is implemented in the timer tick interrupt handler.

Availability

Optional

Arguments
N/A

Returns
N/A

Component type

Pre-processor definition

Options

Notes

The definition for OS_TIM_TICK_ACK must be inserted in the file Abassi.h or defined on
the compiler command line.

See also

OS_TIMER_US (Section 4.1.59)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 191

6.7.15 G_OStimCnt

Synopsis
#include “Abassi.h”

int G_OStimCnt;

Description

G_OStimCnt is a counter incremented once every timer tick.

Availability

Only available when the build option OS_TIMER_US is non-zero.

Arguments
N/A

Returns
N/A

Component type

Variable

Options

Notes

This variable must always be accessed in a read-only fashion. If G_OStimCnt is modified by
the application, components that rely on the timer service may not operate correctly.
The variable is not an unsigned int, but an int. The int data type was selected because
of the way the internal timeout service operates.

See also

OS_TIMER_US (Section 4.1.59)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 192

6.7.16 TIMcallBack

Synopsis
#include “Abassi.h”

void TIMcallBack(void);

Description

TIMcallBack() is a function the application supplies to the Abassi RTOS. It is the function
the timer calls at a pre-programmed rate, defined by the build option OS_TIMER_CB.

Availability

TIMcallBack() is only needed if the build options OS_TIMER_CB and OS_TIMER_US are
non-zero.

Arguments
void

Returns
void

Component type

Function

Options

Notes

It is important to remember this function is called within the timer interrupt handler, so it is
operating in an interrupt context.

See also

OS_TIMER_CB (Section 4.1.58)
OS_TIMER_US (Section 4.1.59)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 193

6.7.17 Time Converters
The time converters are components that convert back and forth hour - minute - second time units and time
ticks units. If the build option OS_TIMER_US (Section 4.1.59) is zero, none of the time converters are
available.

6.7.17.1 OS_HAS_TIMEDOUT

Synopsis
#include “Abassi.h”

int OS_HAS_TIMEDOUT(int TickCount);

Description

OS_HAS_TIMEDOUT() returns the information if the RTOS timer tick counter has reached or
has exceeded the count specified by the argument TickCount. This component is normally
used with the component OS_TICK_EXPIRY.

Availability

Only available when the build option OS_TIMER_US is non-zero.

Arguments

TickCount Timer tick counter value for which a time out is declared.

Returns

0 The timer tick counter value has not exceeded the value of TickCount.
Non-zero The timer tick counter value is equal to or exceeded the value of TickCount.

Component type

Macro (safe)

Options

Notes

The component OS_HAS_TIMEDOUT does not handle infinite timeout.

See also

OS_TICK_EXPIRY (Section 6.7.17.6)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 194

6.7.17.2 OS_HMS_TO_TICK

Synopsis
#include “Abassi.h”

int OS_HMS_TO_TICK(int nHours, int nMins, int nSecs);

Description

OS_HMS_TO_TICK() converts a time value indicated in hours, minutes and seconds into the
equivalent number of timer tick units.

Availability

Only available when the build option OS_TIMER_US is non-zero.

Arguments

N/A

Returns

N/A

Component type

Macro (safe)

Options

Notes

In Abassi version 1.266.247, mAbassi version 1.85.85 and above, if the resulting number of
seconds is negative, the component OS_HMS_TO_TICK() returns a negative value because a
negative value is considered an infinite time in Abassi.

See also

OS_TIMER_US (Section 4.1.59)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 195

6.7.17.3 OS_MS_TO_TICK

Synopsis
#include “Abassi.h”

int OS_MS_TO_TICK(int nMs);

Description

OS_MS_TO_TICK() is the component that converts a time value expressed in milliseconds
into its equivalent number of timer ticks. The conversion is rounded to the nearest integer.

Availability

Only available when the build option OS_TIMER_US is non-zero.

Arguments

nMs Millisecond value to convert in timer tick count.

Returns

The number of timer ticks during nMs milliseconds.

Component type

Macro (safe)

Options

Notes

The conversion from milliseconds to the number of timer ticks is rounded to the nearest
integer, not ceiled toward the higher integer. Therefore, if the argument nMs is smaller than
half the value of the build option OS_TIMER_US, which is expressed in microseconds, then a
value of zero will be returned.
When the Abassi RTOS is operating on a processor/compiler port that uses 16 bit for the data
type int, the dynamic range is definitely restricted.
In Abassi version 1.266.247, mAbassi version 1.85.85 and above, if the argument nMs is
negative, the component OS_MS_TO_TICK() returns a negative value because a negative
value is considered an infinite time in Abassi.

See also

OS_TIMER_US (Section 4.1.59)
OS_HMS_TO_TICK (Section 6.7.17.2)
OS_SEC_TO_TICK (Section 6.7.17.5)
OS_TICK_PER_SEC (Section 6.7.17.7)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 196

6.7.17.4 OS_MS_TO_MIN_TICK

Synopsis
#include “Abassi.h”

int OS_MS_TO_MIN_TICK(int nMs, int MinTick);

Description

OS_MS_TO_MIN_TICK() is performing the same conversion as OS_MS_TO_TICK except it
floors the returned value (number of ticks) to MinTick. This component is useful for
example when a short minimum delay is required. For example, if the nMs value translates
into 0 ticks when at least two timer ticks are required, one should set MinTick to 2.

Availability

Only available when the build option OS_TIMER_US is non-zero.

Arguments

nMs Millisecond value to convert in timer tick count.
MinTick Minimum number of timer tick required.

Returns

The number of timer ticks during nMs milliseconds if greater than MinTick, otherwise
MinTick is returned.

Component type

Macro (unsafe)

Options

Notes

The conversion from milliseconds to the number of timer ticks is rounded to the nearest
integer, not ceiled toward the higher integer. Therefore, if the argument nMs is smaller than
half the value of the build option OS_TIMER_US, which is expressed in microseconds, then a
value of zero will be returned.
When the Abassi RTOS is operating on a processor/compiler port that uses 16-bit for the data
type int, the dynamic range is definitely restricted.
In Abassi version 1.266.247, mAbassi version 1.85.85 and above, if any of the 2 arguments is
negative, the component OS_MS_TO_MIN_TICK() returns a negative value because a
negative value is considered an infinite time in Abassi.

See also

OS_TIMER_US (Section 4.1.59)
OS_HMS_TO_TICK (Section 6.7.17.2)
OS_SEC_TO_TICK (Section 6.7.17.5)
OS_TICK_PER_SEC (Section 6.7.17.7)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 197

6.7.17.5 OS_SEC_TO_TICK

Synopsis
#include “Abassi.h”

int OS_SEC_TO_TICK(int nSec);

Description

OS_SEC_TO_TICK() is the component that converts a time value expressed in second into its
equivalent of number of timer ticks. The conversion is rounded to the nearest integer

Availability

Only available when the build option OS_TIMER_US is non-zero

Arguments

nSec Second value to convert in timer tick count

Returns

The number of timer ticks during nSec seconds.

Component type

Macro (safe)

Options

Notes

The conversion from seconds to the number of timer ticks is rounded to the nearest integer,
not ceiled toward the higher integer. It is quite unlikely (because most embedded
applications typically rely on timer with periods smaller than 1 second), but if the argument
nSec is smaller than half the value of the build option OS_TIMER_US, which is expressed in
microseconds, then a value of zero will be returned.
When using the Abassi RTOS is operating on a processor / compiler port that uses 16 bit for
the data type int, the range is definitely restricted.
In Abassi version 1.266.247, mAbassi version 1.85.85 and above, if the argument nMs is
negative, the component OS_SEC_TO_TICK() returns a negative value because a negative
value is considered an infinite time in Abassi.

See also

OS_TIMER_US (Section 4.1.59)
OS_HMS_TO_TICK (Section 6.7.17.2)
OS_MS_TO_TICK (Section 6.7.17.3)
OS_TICK_PER_SEC (Section 6.7.17.7)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 198

6.7.17.6 OS_TICK_EXPIRY

Synopsis
#include “Abassi.h”

int OS_TICK_EXPIRY(nMs, MinTick);

Description

OS_TICK_EXPIRY is the component returning what will be the timer tick value in nMs
milli-seconds, with a minimum of MinTicks. This component is normally used with the
component OS_HAS_TIMEDOUT.

Availability

Only available when the build option OS_TIMER_US is non-zero

Arguments

nMs Expiry time in milli-seconds.
MinTick Minimum number of timer tick required before expiry.

Returns

RTOS timer tick counter value where an expiry is declared.

Component type

Macro (unsafe)

Options

Notes

This macro performs the following calculations:

G_OStimCnt + MIN(MinTick, OS_MS_TO_MIN_TICK(nMs))

The component OS_TICK_EXPIRY does not handle infinite timeout. If any of the argument is
negative, the result will be an immediate timeout validation when used with the component
OS_HAS_TIMEDOUT().

See also

OS_TIMER_US (Section 4.1.59)
OS_HAS_TIMEDOUT (Section 6.7.17.1)
OS_HMS_TO_TICK (Section 6.7.17.2)
OS_MS_TO_TICK (Section 6.7.17.3)
OS_SEC_TO_TICK (Section 6.7.17.5)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 199

6.7.17.7 OS_TICK_PER_SEC

Synopsis
#include “Abassi.h”

int OS_TICK_PER_SEC;

Description

OS_TICK_PER_SECOND is a definition that gives access to the application on the number of
timer tick there is per second. This is not a function, but a constant value.

Availability

Only available when the build option OS_TIMER_US is non-zero

Arguments
N/A

Returns
N/A

Component type

Definition

Options

Notes

The conversion from the number of timer ticks to a time in seconds is rounded to the nearest
integer, not ceiled toward the higher integer. If the build option OS_TIMER_US is set to value
larger than 499,999, then a timer count of zero will be returned.
The build option OS_TIMER_US may not be an exact fraction of 1 second, therefore it is
highly advisable to use the OS_SEC_TO_TICK() component to obtain the number of timer
tick for a value different than 1 second.
The same applies for fractions of a second, OS_MS_TO_TICK() is the preferred component to
use.

See also

OS_TIMER_US (Section 4.1.59)
OS_HMS_TO_TICK (Section 6.7.17.2)
OS_MS_TO_TICK (Section 6.7.17.3)
OS_SEC_TO_TICK (Section 6.7.17.5)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 200

6.7.18 Examples

6.7.18.1 Periodic Timer
The Abassi RTOS does not provide any components for periodic operations. However, the timer callback
facility delivers more powerful access to periodic operations. Instead of providing dedicated components
for periodic semaphore posting, mutex posting, event setting, or mailbox writing, the timer callback facility
is fully open to the application to be used for that. Any component can be used in the timer callback
function (excluding those that can’t be used in an interrupt context, refer to Section 3.3.2).

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 201

6.8 Interrupt Components

The Abassi RTOS provides an easy to use component to attach a function to a source of interrupts on a
processor. All there is to do is to use the OSisrInstall() component for each of the interrupts the
application needs to handle.

Another required feature in a multi-tasking application is the capability to disable and re-enable interrupts
to protect critical regions in the application; the Abassi RTOS supports this with the OSintOFF(),
OSintOn() and OSintBack() components. The legacy components OSdint() and OSeint() can also
be used for the interrupt control but are not as real time efficient as the three others.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 202

6.8.1 OSdint

Synopsis
#include “Abassi.h”

int OSdint(void);

Description

OSdint() is the legacy component to use to disable the interrupts. If the interrupts are
already disabled, OSdint() has no effect.

Availability

Always

Arguments
void

Returns

State of the interrupts before the use of the component OSdint().

Component type

Definition involving a function

Options

Notes

Do NOT use the return value of OSdint() with OSintBack() as they are not
compatible.
Enabling and disabling the interrupts must always be performed through the OSdint() and
OSeint() components. Not doing so can create issues on some processor/compiler ports.
As OSdint() returns the previous state of the interrupt enable, the proper way to use the pair
OSdint() and OSeint() is:

 Table 6-16 Proper way to use OSdint() and OSeint()

ISRstate = OSdint();

...

OSeint(ISRstate);

This allows multiple level calls with multiple disabling/enabling at the different levels to
properly put back the interrupt enable state without having to keep track of the state of the
interrupt enable at the highest level.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 203

See also

OSeint() (Section 6.8.2)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 204

6.8.2 OSeint

Synopsis
#include “Abassi.h”

void OSeint(int ISRstate);

Description

OSeint() is the legacy component to use to enable/disable the interrupts. The argument
ISRstate is a Boolean specifying if the interrupts must be disabled (value of zero) or
enabled (non-zero value).

Availability

Always

Arguments

ISRstate Boolean
 0 Disable all interrupts
 non-zero Enable all interrupts

Returns
void

Component type

Function

Options

Notes

Do NOT use the return value of OSintOff() with OSeint() as they are not
compatible.

Enabling and disabling the interrupts must always be performed through the OSdint() and
OSeint() components. Not doing so can create issues on some processor/compiler ports.
As OSdint() returns the previous state of the interrupt enable, the proper way to use the pair
OSdint() and OSeint() is:

 Table 6-17 Proper way to use OSdint() and OSeint()

ISRstate = OSdint();

...

OSeint(ISRstate);

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 205

This allows multiple level calls with multiple disabling/enabling at the different levels to
properly put back the interrupt enable state without having to keep track of the state of the
interrupt enable at the highest level.
The only time when a pre-defined value should be used is at start-up to enable the interrupts,
since, upon boot-up, interrupts are always disabled.

See also

OSdint() (Section 6.8.1)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 206

6.8.3 OSintBack

Synopsis
#include “Abassi.h”

void OSintBack(int ISRstate);

Description

OSintBack() is the component to use to restore the interrupt state (re-enable them or keep
them disabled). The argument ISRstate is processor specific and it must be a previous
return value from the component OSintOff().

Availability

Always

Arguments

ISRstate processor specific value returned by OSintOff().

Returns
void

Component type

Function

Options

Notes

Do NOT use the return value of OSdint() with OSintBack() as they are not
compatible.

Enabling and disabling the interrupts must always be performed through the OSintOff()
and OSintBack() components. Not doing so can create issues on some processor/compiler
ports.
As OSintOff() returns the previous state of the interrupt enable/disable (processor
specific), the proper way to use the pair OSintOff() and OSintBack() is:

 Table 6-18 Proper way to use OSintOff() and OSintBack()

ISRstate = OSintOff();

...

OSintBack(ISRstate);

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 207

This allows multiple level calls with multiple disabling/enabling at the different levels to
properly put back the interrupt enable state without having to keep track of the state of the
interrupt enable at the highest level.

See also

OSintOff() (Section 6.8.4)
OSintOn() (Section 6.8.5)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 208

6.8.4 OSintOff

Synopsis
#include “Abassi.h”

int OSintOff(void);

Description

OSintOff() is the component to use to disable the interrupts. If the interrupts are already
disabled, OSintOff() has no effect.

Availability

Always

Arguments
void

Returns

Processor specific information of the state of the interrupt enable/disable before the use of the
component OSintOff().

Component type

Function

Options

Notes

Do NOT use the return value of OSintOff() with OSeint() as they are not
compatible.
Enabling and disabling the interrupts must always be performed through the OSintOff()
and OSintBack() components. Not doing so can create issues on some processor/compiler
ports.
As OSintOff() returns the previous state of the interrupt enable, the proper way to use the
pair OSintOff() and OSintBack() is:

 Table 6-19 Proper way to use OSintOff() and OSintBack()

ISRstate = OSintOff();

...

OSintBack(ISRstate);

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 209

This allows multiple level calls with multiple disabling/enabling at the different levels to
properly put back the interrupt enable state without having to keep track of the state of the
interrupt enable at the highest level.

See also

OSintBack() (Section 6.8.3)
OSintOn() (Section 6.8.5)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 210

6.8.5 OSintOn

Synopsis
#include “Abassi.h”

void OSintOn(void);

Description

OSintOn() is the component to use to force-enable the interrupts

Availability

Always

Arguments
void

Returns

void

Component type

Function

Options

See also

OSintBack() (Section 6.8.3)
OSintOff() (Section 6.8.4)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 211

6.8.6 OSisrInstall

Synopsis
#include “Abassi.h”

void OSisrInstall(int ISRnmb, void(*Fct)(void));

Description

OSisrInstall() is the component to use to attach an interrupt handler to source of
interrupt.

Availability

Always

Arguments

ISRnmb Vector number of the interrupt to attach to the function Fct.
Fct Pointer to the function to use on the interrupt number ISRnmb.

Returns
void

Component type

Macro (safe)

Options

Notes

The function Fct is always a regular “C” function; there should not be non-standard syntax
such as _interrupt or #pragma interrupt, etc.
Refer to the port document for the target compiler/processor to get more information on the
meaning of the arguments of this component.

If Abassi is used in a C++ environment, the function attached to the task (the argument Fct)
must be declared with “C” linkage (see section 3.5), not as a regular C++ function.

See also

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 212

6.9 Timer Services

The timer services are part of an optional module, included in the build when the build option
OS_TIMER_SRV is set to a non-zero value. The timer services offer a simple way to get an operation
performed after a selected delay or to have an operation periodically performed. Some of the above
operations, when periodic, have or require an argument. It is possible to modify the argument each time
the operation is performed by post-adding a programmable offset. The six operations supported in the
timer services are:

Ø Writing data to a memory location
Ø Setting event flags of a task
Ø Calling a function with an argument
Ø Writing a value to a mailbox
Ø Unlocking a mutex
Ø Posting a semaphore

The following table lists the timer services components:

Table 6-20 Timer Services list

Section Name Description

6.9.1 TIM_STATIC Create a timer at compile / link time

6.9.2 TIMarg Modify the argument used by the timed operation

6.9.3 TIMdata Delayed and periodic writing at a memory location

6.9.4 TIMevt Delayed and periodic event flag setting

6.9.5 TIMfct Delayed and periodic function call

6.9.6 TIMfreeze Stop/hold an active timer service

6.9.7 TIMkill Terminate an active timer service

6.9.8 TIMleft Report the time left of an active timer service

6.9.9 TIMmbx Delayed and periodic mailbox writing

6.9.10 TIMmtx Delayed and periodic mutex unlocking

6.9.11 TIMopen Create a timer service / obtain the descriptor of a timer service

6.9.12 TIMpause Pause the timer operation performed upon expiry

6.9.13 TIMperiod Modify the period of an active timer

6.9.14 TIMrestart Restart a timer expiries as they were originally set-up

6.9.15 TIMresume Resume the timer operation performed upon expiry if paused

0 TIMsem Delayed and periodic semaphore posting

6.9.17 TIMtoAdd Modify the value to add to the argument of a timed operation

To be usable, a timer must be first be created/opened with the component TIMopen(), or it must have
been created a compile time with the TIM_STATIC() component. All there is to do afterward to activate
the timer is to use one the following components, to either indicate the delay before the operation is
performed and the periodicity, if desired:

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 213

Ø TIMdata()
Ø TIMevt()
Ø TIMfct()
Ø TIMmbx()
Ø TIMmtx()
Ø TIMsem()

All six timer operations are programmed the same way. One argument indicates the expiry time of the
timer in number of timer ticks. When the desired time has elapsed, the operation is performed. A second
argument indicates the periodicity of the timer operation. If the desired period is set to zero or a negative
value, the timer becomes inactive after the first expiry. If the period is positive, then the selected operation
will be performed every period number of timer tick, after the first expiry. Some of the operations use an
argument; when the timer is periodic, the argument is modified, by adding a “To Add” value. Therefore, to
keep the same argument at every period timer ticks, the “To Add” value must be set to zero; otherwise, the
argument is updated adding the “To Add” value after each time the timer triggers the selected operation.
At any time, an active timer can be deactivated with the component TIMkill(), or its operating
parameters modified with the components TIMarg(), TIMperiod() and TIMtoAdd().

If the target application has limited data or code memory, it is highly recommended to not enable/use the
timer services. Instead, enable the timer callback facility and add in the timer callback function the desired
functionality. The reason why the timer services are not as memory efficient as the timer callback solution
is simply due to the fact the timer services offer a generic interface/functionality. As with any generic
code, the code and memory is always less efficiently used than in a custom solution.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 214

6.9.1 TIM_STATIC

Synopsis
#include “Abassi.h”

TIM_STATIC(VarName, TimName);

Description

TIM_STATIC() is a special component that creates a timer and initializes its descriptor. It is
a macro definition creating a static object, so none of the arguments has a real data type. The
timer is not created/initialized at run time; everything is done at compile/link time.

Availability

Only when the build option OS_TIMER_SRV is non-zero.

Arguments

VarName Name of the variable holding the pointer to the timer descriptor to create /
initialize. This is a variable name, therefore do not put double quotes around
the name.

TimName Timer name. This is not the variable name, it is the name attached to the timer.
As it is a “C” string, the double quotes around the name are required.
G_OSnoName , and not NULL, should be used for an unnamed timer.

Returns

N/A

Component type

Macro (safe)

Options

If the build option OS_NAMES is set to a value of zero, the argument TimName is ignored but
must still be supplied.

Notes

A timer created and initialized with TIM_STATIC() will not be part of the search done with
TIMopen(), unless another timer with the exactly the same name was created using
TIMopen(). Then the descriptor of that other timer, the one that was not created statically,
will be returned.

See also

OS_NAMES (Section 4.1.28)
OS_TIMER_SRV (Section 4.1.59)
TIMopen() (Section 6.9.11)
G_OSnoName (Section 6.14.2)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 215

6.9.2 TIMarg

Synopsis
#include “Abassi.h”

void TIMarg(TIM_t *Timer, intptr NewArg);

Description

TIMarg() is a timer service component that modifies the argument of some but not all of the
timer services operations. It allows the application to replace the argument once the timer
has been activated. The timer services components that use arguments and can have
TIMarg() applied to are: TIMdata(), TIMevt(), TIMfct(), TIMmbx().

Availability

Only available when the build option OS_TIMER_SRV is non-zero.

Arguments

Timer Descriptor of the timer service to replace the argument of the operation
NewArg New value of operation argument

Returns

void

Component type

Data access

Options

N/A

Notes

If the timer service descriptor specified with the argument Timer is not active, the argument
value set when using TIMarg() will be overloaded when the timer is activated with
TIMdata(), or TIMevt(), or TIMfct(), or TIMmbx().
There is no side effect if the component TIMarg() is applied on an inactive timer or a timer
that was activated to perform an operation which does not requires an argument, such as
TIMmtx() and TIMsem(). The new value of the timer operation argument is the argument
that will be used the next time the timer expires; there is no other latency than the expiry time
itself.
The NewArg argument is of intptr_t type, allowing integer operation on integer and
pointers. The choice of using a intptr_t type was selected because on a some processors
(or data memory models), the data size of an integer is different from the data size of a
pointer.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 216

See also

OS_TIMER_SRV (Section 4.1.59)
TIMdata() (Section 6.9.3)
TIMevt() (Section 6.9.4)
TIMfct() (Section 6.9.5)
TIMmbx() (Section 6.9.9)
TIMmtx() (Section 6.9.10)
TIMopen() (Section 6.9.11)
TIMsem() (Section 6.9.16)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 217

6.9.3 TIMdata

Synopsis
#include “Abassi.h”

void TIMdata(TIM_t *Timer, intptr_t *Addr, intptr_t Data, int ToAdd,
 int Expiry, int Period);

Description

TIMdata() is the timer service component to use to activate a timer service that writes data
to a memory location. The timer descriptor to program is specified with the argument
Timer, and the location to write to is indicated with the argument Addr. The programmed
operation can be a single time delayed operation when the argument Period is less or equal
to 0, or if positive, it can be periodic, once every Period timer ticks. The first timer expiry
always occurs after Expiry timer ticks. The value written at the address Addr is specified
with the argument Data, which is post-write updated with the value specified in the argument
ToAdd.

Availability

Only available when the build option OS_TIMER_SRV is non-zero

Arguments

Timer Descriptor of the timer service to use to perform the timed operation
Addr Address where the write operation is performed
Data Value to write into Addr. If the operation is periodic, with the argument

Period set to a positive value, the value specified by the argument ToAdd is
added to Data after every write.

ToAdd Post-write update to apply
Expiry Number of timer ticks the timer is requested to expire after the first time. If the

timer is periodic, when the argument Period is positive, then further expiries
will occur every Period timer ticks.

Period If set to a zero or negative value, the timer performs a one shot operation.
 If set to a positive value, periodicity in number of timer ticks.

Returns

void

Component type

Macro (unsafe)

Options

 N/A

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 218

Notes

The data type written is of intptr_t type. As such, the location where the write operation
occurs (Addr) must also be declared as an intptr_t. This is important, as on some
processors (or depending on the memory model) the size of an int is different from the size
of a pointer. A data type of intptr_t was retained as it allows writing an int or a pointer
to the desired location. In the case a pointer is specified with the argument Data, the value to
specify with the argument ToAdd is the number of address bytes to add to the pointer. For
example, if the pointer is a 4 byte integer pointer, to increment the pointer by 1 integer, the
value to specify with ToAdd is 4, not 1.
The argument Expiry must be positive. If a zero or negative value is specified, the
application will quite likely lock-up as it will continuously have to handle timer expiries.
The argument (current Data value), the increment (ToAdd) and the period can be modified
on the fly with the components TIMarg(), TIMtoAdd() and TIMperiod().
The timer can be deactivated at any time with the component TIMkill(). If TIMdata() is
applied on an timer service that is already active, the timer service will first be deactivated,
reprogrammed and then reactivated.

See also

OS_TIMER_SRV (Section 4.1.59)
TIMarg() (Section 6.9.2)
TIMevt() (Section 6.9.4)
TIMfct() (Section 6.9.5)
TIMkill() (Section 6.9.7)
TIMmbx() (Section 6.9.9)
TIMmtx() (Section 6.9.10)
TIMopen() (Section 6.9.11)
TIMperiod() (Section 6.9.13)
TIMsem() (Section 6.9.16)
TIMtoAdd() (Section 6.9.17)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 219

6.9.4 TIMevt

Synopsis
#include “Abassi.h”

void TIMevt(TIM_t *Timer, TSK_t *Task, int Flags, int Expiry,
 int Period);

Description

TIMevt() is the timer service component to use to activate a timer service that sets the event
flags of a task. The timer descriptor to program is specified with the argument Timer, and
the task to set the event flags of is indicated with the argument Task. The programmed
operation can be a single time delayed operation when the argument Period is less or equal
to 0, or if positive, it can be periodic, once every Period timer ticks. The first timer expiry
always occurs after Expiry timer ticks. The event flags are specified with the argument
Flags.

Availability

Only available when the build options OS_TIMER_SRV and OS_EVENTS are non-zero

Arguments

Timer Descriptor of the timer service to use to perform the timed operation
Task Descriptor of the task to set the event flags of
Flags Event flags to set in the task Task
Expiry Number of timer ticks the timer is requested to expire after the first time. If the

timer is periodic, when the argument Period is positive, then further expiries
will occur every Period timer ticks.

Period If set to a zero or negative value, the timer performs a one shot operation.
 If set to a positive value, periodicity in number of timer ticks.

Returns

void

Component type

Macro (unsafe)

Options

N/A

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 220

Notes

The argument Expiry must be positive. If a zero or negative value is specified, the
application will quite likely lock-up as it will continuously have to handle timer expiries.
The argument (current Data value), the increment (ToAdd) and the period can be modified
on the fly with the components TIMarg(), TIMtoAdd() and TIMperiod().
The timer can be deactivated at any time with the component TIMkill(). If TIMevt() is
applied on an timer service that is already active, the timer service will first be deactivated,
reprogrammed and then reactivated.

See also

OS_EVENTS (Section 4.1.5)
OS_TIMER_SRV (Section 4.1.59)
EVTset() (Section 6.6.7)
TIMarg() (Section 6.9.3)
TIMdata() (Section 6.9.4)
TIMfct() (Section 6.9.5)
TIMkill() (Section 6.9.7)
TIMmbx() (Section 6.9.9)
TIMmtx() (Section 6.9.10)
TIMopen() (Section 6.9.11)
TIMperiod() (Section 6.9.13)
TIMsem() (Section 6.9.16)
TIMtoAdd() (Section 6.9.17)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 221

6.9.5 TIMfct

Synopsis
#include “Abassi.h”

void TIMfct(TIM_t *Timer, void (*Fct)(intptr), intptr_t Data,
 int ToAdd, int Expiry, int Period);

Description

TIMfct() is the timer service component to use to activate a timer service that calls a void
function with a single argument. The timer descriptor to program is specified with the
argument Timer, and the function call indicated with the argument Fct. The programmed
operation can be a single time delayed operation when the argument Period is less or equal
to 0, or if positive, it can be periodic, once every Period timer ticks. The first timer expiry
always occurs after Expiry timer ticks. The argument passed to the function Fct is
specified with the argument Data, which is post-write updated with the value specified in the
argument ToAdd.

Availability

Only available when the build option OS_TIMER_SRV is non-zero

Arguments

Timer Descriptor of the timer service to use to perform the timed operation
Fct Pointer to the function to call when the call operation is performed
Data Argument to the function Fct. If the operation is periodic, with the argument

Period set to a positive value, the value specified by the argument ToAdd is
added to Data after every function call.

ToAdd Post-write update to apply
Expiry Number of timer ticks the timer is requested to expire after the first time. If the

timer is periodic, when the argument Period is positive, then further expiries
will occur every Period timer ticks

Period If set to a zero or negative value, the timer performs a one shot operation.
 If set to a positive value, periodicity in number of timer ticks.

Returns

void

Component type

Macro (unsafe)

Options

 N/A

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 222

Notes

The data type of the function argument is of intptr_t type. As such, the function prototype
of Fct() must declare a single argument of type intptr_t. This is important, as on some
processors (or depending on the memory model) the size of an int is different from the size
of a pointer. A data type of intptr_t was retained as it allows passing an int or a pointer
to the function. In the case where a pointer is specified with the argument Data, the value to
specify with the argument ToAdd is the number of address bytes to add to the pointer. For
example, if the pointer is a 4 byte integer pointer, to increment the pointer by 1 integer, the
value to specify with ToAdd is 4, not 1.
The argument Expiry must be positive. If a zero or negative value is specified, the
application will quite likely lock-up as it will continuously have to handle timer expiries.
The argument (current Data value), the increment (ToAdd) and the period can be modified
on the fly with the components TIMarg(), TIMtoAdd() and TIMperiod().
The timer can be deactivated at any time with the component TIMkill(). If TIMfct() is
applied on an timer service that is already active, the timer service will first be deactivated,
reprogrammed and then reactivated.

If Abassi is used in a C++ environment, the function attached to the task (the argument Fct)
must be declared with “C” linkage (see section 3.5), not as a regular C++ function.

IMPORTANT

The function called cannot use any components that enter the kernel. The reason is the
function is called from within the kernel and because the kernel is non-reentrant using a
kernel-based component would re-enter the kernel. If a kernel service is called in the
function then the processor will enter and remain in the function OStrap() if either build
option OS_OUT_OF_MEM or OS_STACK_CHECK is non-zero. If both build options are zero,
then the kernel service called in the function returns a non-zero value reporting a non-
execution/failure. Refer to OStrap() (Section 6.14.6) for a list of the errors that are trapped.

See also

OS_TIMER_SRV (Section 4.1.59)
TIMarg() (Section 6.9.2)
TIMdata() (Section 6.9.3)
TIMevt() (Section 6.9.4)
TIMkill() (Section 6.9.7)
TIMmbx() (Section 6.9.9)
TIMmtx() (Section 6.9.10)
TIMopen() (Section 6.9.11)
TIMperiod() (Section 6.9.13)
TIMsem() (Section 6.9.16)
TIMtoAdd() (Section 6.9.17)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 223

6.9.6 TIMfreeze

Synopsis
#include “Abassi.h”

void TIMfreeze(TIM_t *Timer);

Description

TIMfreeze() is a timer service component that stops the countdown of an active.

Availability

Only available when the build option OS_TIMER_SRV is non-zero. Was added in Abassi
version 1.282.273 and mAbassi version 1.118.120.

Arguments

Timer Descriptor of the timer service to freeze the countdown

Returns
void

Component type

Macro (unsafe)

Options

N/A

Notes

If the timer service descriptor specified with the argument Timer is not active, the use of the
TIMfreeze() component on it does nothing. The component TIMresume() (Section
6.9.15) reactivate the countdown. If a timer has been paused with the component
TIMpause() and the component TIMfreeze() is then applied on that timer, the pause state
of the time gets replaced by the frozen state. If the component TIMfreeze() is applied
multiple times on a timer already frozen, nothing happens.

See also

OS_TIMER_SRV(Section 4.1.59)
TIMpause (Section 6.9.12)
TIMresume (Section 6.9.15)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 224

6.9.7 TIMkill

Synopsis
#include “Abassi.h”

void TIMkill(TIM_t *Timer);

Description

TIMkill() is a timer service component that deactivates an active timer service. The
descriptor of the timer service to deactivate is specified with the argument Timer.

Availability

Only available when the build option OS_TIMER_SRV is non-zero

Arguments

Timer Descriptor of the timer service to deactivate

Returns

void

Component type

Atomic macro (safe)

Options

N/A

Notes

If the argument Timer is the descriptor of a timer service which is not active, then applying
the component TIMkill() has no effect.

See also

OS_TIMER_SRV (Section 4.1.59)
TIMdata() (Section 6.9.3)
TIMevt() (Section 6.9.4)
TIMfct() (Section 6.9.5)
TIMmbx() (Section 6.9.9)
TIMmtx() (Section 6.9.10)
TIMopen() (Section 6.9.11)
TIMsem() (Section 6.9.16)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 225

6.9.8 TIMleft

Synopsis
#include “Abassi.h”

int TIMleft(TIM_t *Timer);

Description

TIMleft() reports the time left (in RTOS timer tick count) until the timer Timer expires
(single shot) or until the next expiry (periodic).

Availability

Only available when the build option OS_TIMER_SRV is non-zero. Was added in Abassi
version 1.282.273 and mAbassi version 1.118.120.

Arguments

Timer Descriptor of the timer service to deactivate

Returns

>= 0 : number of RTOS timer ticks left before the expiry
< 0 : The timer has expired or is not active

Component type

Macro (unsafe)

Options

N/A

Notes

See also

OS_TIMER_SRV (Section 4.1.59)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 226

6.9.9 TIMmbx

Synopsis
#include “Abassi.h”

void TIMmbx(TIM_t *Timer, MBX_t *Mbox, intptr_t Data, int ToAdd,
 int Expiry, int Period;

Description

TIMmbx() is the timer service component to use to activate a timer service that writes a value
into a mailbox. The timer descriptor to program is specified with the argument Timer, and
the mailbox to write to is indicated with the argument Mbox. The programmed operation can
be a single time delayed operation when the argument Period is less or equal to 0, or if
positive, it can be periodic, once every Period timer ticks. The first timer expiry always
occurs after Expiry timer ticks. The value to write in the mailbox Mbox is specified with the
argument Data, which is post-write updated with the value specified in the argument ToAdd.

Availability

Only available when the build option OS_TIMER_SRV and OS_MAILBOX are non-zero.

Arguments

Timer Descriptor of the timer service to use to perform the timed operation
Mbox Descriptor of the mailbox to write to
Data Value to write to the mailbox Mbox. If the operation is periodic, with the

argument Period set to a positive value, the value specified by the argument
ToAdd is added to Data after every function call.

ToAdd Post-write update to apply
Expiry Number of timer ticks the timer is requested to expire after the first time. If the

timer is periodic, when the argument Period is positive, then further expiries
will occur every Period timer ticks.

Period If set to a zero or negative value, the timer performs a one shot operation.
 If set to a positive value, periodicity in number of timer ticks.

Returns

void

Component type

Macro (unsafe)
Options

N/A

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 227

Notes

As for any mailbox, the data type of the value to write is of intptr_t type. This is
important, as on some processors (or depending on the memory model) the size of an int is
different from the size of a pointer. A data type of intptr_t was retained as it allows the
write of an int or a pointer. In the case a pointer is specified with the argument Data, the
value to specify with the argument ToAdd is the number of address bytes to add to the
pointer. For example, if the pointer is a 4 byte integer pointer, to increment the pointer by 1
integer, the value to specify with ToAdd is 4, not 1.
The argument Expiry must be positive. If a zero or negative value is specified, the
application will quite likely lock-up as it will continuously have to handle timer expiries.
The argument (current Data value), the increment (ToAdd) and the period can be modified
on the fly with the components TIMarg(), TIMtoAdd() and TIMperiod().
The timer can be deactivated at any time with the component TIMkill(). If TIMmbx() is
applied on an timer service that is already active, the timer service will first be deactivated,
reprogrammed and then reactivated.

See also

OS_MAILBOX (Section 4.1.18)
OS_TIMER_SRV (Section 4.1.59)
TIMarg() (Section 6.9.2)
TIMdata() (Section 6.9.3)
TIMevt() (Section 6.9.4)
TIMfct() (Section 6.9.5)
TIMkill() (Section)
TIMmtx() (Section 6.9.10)
TIMopen() (Section 6.9.11)
TIMperiod() (Section 6.9.13)
TIMsem() (Section 6.9.16)
TIMtoAdd() (Section 6.9.17)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 228

6.9.10 TIMmtx

Synopsis
#include “Abassi.h”

void TIMmtx(TIM_t *Timer, MTX_t *Mutex, int Expiry, int Period);

Description

TIMmtx() is the timer service component to use to activate a timer service that unlocks a
mutex. The timer descriptor to program is specified with the argument Timer, and the mutex
to unlock is indicated with the argument Mutex. The programmed operation can be a single
time delayed operation when the argument Period is less or equal to 0, or if positive, it can
be periodic, once every Period timer ticks. The first timer expiry always occurs after
Expiry timer ticks.

Availability

Only available when the build option OS_TIMER_SRV is non-zero.

Arguments

Timer Descriptor of the timer service to use to perform the timed operation
Mutex Descriptor of the mutex to unlock
Expiry Number of timer ticks the timer is requested to expire after the first time. If the

timer is periodic, when the argument Period is positive, then further expiries
will occur every Period timer ticks.

Period If set to a zero or negative value, the timer performs a one shot operation.
 If set to a positive value, periodicity in number of timer ticks.

Returns

void

Component type

Macro (unsafe)

Options

N/A

Notes

The argument Expiry must be positive. If a zero or negative value is specified, the
application will quite likely lock-up as it will continuously have to handle timer expiries.
The period can be modified on the fly with the component TIMperiod().
The timer can be deactivated at any time with the component TIMkill(). If TIMmtx() is
applied on an timer service that is already active, the timer service will first be deactivated,
reprogrammed and then reactivated.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 229

See also

OS_MAILBOX (Section 4.1.18)
OS_TIMER_SRV (Section 4.1.59)
TIMarg() (Section 6.9.2)
TIMdata() (Section 6.9.3)
TIMevt() (Section 6.9.4)
TIMfct() (Section 6.9.5)
TIMkill() (Section 6.9.7)
TIMmbx() (Section 6.9.9)
TIMopen() (Section 6.9.11)
TIMperiod() (Section 6.9.13)
TIMsem() (Section 6.9.16)
TIMtoAdd() (Section 6.9.17)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 230

6.9.11 TIMopen

Synopsis
#include “Abassi.h”

TIM_t *TIMopen(const char *Name);

Description

TIMopen() is the component to use to create a timer service, and is also the component to
use to obtain the descriptor of an already existing timer service (when OS_NAMES is non-
zero).

Availability

TIMopen() is only available when the build option OS_RUNTIME and OS_TIMER_SRV are
non-zero.

Arguments

Name Name of the timer service to create or to obtain the descriptor of

Returns

Descriptor of the timer service

Component type

Function
- Cannot be used in an interrupt -

Options

When the build option OS_NAMES is zero, the argument Name is ignored but must still be
supplied. In a build where OS_NAMES is zero, all semaphores are unnamed, and every use of
TIMopen() creates a new timer service.
If the build option OS_NAMES is non-zero, then TIMopen() will either return the descriptor
of an existing timer service (previously created with TIMopen()), or when no timer services
with the specified name exists, it will create a new timer service. This approach makes the
creation and opening of timer services run-time safe. If that feature was not part of the
TIMopen() component, it would be imperative to either create the timer service immediately
at start-up, or to guarantee the first task (using the timer service) to reach the running state is
the one creating the timer service. With the run-time safe feature, it does not matter which
task is the first to open/create the timer service.
If the build option OS_STATIC_TIM_SRV is non-zero, the timer service descriptor uses
memory that was allocated/reserved at compile/link time instead of memory dynamically
allocated at run-time.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 231

Notes

One should avoid setting the argument Name to NULL when the build option OS_NAMES is
zero. The reasoning behind this is: if logging ever needs to be turned on, it becomes
impossible to differentiate amongst all unnamed timer services. This is also the reason why
the function prototype for this component was kept the same, irrespective of the setting of the
build option OS_NAMES.
Timer services created with the TIM_STATIC() component are not part of the search
performed by TIMopen().

See also

OS_ALLOC_SIZE (Section 4.1.1)
OS_STATIC_TIM_SRV (Section 4.1.52)
OS_TIMER_SRV (Section 4.1.59)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 232

6.9.12 TIMpause

Synopsis
#include “Abassi.h”

void TIMpause(TIM_t *Timer);

Description

TIMpause() is a timer service component that allow to temporary pause the operation
performed upon expiry of a timer. It does not pause the timer countdown, it only disables the
“callback” done upon expiry. To pause the timer countdown, refer to the TIMfreeze()
component (Section 6.9.6).

Availability

Only available when the build option OS_TIMER_SRV is non-zero. Was added in Abassi
version 1.282.273 and mAbassi version 1.118.120.

Arguments

Timer Descriptor of the timer service to pause

Returns

void

Component type

Macro (Safe)

Options

N/A

Notes

If the timer service descriptor specified with the argument Timer is not active, the use of the
TIMpause() component on it does nothing. The component TIMresume() (Section 6.9.15)
removes the pause. If a timer has been frozen with the component TIMfreeze() and the
component TIMpause() is applied on that timer, the timer remains in the frozen condition.
If the component TIMpause() is applied multiple times on a timer already paused, nothing
happens.

See also

OS_TIMER_SRV (Section 4.1.59)
TIMfreeze (Section 6.9.6)
TIMresume (Section 6.9.15)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 233

6.9.13 TIMperiod

Synopsis
#include “Abassi.h”

void TIMperiod(TIM_t *Timer, int Perod);

Description

TIMperiod() is a timer service component that modifies the period of an active timer
services. It allows the application to modify the periodicity once the timer has been
activated.

Availability

Only available when the build option OS_TIMER_SRV is non-zero

Arguments

Timer Descriptor of the timer service to modify the period of
Period New period of the timer. A negative or zero value makes the time operate once

for the last time.

Returns

void

Component type

Data access

Options

N/A

Notes

If the timer service descriptor specified with the argument Timer is not active, the period set
when using TIMperiod() will be overloaded when the timer is activated with TIMdata(),
TIMevt(), or TIMfct(), TIMmbx(), TIMmtx(), or TIMsem().
If the argument Period is negative or equal to 0. it will deactivate the timer once the expiry
time is reached.

See also

OS_TIMER_SRV (Section 4.1.59)
TIMdata() (Section 6.9.3)
TIMevt() (Section 6.9.4)
TIMfct() (Section 6.9.5)
TIMkill() (Section 6.9.7)
TIMmbx() (Section 6.9.9)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 234

TIMmtx() (Section 6.9.10)
TIMsem() (Section 6.9.16)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 235

6.9.14 TIMrestart

Synopsis
#include “Abassi.h”

void TIMrestart(TIM_t *Timer);

Description

TIMrestart() is a timer service component that allow the restart of a timer.

Availability

Only available when the build option OS_TIMER_SRV is non-zero. Was added in Abassi
version 1.282.273 and mAbassi version 1.118.120.

Arguments

Timer Descriptor of the timer service to restart

Returns

void

Component type

Macro (unsafe)

Options

N/A

Notes

If the timer service descriptor specified with the argument Timer is not active, the use of the
TIMrestart() component on it does nothing. When an active timer is restarted with the
component TIMrestart(), it is almost the same as when the timer was activated with
activated with TIMdata(), TIMevt(), or TIMfct(), TIMmbx(), TIMmtx(), or TIMsem().
If a timer has been paused with the component TIMpause() or frozen, with the component
TIMfreeze(), TIMrestart() used on such a timer will activate the timer, effectively
canceling the pause or frozen state.

See also

OS_TIMER_SRV (Section 4.1.59)
TIMfreeze (Section 6.9.6)
TIMpause (Section 6.9.12)
TIMperiod (Section 6.9.13)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 236

6.9.15 TIMresume

Synopsis
#include “Abassi.h”

int TIMresume(TIM_t *Timer);

Description

TIMresuem() is the timer service component to use to “re-activate” a timer that has been
paused with TIMpause() (Section 6.9.12), or frozen with TIMfreeze() (Section 6.9.6).

Availability

Only available when the build option OS_TIMER_SRV is non-zero. Was added in Abassi
version 1.282.273 and mAbassi version 1.118.120.

Arguments

Timer Descriptor of the timer service to reactivate.

Returns
void

Component type

Macro (unsafe)

Options

N/A

Notes

If the timer service descriptor specified with the argument Timer is not active, the use of the
TIMresume() component on it does nothing. Same if the timer is active and neither
TIMpause() nor TIMfreeze() has been applied to it, it does nothing.

See also

OS_TIMER_SRV(Section 4.1.59)
TIMpause (Section 6.9.12)
TIMresume (Section 6.9.15)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 237

6.9.16 TIMsem

Synopsis
#include “Abassi.h”

void TIMsem(TIM_t *Timer, SEM_t *Sema, int Expiry, int Period);

Description

TIMsem() is the timer service component to use to activate a timer service that post a
semaphore. The timer descriptor to program is specified with the argument Timer, and the
semaphore to post is indicated with the argument Sem. The programmed operation can be a
single time delayed operation when the argument Period is less or equal to 0, or if positive,
it can be periodic, once every Period timer ticks. The first timer expiry always occurs after
Expiry timer ticks.

Availability

Only available when the build option OS_TIMER_SRV is non-zero.

Arguments

Timer Descriptor of the timer service to use to perform the timed operation
Sema Descriptor of the semaphore to post
Expiry Number of timer ticks the timer is requested to expire after the first time. If the

timer is periodic, when the argument Period is positive, then further expiries
will occur every Period timer ticks.

Period If set to a zero or negative value, the timer performs a one shot operation.
 If set to a positive value, periodicity in number of timer ticks.

Returns

void

Component type

Macro (unsafe)

Options

N/A

Notes

The argument Expiry must be positive. If a zero or negative value is specified, the
application will quite likely lock-up as it will continuously have to handle timer expiries.
The period can be modified on the fly with the component TIMperiod().
The timer can be deactivated at any time with the component TIMkill(). If TIMsem() is
applied on an timer service that is already active, the timer service will first be deactivated,
reprogrammed and then reactivated.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 238

See also

OS_MAILBOX (Section 4.1.18)
OS_TIMER_SRV (Section 4.1.59)
TIMarg() (Section 6.9.2)
TIMdata() (Section 6.9.3)
TIMevt() (Section 6.9.4)
TIMfct() (Section 6.9.5)
TIMkill() (Section 6.9.7)
TIMmbx() (Section 6.9.9)
TIMmtx() (Section 6.9.10)
TIMopen() (Section 6.9.11)
TIMperiod() (Section 6.9.13)
TIMtoAdd() (Section 6.9.17)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 239

6.9.17 TIMtoAdd

Synopsis
#include “Abassi.h”

void TIMtoAdd(TIM_t *Timer, int ToAdd);

Description

TIMtoAdd() is a timer service component that modifies the value to add to the argument of
some but not all of the timer services operations. It allows the application to replace the
argument update value once the timer has been activated. The timer services components
that use arguments and can have TIMarg() applied to are: TIMdata(), TIMevt(),
TIMfct(), and TIMmbx().

Availability

Only available when the build option OS_TIMER_SRV is non-zero.

Arguments

Timer Descriptor of the timer service to replace the argument to the operation
ToAdd New value of operation argument modifier

Returns

void

Component type

Data access

Options

N/A

Notes

If the timer service descriptor specified with the argument Timer is not active, the argument
value set when using TIMtoAdd() will be overloaded when the timer is activated with
TIMdata(), TIMevt(), TIMfct() or TIMmbx().
There is no side effect if the component TIMtoAdd() is applied on an inactive timer or a
timer that was activated to perform an operation which does not requires an argument, such
as TIMmtx() and TIMsem(). The new value of the timer operation argument is the
argument that will be used the next time the timer expires; there is no other latency than the
expiry time itself.

See also

OS_TIMER_SRV (Section 4.1.59)
TIMdata() (Section 6.9.3)
TIMevt() (Section 6.9.4)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 240

TIMfct() (Section 6.9.5)
TIMmbx() (Section 6.9.9)
TIMmtx() (Section 6.9.10)
TIMopen() (Section 6.9.11)
TIMsem() (Section 6.9.16)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 241

6.10 Memory Block Management Services
The optional memory block management services gives access to one or multiple data memory pools, each
holding one or more blocks of data, always with the same size within a pool; the number of blocks and their
size is selected upon creation of the memory pool. All the data blocks supplied by the memory block
management services are aligned to the largest data alignment required by the processor. When used with
the mailbox services, the memory block management services simplify the management of queues with
buffers.

Table 6-21 Memory Block Management Service Component list

Section Name Description

6.10.2 MBLKalloc Retrieve a memory block from a pool

6.10.3 MBLKfree Return a memory block to its pool

6.10.4 MBLKnotFCFS Set a memory block pool to operate in the Priority mode.

6.10.5 MBLKopen Create a memory block pool / obtain the descriptor of a memory
block pool

6.10.6 MBLKopenFCFS Create a memory block pool to operate in First Come First
Served mode / obtain the descriptor of a memory block pool

6.10.7 MBLKsetFCFS Set a memory block pool to operate in the First Come First
Served mode.

The usage of the memory block management service is quite straightforward, alike malloc() and free().
First, the pool of memory must be created with the component MBLKopen() or MBLKopenFCFS(). Then a
buffer is retrieved from the memory pool with the MBLKalloc() component and returned to the same
memory pool with the MBLKfree() component. A task can block when retrieving a buffer from an empty
memory pool; it will unblock when a buffer is returned to the empty pool or a timeout occurs.

The memory block management service is the only type of dynamic memory allocation service supplied as
an integral part of Abassi. Custom byte size memory pool management isn’t provided for the simple
reason that the malloc() family of functions are a standard requirement in ANSI C-99.

6.10.1 Memory Requirement Rules
The memory required to hold all the memory blocks in a single pool is not simply the size of the buffers
times the number of blocks. There are a few rules due to the way the memory block management is
implemented, and also some constrains due to the fact that each buffer in the memory pool is aligned
according to the largest data alignment requirement by the processor. The explanation given here is to
inform the designer of the exact amount of memory a memory pool requires. One must remember the
information given here is the amount of memory used by the memory pool; when a memory block
management pool is created, the size of the block can be specified as small as a single byte (although the
real buffer size is quite likely bigger than a single byte).

The amount of memory used to hold the buffers in a memory block management pool depends on the real
block size, as used internally by the service. Each memory block must be sized to at least the size of a
pointer. This requirement exists as the memory block, when held inside the pool, is part of a linked list of
“free buffers”; therefore, the buffer must be able to hold a pointer. Using a pointer to hold the linked list
pointer eliminates the extra memory that would be required to implement a linked list. The second
requirement is due to the fact that each buffer from a memory block is guaranteed to be aligned to the
largest data alignment requirement of the processor. Therefore, each memory block must be sized to an
exact multiple of the size of the data type that requires the largest alignment by the processor2.

2 Internally, this data type is defined as OSalign_t. In case of uncertainty on the maximum alignment
requirement by the processor, verify the definition of OSalign_t in Abassi.h for the target processor.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 242

The memory requirement to hold all the buffers in a memory block pool is as follows:

 Aligned Block Size: sizeof(OSalign_t)

* ceil((Block Size) / sizeof(OSalign_t))

 Internal Block Size: max((Aligned Block Size), sizeof(void *))

 Total Memory: (Number of Blocks) * (Internal Block Size)

For all processors supported by Abassi, sizeof(OSalign_t) is 8 bytes or less. If data memory is not an
issue in the target application, always use memory blocks sized with exact multiple of 8 bytes.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 243

6.10.2 MBLKalloc

Synopsis
#include “Abassi.h”

void *MBLKalloc(MBLK_t *MemBlock, int Timeout);

Description

MBLKalloc() is the component to use to retrieve a memory block from a memory pool. The
memory block management descriptor is specified by the argument MemBlock. When the
memory pool is empty, it is possible to request the task to block until a buffer is returned to
the memory pool, or to block with timeout, or to not block at all.

Availability

MBLKalloc() is only available when the build option OS_MEM_BLOCK is non-zero.
Depending on the setting of the build option OS_TIMEOUT, the meaning of the argument
Timeout slightly changes. See Options below.

Arguments

MemBlock Descriptor of the memory block management pool to return the buffer to
Timeout Negative Infinite blocking
 0 Never blocks
 Positive Number of timer ticks before expiry

Returns

void * Base address of the buffer retrieved from the memory pool
NULL The memory pool is empty. This will occur if the argument Timeout is

non-negative. Either Timeout was zero and there was no buffer, or Timeout
was positive and no new buffer was returned to the memory pool within
Timeout number of timer ticks (or when the component TSKtimeoutKill()
is applied to the task waiting on the memory pool). If an application ever has
multiple extractors for a memory pool, blocked readers will unblock in a
priority ordering, or request order if First Come First Served, depending on the
mode of operation of the memory block pool.

Component type

Function

Options

If the build option OS_TIMEOUT is zero, then when the argument Timeout is set to a positive
value, MBLKalloc() behaves the same as if the Timeout argument had been set to zero.
If the build option OS_TIMEOUT is a negative value, then when the argument Timeout is set
to a positive value, MBLKalloc() behaves the same as if the Timeout argument had been
set to a negative value.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 244

Notes

Unless Timeout is negative, always verify the return value: a NULL value means the memory
pool is empty; non-NULL means a buffer was retrieved and the pointer is the base address of
the buffer, even if the timeout was set to zero.

When timeout is negative, the component TSKtimeoutKill() cannot unblock the task
waiting to obtain a memory buffer, as an infinite timeout request does not involve the timer
service.

MBLKalloc() can be used in an ISR as this component has special hooks added to it for this
purpose. When used in an ISR, the argument Timeout is ignored and is always considered
being equal to zero. The return value for this component is valid in an ISR.

Make sure to always return a block of memory to the memory block management pool it was
obtained from. There are no checks performed to enforce this requirement.

See also

OS_MEM_BLOCK (Section 4.1.18)
OS_STATIC_BUF_MBLK (Section 4.1.44)
OS_STATIC_MBLK (Section 4.1.46)
MBLKfree() (Section 6.10.3)
MBLKopen() (Section 6.10.5)
MBLKopenFCFS() (Section 6.10.6)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 245

6.10.3 MBLKfree

Synopsis
#include “Abassi.h”

void MBLKfree(MBLK_t *MemBlock, void *Buffer);

Description

MBLKfree() is the component to use to return a memory block to its original pool. The
memory block management pool descriptor is specified by the argument MemBlock, and the
pointer to the base of the buffer to return is specified with the argument Buffer.

Availability

MBLKfree() is only available when the build option OS_MEM_BLOCK is non-zero.

Arguments

MemBlock Descriptor of the memory block management pool to return the buffer to
Buffer Pointer to the base address of the buffer to return to the pool

Returns
void

Component type

Macro (Safe)

Options

Notes

Make sure to always return a block of memory to the memory block management pool it was
obtained from. There are no checks performed to enforce this requirement. Also, the pointer
indicated by Buffer must be the same as the one that was obtained through MBLKalloc().

If the pointer to the buffer to return is NULL, the use of this component has no effect; the
kernel traps the occurrence of a NULL pointer and skips further processing.

See also

OS_MEM_BLOCK (Section 4.1.18)
OS_STATIC_BUF_MBLK (Section 4.1.44)
OS_STATIC_MBLK (Section 4.1.46)
MBLKalloc() (Section 6.10.2)
MBLKopen() (Section 6.10.5)
MBLKopenFCFS() (Section 6.10.6)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 246

6.10.4 MBLKnotFCFS

Synopsis
#include “Abassi.h”

void MBLKnotFCFS(MBLK_t *MemBlock);

Description

MBLKnotFCFS() is the component to use to configure a memory block management pool to
operate in the Priority mode. The unblocking order of such a memory block management
pool is always the highest priority task that is blocked.

Availability

MBLKnotFCFS() is only available when the build options OS_MEM_BLOCK and OS_FCFS
are both non-zero.

Arguments

MemBlock Descriptor of the memory block management pool to set into a Priority mode

Returns
void

Component type

Definition

Options

Notes

If the memory block management pool was already operating in the Priority mode, using this
component has no effect on such a memory pool.
If the memory block management pool was operating in the First Come First Served mode,
using this component will not re-order tasks that are currently blocked on the memory pool.
Newly blocked tasks will be inserted in a Priority ordering amongst the already First Come
First Served ordered blocked tasks. This means there may be a transient phase before the
memory block management truly operates in a Priority mode.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 247

See also

OS_FCFS (Section 4.1.6)
OS_MEM_BLOCK (Section 4.1.18)
OS_STATIC_BUF_MBLK (Section 4.1.44)
OS_STATIC_MBLK (Section 4.1.46)
MBLKnotFCFS () (Section 6.7.6)
MBLKopen() (Section 6.10.5)
MBLKopenFCFS() (Section 6.10.6)
MBLKsetFCFS() (Section 6.10.7)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 248

6.10.5 MBLKopen

Synopsis
#include “Abassi.h”

MBX_t *MBLKopen(const char *Name, int NmbBlock, int BlkSize);

Description

MBLKopen() is the component to use to create a memory block pool, and is also the
component to use to obtain the descriptor of an already existing memory block pool. When a
memory block pool is created with MBLKopen(), it operates in the Priority mode (for the
extractor).

Availability

MBLKopen() is only available if the build option OS_MEM_BLOCK and OS_RUNTIME are both
non-zero.

Arguments

Name Name of the memory block pool to create or to obtain the descriptor of
NmbBlock Maximum number of memory blocks the pool can hold
BlkSize Size in bytes of each memory block

Returns

Descriptor of the memory block pool

Component type

Function
- Cannot be used in an interrupt -

Options

When the build option OS_NAMES is zero, the argument Name is ignored but must still be
supplied. In a build when OS_NAMES is zero, all memory block managements are unnamed
and every use of MBLKopen() creates a new memory block pool.
If the build option OS_NAMES is non-zero, then MBLKopen() will either return the descriptor
of an existing memory block pool (previously created with MBLKopen()or
MBLKopenFCFS()), or, when no memory block pool with the specified name exists, it will
create a new memory pool. This approach makes the creation and opening of memory block
pools run-time safe. If that feature were not part of the MBLKopen() component, it would be
imperative to either create the memory pool immediately at start-up, or to guarantee the first
task (using the memory pool) to reach the running state is the one creating the memory pool.
With the run-time safe feature, it does not matter which task is the first to use the memory
pool.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 249

Notes

One should avoid setting the argument Name to NULL when the build option OS_NAMES is
zero. The reasoning behind this is: if logging ever needs to be turned on, it becomes
impossible to differentiate amongst all the unnamed memory pools. This is also the reason
why the function prototype for this component was kept the same, irrespective of the setting
of the build option OS_NAMES.
Be aware, if the build option OS_FCFS is non-zero, when the memory pool already exists,
there is no guarantee the memory pool is operating in a Priority mode, as it may have been
created with MBLKopenFCFS()or it may have been set to operate in First Come First Served
mode with MBLKsetFCFS().
Also, if a memory pool already exists, the requested number of blocks and the block size may
not be the ones of the existing memory pool.
At any time, a memory pool operating in the Priority mode can be modified to operate in the
First Come First Served mode by using the MBLKsetFCFS() component when the build
option OS_FCFS is non-zero.

See also

OS_FCFS (Section 4.1.6)
OS_MEM_BLOCK (Section 4.1.18)
OS_STATIC_BUF_MBLK (Section 4.1.44)
OS_STATIC_MBLK (Section 4.1.46)
MBLKnotFCFS () (Section 6.10.4)
MBLKopenFCFS() (Section 6.10.6)
MBLKsetFCFS() (Section 6.10.7)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 250

6.10.6 MBLKopenFCFS

Synopsis
#include “Abassi.h”

MBX_t *MBLKopenFCFS(const char *Name, int NmbBlock, int BlkSize);

Description

MBLKopenFCFS() is the component to use to create a memory block pool, and is also the
component to use to obtain the descriptor of an already existing memory block pool. When a
memory block pool is created with MBLKopenFCFS(), it operates in the First Come First
Served mode (for the extractor).

Availability

MBLKopenFCFS() is only available if the build options OS_MEM_BLOCK, OS_RUNTIME and
OS_FCFS are all non-zero.

Arguments

Name Name of the memory block pool to create or to obtain the descriptor of
NmbBlock Maximum number of memory blocks the pool can hold
BlkSize Size in bytes of each memory block

Returns

Descriptor of the memory block pool

Component type

Function
- Cannot be used in an interrupt -

Options

When the build option OS_NAMES is zero, the argument Name is ignored but must still be
supplied. In a build when OS_NAMES is zero, all memory block managements are unnamed
and every use of MBLKopenFCFS() creates a new memory block pool.
If the build option OS_NAMES is non-zero, then MBLKopenFCFS() will either return the
descriptor of an existing memory pool (previously created with MBLKopen()or
MBLKopenFCFS()), or when no memory block pool with the specified name exists, it will
create a new memory pool. This approach makes the creation and opening of memory block
pools run-time safe. If that feature were not part of the MBLKopenFCFS() component, it
would be imperative to either create the memory pool immediately at start-up, or to guarantee
the first task (using the memory pool) to reach the running state is the one creating the
memory pool. With the run-time safe feature, it does not matter which task is the first to use
the memory pool.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 251

Notes

One should avoid setting the argument Name to NULL when the build option OS_NAMES is
zero. The reasoning behind this is: if logging ever needs to be turned on, it becomes
impossible to differentiate amongst all the unnamed memory pools. This is also the reason
why the function prototype for this component was kept the same, irrespective of the setting
of the build option OS_NAMES.
Be aware, if the build option OS_FCFS is non-zero, when the memory pool already exists,
there is no guarantee the memory pool is operating in a First Come First Served mode, as it
may have been created with MBLKopen()or it may have been set to operate in Priority mode
with MBLKset().
Also, if a memory pool already exists, the requested number of blocks and the block size may
not be the ones of the existing memory pool.
At any time, a memory pool operating in the First Come First Served mode can be modified
to operate in the Priority mode by using the MBLKnotFCFS() component when the build
option OS_FCFS is non-zero.

See also

OS_FCFS (Section 4.1.6)
OS_MEM_BLOCK (Section 4.1.18)
OS_STATIC_BUF_MBLK (Section 4.1.44)
OS_STATIC_MBLK (Section 4.1.46)
MBLKnotFCFS () (Section 6.10.4)
MBLKopen() (Section 6.10.5)
MBLKsetFCFS() (Section 6.10.7)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 252

6.10.7 MBLKsetFCFS

Synopsis
#include “Abassi.h”

void MBLKsetFCFS(MBLK_t *MemBlock);

Description

MBLKsetFCFS() is the component to use to configure a memory block management pool to
operate in the First Come First Served mode. The unblocking order of such a memory pool
is always the oldest task that was blocked is unblocked first.

Availability

MBLKsetFCFS() is only available when the build options OS_MEM_BLOCK and OS_FCFS
are both non-zero.

Arguments

MemBlock Descriptor of the memory block management pool to set into a First Come First
Served mode.

Returns
void

Component type

Definition

Options

Notes

If the memory block management pool was already operating in the First Come First Served
mode, using this component has no effect on such a memory pool.
If the memory block management pool was operating in the Priority mode, using this
component will not re-order tasks that are currently blocked on the memory pool. Newly
blocked tasks will be inserted in a First Come First Served ordering amongst the already
Priority ordered blocked tasks. This means there may be a transient phase before the
memory block management truly operates in a First Come First Served mode.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 253

See also

OS_FCFS (Section 4.1.6)
OS_MEM_BLOCK (Section 4.1.18)
OS_STATIC_BUF_MBLK (Section 4.1.44)
OS_STATIC_MBLK (Section 4.1.46)
MBLKnotFCFS () (Section 6.10.4)
MBLKopen() (Section 6.10.5)
MBLKopenFCFS() (Section 6.10.6)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 254

6.10.8 Examples

Refer to the mailbox example in section 6.7.13

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 255

6.11 GROUPING
The optional grouping of services is used to encapsulate multiple services and make them operate as a
single blocking service. An example where service grouping is useful is when a task needs to concurrently
process the contents of 2 or more mailboxes. In the absence of grouping, an extra blocking service, e.g.
semaphore or event flags, must be used and managed by both the writer and the reader of the mailboxes.
With grouping, when said mailboxes are attached to a group, nothing special needs to be done on the writer
side and all the reader needs to do is to wait on the group.

Table 6-22 Memory Block Management Service Component list

Section Name Description

6.11.4 GRPaddMBX Add a mailbox and its callback function to a group

6.11.5 GRPaddSEM Add a counting semaphore and its callback function to a group

6.11.6 GRPaddSEMbin Add a binary semaphore and its callback function to a group

6.11.7 GRPdscMBX Obtain the descriptor of the trigger a mailbox is attached to

6.11.8 GRPdscSEM Obtain the descriptor of the trigger a semaphore is attached to

6.11.9 GRPrmAll Remove all triggers from a group

6.11.10 GRPrmMBX Remove a mailbox from a group

6.11.11 GRPrmSEM Remove a semaphore from a group

6.11.12 GRPwait Wait for

The usage of the grouping service is fairly intuitive. A group must first be created, which is done by
attaching services to that group. The services are attached using the components GRPaddMBX(),
GRPaddSEM() and GRPaddSEMbin(). When a service is attached to a group, a callback function is
specified for each attached service, as that callback function is used when its associated service is available.
A callback function eliminates the need for the application to determine which of the triggers has been
validated. All there is to do then in a task is to use the component GRPwait() to wait / block on the group
of services; when a trigger is validated, the callback function is automatically operated. At any time, a
selected service or all services in a group can be deleted using the components GRPrmMBX(), GRPrmSEM()
and GRPrmAll().

6.11.1 Nomenclature
The grouping facility is described using three different names (group, trigger and service) and two
qualifiers (attached and part of). A group is internally a linked list of GRT_t type of descriptors. Each
GRP_t type of descriptors in a group’s linked list are called a trigger descriptor. Each trigger descriptor has
a blocking service attached to it: either a mailbox to be read, or a counting semaphore to acquire, or a
binary semaphore to acquire. So when a service is “attached” to a group, in truth it is attached to a trigger
descriptor, which in turn is added in the group’s linked list.

6.11.2 Restrictions
There are a few restrictions when groups of triggers are used. The restrictions are the followings:

Ø A service can only be used as a trigger in a single group only. When a request to attach a service
to a second group is performed, the attachment operation to the second group is aborted and an
error reported.

Ø Only one task can wait on a group. If a second task attempts to wait on a group that is already
being waited on by another task, the waiting operation of the second task is aborted and an error
reported.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 256

Ø If a group does not have any services attached to it, a request to wait on that group will be aborted
and an error reported.

Ø None of the group components can be used inside an interrupt. If any of the components is used
in an interrupt, the application will most likely lock-up.

NOTE: the callback function is executed within the context of the task that has used the GRPwait()

component.

6.11.3 Coexistence
When a service is one of the triggers attached to a group, it does not change the usability of that service
outside of the group; this means the group does not require nor have exclusive blocking access to that
service. In other words, although a service may be part of a group, e.g. a semaphore, that semaphore can
still be acquired in an independent manner from using the group. For example, a task can wait on a group a
semaphore is part of, and at the same time another task can try to acquire that same semaphore (as is, not as
part of the group). The mixed group / standalone usage changes a bit the order tasks get unblocked (see
below).

When coexisting with usage outside of a group, services in a group do not exactly block tasks in the same
order as if they were not part of a group. When a service is configured to operate in the First Come First
Served (FCFS) mode, then if a task is blocked on a group (using GRPwait) in which that service is
attached, that task will always get unblocked before any other tasks that are blocked on that service (using
MBXget or SEMwaitBin). This is alike a group jumping the line when waiting for a service configured in
the FCFS mode. When the service is configured in Priority mode and it is part of a group, then the
unblocking of task is still done according to the priorities of the tasks blocked on it. But a task blocked on
a group that has this service attached to it will always get unblocked first amongst all tasks at the same
priorities (blocked through MBXget or SEMwaitBin). This is almost the same as when the service is
configured in FCFS mode, except the jumping of the line is only done amongst tasks with the same priority
level as the task that is blocked on the group.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 257

6.11.4 GRPaddMBX

Synopsis

#include “Abassi.h”

GRP_t *GRPaddMBX(GRP_t *Group, MBX_t *Mbox, void (* CB)(intptr_t));

Description

GRPaddMBX() is the component that attaches a mailbox service to a group of triggers. The
argument Group is the pointer to the group descriptor to add the Mbox service to. When the
mailbox Mbox contains something, using GRPwait(), then the function CB is called within
GRPwait(), passing the element retrieved from the mailbox as its argument.
Upon the first attachment to a group, the group is always considered to not exist. So the
argument Group must always be set to NULL when performing the first attachment. Further
attachments to that new group must then use the returned value when Group was set to NULL.

Availability

GRPaddMBX() is only available when both build options OS_GROUP and OS_MAILBOX are
non-zero.

Arguments

Group Pointer to the group descriptor to attach the mailbox service Mbox.
 Upon the first attachment, Group must be set to NULL. Further attachment must

set Group to the value returned when the first attachment was performed.
Mbox Pointer to the descriptor of the mailbox service to attach to the group Group
CB Pointer to the callback function used when the Mbox service is not empty. The

argument passed when the callback function is called is the element read from
the mailbox.

Returns

GRP_t * Pointer to the descriptor of the newly created group (Only valid when the first
service is attached with the argument Group set to NULL). Non-NULL in
other cases simply returns the argument Group.

NULL Indicates an error. The two possible errors are:
 the Mbox service is already attached to another group;
 when using pre-allocated trigger descriptors (build option OS_GROUP > 0), out

of trigger descriptors.

Component type

Macro (safe)
- Cannot be used in an interrupt -

Options

N/A

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 258

Notes

When the first service is attached to a group, the argument Group must always be set to
NULL. Re-using what may be considered an empty group (e.g. after having used the
component GRPrmALL() on that group) does not guaranteed the group is empty as it may
have been reused if another group was created.
For proper operation, the component MBXget() should not be used in the callback function
as the element has already been retrieved from the mailbox and is passed as the argument to
the callback function.
When a non-empty mailbox is attached to a group on which a task is blocked, the attachment
of the mailbox will immediately unblock the task.

See also

OS_GROUP (Section 4.1.7)
OS_MAILBOX (Section 4.1.18)
GRPaddSEM() (Section 6.11.5)
GRPaddSEMbin() (Section 6.11.6)
GRPrmAll() (Section 6.11.9)
GRPrmMBX() (Section 6.11.10)
GRPrmSEM() (Section 6.11.11)
GRPwait() (Section 6.11.12)
MBXget() (Section 6.7.5)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 259

6.11.5 GRPaddSEM

Synopsis

#include “Abassi.h”

GRP_t *GRPaddSEM(GRP_t *Group, SEM_t *Sema, void (* CB)(SEM_t *));

Description

GRPaddSEM() is the component that attaches a counting semaphore service to a group of
triggers. The argument Group is the pointer to the group descriptor to add the Sema service
to. When the semaphore Sema has a positive count, using GRPwait(), then the function CB
is called within GRPwait(), passing the pointer to the service descriptor Sema as its
argument.
Upon the first attachment to a group, the group is always considered to not exist. So the
argument Group must always be set to NULL when performing the first attachment. Further
attachments to that new group must then use the returned value when Group was set to NULL.

Availability

Only available when the build option OS_GROUP is non-zero.

Arguments

Group Pointer to the group descriptor to attach the counting semaphore service Sema.
 Upon the first attachment, Group must be set to NULL. Further attachment must

set Group to the value returned when the first attachment was performed.
Sema Pointer to the descriptor of the counting semaphore service to attach to the

group Group.
CB Pointer to the callback function used when the Sema service has a positive

count. The argument passed when the callback function is called is pointer to
the descriptor of the semaphore Sema.

Returns

GRP_t * Pointer to the descriptor of the newly created group (only valid when the first
service is attached with the argument Group set to NULL). Non-NULL in
other cases indicates success.

NULL Indicates an error. The two possible errors are:
 the Sema service is already attached to another group;
 when using pre-allocated trigger descriptors (build option OS_GROUP >0), out of

trigger descriptors.

Component type

Macro (safe)
- Cannot be used in an interrupt -

Options

N/A

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 260

Notes

When the first service is attached to a group, the argument Group must always be set to
NULL. Re-using what may be considered an empty group (e.g. after having used the
component GRPrmALL() on that group) does not guaranteed the group is empty as it may
have been reused if another group was created.
One must not use the component SEMwait() on the trigger semaphore in the callback
function (the trigger semaphore descriptor is the lone argument of the callback function). If
SEMwait() is used on the trigger semaphore it becomes a double waiting on that semaphore.
When semaphore with a positive count is attached to a group on which a task is blocked, the
attachment of the semaphore will immediately unblock the task.

See also

OS_GROUP (Section 4.1.7)
GRPaddMBX() (Section 6.11.4)
GRPaddSEMbin() (Section 6.11.6)
GRPrmAll() (Section 6.11.9)
GRPrmMBX() (Section 6.11.10)
GRPrmSEM() (Section 6.11.11)
GRPWait() (Section 6.11.12)
SEMwait() (Section 6.4.11)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 261

6.11.6 GRPaddSEMbin

Synopsis

#include “Abassi.h”

GRP_t *GRPaddSEMbin(GRP_t *Group, SEM_t *Sema, void (* CB)(SEM_t *));

Description

GRPaddSEM() is the component that attaches a binary semaphore service to a group of
triggers. The argument Group is the pointer to the group descriptor to add the Sema service
to. When the semaphore Sema has a positive count, using GRPwait(), then the function CB
is called within GRPwait(), passing the pointer to the service descriptor Sema as its
argument.
Upon the first attachment to a group, the group is always considered to not exist. So the
argument Group must always be set to NULL when performing the first attachment. Further
attachments to that new group must then use the returned value when Group was set to NULL.

Availability

Only available when the build option OS_GROUP is non-zero.

Arguments

Group Pointer to the group descriptor to attach the counting semaphore service Sema.
 Upon the first attachment, Group must be set to NULL. Further attachment must

set Group to the value returned when the first attachment was performed.
Sema Pointer to the descriptor of the binary semaphore service to attach to the group

Group
CB Pointer to the callback function used when the Sema service has a positive

count. The argument passed when the callback function is called is pointer to
the descriptor of the semaphore Sema.

Returns

GRP_t * Pointer to the descriptor of the newly created group (only valid when the first
service is attached with the argument Group set to NULL). Non-NULL in
other cases indicates success.

NULL Indicates an error. The two possible errors are:
 the Sema service is already attached to another group;
 when using pre-allocated trigger descriptors (build option OS_GROUP >0), out of

trigger descriptors.

Component type

Macro (safe)
- Cannot be used in an interrupt -

Options

N/A

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 262

Notes

When the first service is attached to a group, the argument Group must always be set to
NULL. Re-using what may be considered an empty group (e.g. after having used the
component GRPrmALL() on that group) does not guaranteed the group is empty as it may
have been reused if another group was created.
One must not use the component SEMwaitBin() on the trigger semaphore in the callback
function (the trigger semaphore descriptor is the lone argument of the callback function). If
SEMwaitBin() is used on the trigger semaphore it becomes a double waiting on that
semaphore.
When semaphore with a positive count is attached to a group on which a task is blocked, the
attachment of the semaphore will immediately unblock the task.

See also

OS_GROUP (Section 4.1.7)
GRPaddMBX() (Section 6.11.4)
GRPaddSEM() (Section 6.11.5)
GRPrmAll() (Section 6.11.9)
GRPrmMBX() (Section 6.11.10)
GRPrmSEM() (Section 6.11.11)
GRPwait() (Section 6.11.12)
SEMwaitBin() (Section 6.4.12)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 263

6.11.7 GRPdscMBX

Synopsis

#include “Abassi.h”

GRP_t *GRPdscMBX(MBX_t *MBX_t);

Description

GRPdscMBX() is the component to use to obtain the pointer to the group descriptor the
mailbox MBox service is attached to.

Availability

GRPdscMBX() is only available when both build options OS_GROUP and OS_MAILBOX are
non-zero.

Arguments

Mbox Pointer to the descriptor of the mailbox service to obtain the group it is attached
to

Returns

GRP_t * Pointer to the descriptor of the group Mbox is attached to.
NULL The mailbox service Mbox is not part of any group.

Component type

Macro (safe)

Options

N/A

Notes

See also

OS_GROUP (Section 4.1.7)
OS_MAILBOX (Section 4.1.18)
GRPdscSEM() (Section 6.11.8)
GRPrmAll() (Section 6.11.9)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 264

6.11.8 GRPdscSEM

Synopsis

#include “Abassi.h”

GRP_t *GRPdscSEM(SEM_t *Sema);

Description

GRPdscSEM() is the component to use to obtain the pointer to the group descriptor the
semaphore Sema service is attached to.

Availability

GRPdscSEM() is only available when the build options OS_GROUP is non-zero.

Arguments

Sema Pointer to the descriptor of the semaphore service to obtain the group it is
attached to

Returns

GRP_t * Pointer to the descriptor of the semaphore Sema is attached to.
NULL The semaphore service Sema is not part of any group.

Component type

Macro (safe)

Options

N/A

Notes

See also

OS_GROUP (Section 4.1.7)
GRPdscMBX() (Section 6.11.7)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 265

6.11.9 GRPrmAll

Synopsis

#include “Abassi.h”

int GRPrmAll(GRP_t *Trigger);

Description

GRPrmAll() is a group component that removes all triggers from the group. If a task is
blocked on the group, when the group is emptied, it will force the unblocking of the task and
the task is informed of this abnormal condition through the return value of GRPwait().

Availability

Only available when the build option OS_GROUP is non-zero.

Arguments

Trigger The trigger descriptor of the service to remove. The descriptor can be obtain
using either GRPdscMBX() or GRPdscSEM().

Returns

== 0 The group has been successfully emptied
!= 0 The group is already empty

Component type

Macro (safe)
- Cannot be used in an interrupt -

Options

N/A

Notes

See also

OS_GROUP (Section 4.1.7)
GRPdscMBX() (Section 6.11.7)
GRPdscSEM() (Section 6.11.8)
GRPrmAll() (Section 6.11.9)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 266

6.11.10 GRPrmMBX

Synopsis

#include “Abassi.h”

int GRPrmMBX(MBX_t *Mbox);

Description

GRPrmMBX() is a group component that detaches the mailbox Mbox from the group it is part
of. If the mailbox to detach is the only trigger in the group and a task is blocked on that
group, when the mailbox is detached from the group, it will force the unblocking of the task
and the task is informed of this abnormal condition through the return value of GRPwait().

Availability

Only available when the build options OS_GROUP is non-zero and OS_MAILBOX are non-zero.

Arguments

Mbox The descriptor of the Mailbox to remove

Returns

== 0 The mailbox has been successfully removed from the group it was part of
!= 0 The mailbox is not attached to any group

Component type

Macro (safe)
- Cannot be used in an interrupt -

Options

N/A

Notes

See also

OS_GROUP (Section 4.1.7)
GRPdscMBX() (Section 6.11.7)
GRPrmAll() (Section 6.11.9)
GRPrmSEM() (Section 6.11.8)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 267

6.11.11 GRPrmSEM

Synopsis
#include “Abassi.h”

int GRPrmSEM(SEM_t *Sema);

Description

GRPrmSEM() is a group component that detaches the semaphore Sema from the group it is
part of. If the semaphore to detach is the only trigger in the group, and a task is blocked on
that group, when the semaphore is detached from the group, it will force the unblocking of
the task and the task is informed of this abnormal condition through the return value of
GRPwait().

Availability

Only available when the build option OS_GROUP is non-zero.

Arguments

Sema The descriptor of the semaphore to remove

Returns

== 0 The semaphore has been successfully removed from the group it was part of
!= 0 The semaphore is not attached to any group

Component type

Macro (safe)
- Cannot be used in an interrupt -

Options

N/A

Notes

See also

OS_GROUP (Section 4.1.7)
GRPdscSEM() (Section 6.11.8)
GRPrmAll() (Section 6.11.9)
GRPrmMBX() (Section 6.11.7)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 268

6.11.12 GRPwait

Synopsis

#include “Abassi.h”

int GRPwait(GRP_t *Group, int TimeOut, int All);

Description

GRPwait() is the group component used by a task to wait / block on a group of triggers.
The wait / block on is specified with the argument Group. Through the argument Timeout,
it is possible to request to block until one or more triggers are validated or to block with
timeout, or no blocking at all. The argument All is used to set the operation of GRPwait()
into a bulk waiting mode: GRPwait() can then continuously wait for a trigger as long as the
timeout, which is restarted after each valid triggers, does not expire.
When a trigger in the Group Group is validated, the callback function that was associated
with the trigger (when the components GRPaddMBX(), GRPaddSEM() or GRPaddSEMbin()
were applied on that trigger) will be called inside GRPwait().

Availability

Only available when the build option OS_GROUP is non-zero.

Arguments

Group Pointer to the group to wait / block.
Timeout Negative Infinite blocking
 0 Never blocks
 Positive Number of timer ticks before expiry
All == 0 Wait for a single trigger
 != 0 Continuous wait for multiple triggers

Returns

== 0 The wait was successful, a trigger was validated and processed.
== 1 None of the triggers in the group have been validated during the timeout

duration. This will occur when the argument Timeout is non-negative. Either
Timeout was zero and no triggers were validated, or Timeout was positive
and none of the triggers were validated within Timeout number of timer ticks
(or the component TSKtimeoutKill() was applied to the task blocked on the
group).

== 2 All triggers in the group were deleted by another task using GRPrmMBX,
GRPrmMBX, or GRPrmAll while waiting.

== 3 The group is already in use by another task
== 4 The group does not have any services attached to it

Component type

Function
- Cannot be used in an interrupt -

Options

N/A

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 269

Notes

If the argument Timeout specifies an infinite time and the argument All is non-zero (to
continuously wait / block on the group) then unless another task deletes all triggers from the
group GRPwait() is effectively performing an infinite loop.

See also

OS_GROUP (Section 4.1.7)
GRPaddMBX() (Section 6.11.4)
GRPaddSEM() (Section 6.11.5)
GRPaddSEMbin() (Section 6.11.6)
GRPrm() (Section 6.11.10)
GRPrmAll() (Section 6.11.9)
TSKtimeoutKill() (Section 6.3.30)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 270

6.11.13 Grouping Examples

The following example implement a simple case of grouping, were two mailboxes and one semaphore are
grouped together. Let’s say the two mailboxes and the semaphore are controlled (through interrupts or by
another task) by stimuli generated by an interface. The whole code example is listed and a section by
section descriptions follows.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 271

Table 6-23 Grouping Example

MBX_t Mbox1; /* Mailbox to attach to the group */
MBX_t Mbox2; /* Mailbox to attach to the group */
SEM_t MySema; /* Semaphore to attach to the group */

void SemCB(SEM_t Arg); /* Callback funtion for MySema */
void Mbx1CB(inptr_t *Msg); /* Callback function for Mbox1 */
void Mbx2CB(intptr_t *Msg); /* Callback function for Mbox2 */

GRP_t *MyGrp;

/* --- */

void Task1(void)
{
int Err;
GRP_t *GrpErr;

 Mbox1 = MBXopen(“Malbox #1, 32); /* Create/open mailbox Mbox1 */
 Mbox2 = MBXopen(“Malbox #2, 32); /* Create/open mailbox Mbox2 */
 MySema = SEMopen(“My Sema”); /* Create/open semaphore MySema */

 MyGrp = GRPaddSEM(NULL, MySema, SemCB); /* Create & attach MySema to the group */
 if (MyGrp == (GRP_t *)NULL) {
 puts(“Group allocation error”);
 }
 GrpErr = GRPaddMBX(MyGrp, Mbox1, Mbx1CB);/* Attach Mbox1 to the group */
 if (GrpErr == (GRP_t *)NULL) {
 puts(“Group allocation error”);
 }
 GrpErr = GRPaddMBX(MyGrp, Mbox2, Mbx2CB);/* Attach Mbox2 to the group */
 if (GrpErr == (GRP_t *)NULL) {
 puts(“Group allocation error”);
 }

 do {
 “Config & enable the interface”
 Err = GrpWait(MyGrp, OS_TICK_PER_SEC, 0)
 } while (Err != 0);

 GRPwait(MyGrp, -1, 1);

 puts(“The group was deleted”);

 TSKselfSusp();
}

/* --- */

void SemCB(SEM_t *Arg)
{
 Arg = Arg;
 puts(“My semaphore was posted”);
 return;
}

/* --- */

void Mbx1CB(intptr_t Msg)
{
int Err;

 printf(“Mailbox #1 got message 0x%08X\n”, (int)Msg);

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 272

 return;
}

/* --- */

void Mbx2CB(intptr_t Msg)
{
int Err;

 printf(“Mailbox #2 got message 0x%08X\n”, (int)Msg);
 return;
}

The two mailboxes and the semaphores are created / opened using the MBXopen() and SEMopen()
components; that’s Abassi standard way to create / open mailboxes and semaphores.

Table 6-24 Grouping Example (Section #1)

 Mbox1 = MBXopen(“Malbox #1, 32); /* Create/open mailbox Mbox1 */
 Mbox2 = MBXopen(“Malbox #2, 32); /* Create/open mailbox Mbox2 */
 MySema = SEMopen(“My Sema”); /* Create/open semaphore MySema */

Once the mailboxes and semaphore are created / opened, their descriptors are attached to the group named
MyGrp. The first attachment has the first argument of GRPaddNNN() set to NULL as this is the beginning of
the ”group construction”. The other services attached after the first attachment use the returned value
when the first attachment was performed. The semaphore service is assigned the SemCB() callback
function and the two mailbox services are assigned the Mbx1CB() and MBX2() callback functions. The
following code extract has been purged from the error messages to ease the understanding.

Table 6-25 Grouping Example (Section #2)

 MyGrp = GRPaddSEM(NULL, MySema, SemCB); /* Create & attach MySema to the group */
 GrpErr = GRPaddMBX(MyGrp, Mbox1, Mbx1CB);/* Attach Mbox1 to the group */
 GrpErr = GRPaddMBX(MyGrp, Mbox2, Mbx2CB);/* Attach Mbox2 to the group */

Once all three triggers have been attached to the group, the interface is configured and a timeout of 2
seconds is used (the second argument to GRPwait()). GRPwait() is informed to wait for a single trigger
until expiry (third argument is set to 0). If no activity has been received from the interface (any of the three
triggers were validated (return value is non-0), then the interface is configured again and the group waited
on.

Table 6-26 Grouping Example (Section #3)

 do {
 “Config & enable the interface”
 Err = GrpWait(MyGrp, 2*OS_TICK_PER_SEC, 0)
 } while (Err != 0);

Once the interface has validated one of the three triggers, GRPwait() is called but this time informed to
perform an infinite loop (second argument that specifies the timeout is negative and the third argument that
specifies single vs. all trigger is non-zero). In case another task deletes all the triggers in the Group MyGrp,
a task self-suspension (TSKselfSusp()) is inserted after GRPwait().

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 273

Table 6-27 Grouping Example (Section #4)

 GRPwait(MyGrp, -1, 1);

 puts(“The group was deleted”);

 TSKselfSusp();

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 274

6.12 Logging Services
The optional logging services allow the designer to get insight on what operations are performed in the
kernel. It is a useful debugging tool, but be aware that when the logging services are enabled, the overall
timing of the application could be affected as the logging adds extra code and CPU usage in the kernel.

There are two type of logging available:

Ø Direct writing to an ASCII output device;

Ø Recording in a circular buffer for later writing on an ASCII output device

6.12.1 Direct writing
The logging services are configured to perform a direct writing operation when the build option
OS_LOGGING_TYPE (Section 4.1.17) is set to 1. This type of logging sends an ASCII string to the output
device as soon as the operation that triggers the message occurs. This obviously translates into a big CPU
impact on the operation of the kernel because every time a logging message is generated, all the operations
required to generate the message occur in the middle of kernel operations.

There are two mechanisms to control the output of logging messages. One mechanism is an on/off switch,
allowing or disallowing the logging output. The other mechanism controls the behavior of the individual
messages: each message can be enabled or disabled.

Logging message output is turned off with the use of the component LOGoff() and it can be turned on
with the component LOGon(). When the RTOS is started, the message output is always off. This means
LOGon() must be used to start the output of the logging messages. The same applies with the individual
messages: they are all disabled, therefore they must be turned on using either LOGenb() or LOGallOn().

Individual messages are enabled with the component LOGenb() and disabled with the component
LOGdis(). To simplify the use of LOGenb() and LOGdis(), the components LOGallOn() and
LOGallOff() respectively enable all messages and disable all messages; this is the same as wrapping a
loop around LOGdis() or LOGenb().

Note: Refer to the description of the component OSputchar() (Section 6.14.5) as there is a major
restriction about using direct logging when multithread safe libraries are used.

6.12.2 Buffer recording
Instead of directly writing to the output device at each key step operation performed in the kernel, the
operation performed and its parameters can be memorized in a circular buffer. The recording in the
circular buffer can be controlled to be continuous, overwriting older event occurrences, or to stop when the
buffer is full. The circular buffer is enabled when the build option OS_LOGGING_TYPE (Section 4.1.17) is
set to a value greater than 1. The value of OS_LOGGING_TYPE then specifies the number of event
occurrence the circular buffer can hold. Continuous recording is enabled with the component LOGcont();
recording with stopping when the buffer is full is enabled with the component LOGonce(). The contents
of the circular buffer can later be sent directly to the output device with the components LOGdumpAll() or
LOGdumpNext(), or the buffer contents can be extracted and formatted, ready to be sent on any output
devices, with the component LOGgetNext().

6.12.3 Description
There are two control mechanisms when the logging service is part of the RTOS build. One is a global
enable/disable and the other one enables/disables individual logging messages. The two mechanisms are
completely independent. To globally turn on the printing or recording, the component LOGon() is used.
To globally turn off the printing or recording, the component LOGoff() is used. The individual messages
can be enabled with LOGenb() or all enable with LOGallOn(). They are individually disabled with
LOGdis() or all disabled with LOGallOff(). When the application is started, with the logging feature
part of the build, the logging is off by default, and all individual messages also disabled. If the logging uses
the circular buffer, the recording mode is continuous, overwriting older event occurrences.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 275

Table 6-28 Logging Service Component list

Section Name Description

6.12.4 LOGallOff Disable all logging messages

6.12.5 LOGallOn Enable all logging messages

6.12.6 LOGcont With circular buffer, set up and start continuous recording

6.12.7 LOGdis Disable a specific logging message

6.12.8 LOGdumpAll Print the all the logging messages that were recorded

6.12.9 LOGdumpNext Print the next logging message that was recorded

6.12.10 LOGenb Enable the recording or printing of the logging messages

6.12.11 LOGgetNext Get the next logging message that was recorded

6.12.12 LOGoff Stop the recording or printing of the logging messages

6.12.13 LOGon Turn on the recording or printing of the logging messages

6.12.14 LOGonce Flush and start the recording of logging messages until explicitly
stopped or, until the buffer is full

Note: The original RTOS design requirements were to ultimately have the capability to transfer

“tokens” to an external monitoring device, and on that device, decode the tokens and print the
logging in an ASCII form. As the names of the services are an integral part of the descriptor, it
becomes fairly complex to try to transfer the information of the names to an external monitoring
device. As such, the formatting in ASCII strings has to be performed directly in the application.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 276

6.12.4 LOGallOff

Synopsis
#include “Abassi.h”

void LOGallOff(void);

Description

LOGallOff() is a logging component that configures the filter to disable the printing or
recording of all messages. Individual messages can be disabled with the component
LOGdis(). All messages can be re-enabled with the component LOGallOn(), or
individually with the component LOGenb().

Availability

Only available when the build option OS_LOGGING_TYPE is non-zero.

Arguments
void

Returns
void

Component type

Function

Options

N/A

Notes

LOGallOff() activates the filter that selects which messages are allowed to be printed /
recorded, and which are not. This is not the same operation the component LOGoff()
performs. The latter disallows printing/recording, irrelevant of the filter configuration.

See also

OS_LOGGING_TYPE (Section 4.1.17)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 277

6.12.5 LOGallOn

Synopsis
#include “Abassi.h”

void LOGallOn(void);

Description

LOGallOn() is a logging component that configures the filter to enable the printing or
recording of all messages. Individual messages can be enabled with the component
LOGenb(). All messages can be disabled with the component LOGallOff(), or
individually messages with the component LOGdis().

Availability

Only available when the build option OS_LOGGING_TYPE is non-zero.

Arguments
void

Returns
void

Component type

Function

Options

N/A

Notes

LOGallOn() activates the filter that selects which messages are allowed to be printed /
recorded, and which are not. This is not the same operation the component LOGon()
performs. The latter allows printing/recording, irrelevant of the filter configuration.

See also

OS_LOGGING_TYPE (Section 4.1.17)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 278

6.12.6 LOGcont

Synopsis
#include “Abassi.h”

void LOGcont(void);

Description

LOGcont() empties the circular buffer, sets the recording for continuous, and starts the
recording. When the recording is configured in continuous mode, using LOGcont(), it
means that oldest recordings are overwritten when the buffer is full.

Availability

Only available when the build option OS_LOGGING_TYPE is greater than one.

Arguments
void

Returns
void

Component type

Function

Options

N/A

Notes

See also

OS_LOGGING_TYPE (Section 4.1.17)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 279

6.12.7 LOGdis

Synopsis
#include “Abassi.h”

void LOGdis(int MsgNmb);

Description

LOGdis() configures the logging message filter to disable the message number specified
with the argument MsgNmb. All messages can be disabled with the component LOGallOff()

Availability

Only available when the build option OS_LOGGING_TYPE is non-zero.

Arguments

MsgNmb Message number to disable

Returns
void

Component type

Function

Options

N/A

Notes

See also

OS_LOGGING_TYPE (Section 4.1.17)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 280

6.12.8 LOGdumpAll

Synopsis
#include “Abassi.h”

void LOGdumpAll(void);

Description

LOGdumpAll() stops the recording in the circular buffer, and then formats and sends all
recorded messages to the output device, using the OSputchar() component. Once
LOGdumpAll() has completed these operations, the recording remains disabled, but in the
same recording mode (either continuous or one shot) and the recording buffer is declared
empty. To restart the recording, one must use LOGon(), LOGcont() or LOGonce().

Availability

Only available when the build option OS_LOGGING_TYPE is greater than one.

Arguments
void

Returns
void

Component type

Function

Options

N/A

Notes

See also

OS_LOGGING_TYPE (Section 4.1.17)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 281

6.12.9 LOGdumpNext

Synopsis
#include “Abassi.h”

void LOGdumpNext(void);

Description

LOGdumpNext() stops the recording in the circular buffer, and then formats and sends the
oldest recorded message to the output device, using the OSputchar() component. The
oldest message is then discarded from the recording buffer. The next use of the
LOGdumpNext() will perform the same operation, but this time on the next oldest message.
To restart the recording, one must use LOGon(), LOGcont() or LOGonce().

Availability

Only available when the build option OS_LOGGING_TYPE is greater than one.

Arguments
void

Returns
void

Component type

Function

Options

N/A

Notes

N/A

See also

OS_LOGGING_TYPE (Section 4.1.17)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 282

6.12.10 LOGenb

Synopsis
#include “Abassi.h”

void LOGenb(int MsgNmb);

Description

LOGenb() configures the logging message filter to enable the message number specified
with the argument MsgNmb. All messages can be enabled with the component LOGallOn().

Availability

Only available when the build option OS_LOGGING_TYPE is non-zero.

Arguments

MsgNmb Message number to enable

Returns
void

Component type

Function

Options

N/A

Notes

See also

OS_LOGGING_TYPE (Section 4.1.17)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 283

6.12.11 LOGgetNext

Synopsis

#include “Abassi.h”

const char *LOGgetNext(void);

Description

LOGgetNext() stops the recording in the circular buffer, and then formats and return an
ASCII string for the oldest recorded message. The oldest message is then discarded from the
recording buffer. The next use of the LOGgetNext() will perform the same operation, but
this time on the next oldest message. To restart the recording, one must use LOGon(),
LOGcont() or LOGonce().

Availability

Only available when the build option OS_LOGGING_TYPE is greater than one.

Arguments
void

Returns

Pointer to a formatted string

Component type

Function

Options

N/A

Notes

N/A

See also

OS_LOGGING_TYPE (Section 4.1.17)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 284

6.12.12 LOGoff

Synopsis
#include “Abassi.h”

void LOGoff(void);

Description

LOGoff() sets the logging facilities to stop the printing/recording of messages.

Availability

Only available when the build option OS_LOGGING_TYPE is non-zero.

Arguments
void

Returns
void

Component type

Function

Options

N/A

Notes

See also

OS_LOGGING_TYPE (Section 4.1.17)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 285

6.12.13 LOGon

Synopsis

#include “Abassi.h”

void LOGon(void);

Description

LOGon() sets the logging facilities to restart the printing/recording of messages.

Availability

Only available when the build option OS_LOGGING_TYPE is non-zero.

Arguments
void

Returns
void

Component type

Function

Options

N/A

Notes

See also

OS_LOGGING_TYPE (Section 4.1.17)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 286

6.12.14 LOGonce

Synopsis
#include “Abassi.h”

void LOGonce(void);

Description

LOGonce() empties the circular recording buffer, sets the recording for one shot, meaning
the recording stops when the circular buffer is full, and then starts the recording.

Availability

Only available when the build option OS_LOGGING_TYPE is greater than one.

Arguments
void

Returns
void

Component type

Function

Options

N/A

Notes

See also

OS_LOGGING_TYPE (Section 4.1.17)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 287

6.12.15 Logging Messages Numbers

This section lists and described all the logging messages supported by the logging facilities. When
formatted, each one of the message is preceded by “[NNN] “, where NNN indicates the current timer tick
counter value.

Numbers are given instead of tokens. The decision to not use tokens is that, one way or another, using
tokens forces the designer to look-up the token names. By indicating the message number, it gives the
freedom to the designer to define their own tokens, which will have more meaningful names, as the way to
name tokens is always a personal preference.

When logging is enabled, naming of descriptors is enabled, even if the build option OS_NAMES is set to a
value of zero. If a descriptor has been given no name, the descriptor name will show up as “…”. Also, as
each task possesses a private semaphore, the private semaphore shows up as “Priv”

6.12.15.1 Semaphores

Message 0: ISR posting semaphore “SSS"

This message indicates the semaphore SSS is posted in an interrupt handler.

Message 1: “SSS” semaphore posted by “TTT”

This message indicates the semaphore SSS is posted by task TTT.

Message 2: “TTT” is unblocked from “SSS”

This message indicates the task TTT, that was blocked on the semaphore SSS, gets
unblocked due to the semaphore posting.

Message 3: “TTT” to wait on semaphore “SSS”

This message indicates the task TTT is trying to wait on semaphore SSS.

Message 4: “TTT” not blocked on semaphore “SSS” (timeout==0)

This message indicates the task TTT is not blocking on semaphore SSS, even though the
semaphore was not posted, as the requested timeout specified in SEMwait() was zero.

Message 5: “TTT” blocks on semaphore “SSS”

This message indicates the task TTT is getting blocked on semaphore SSS.

Message 6: “TTT” not blocked on semaphore “SSS” (was posted)

This message indicates the task TTT is not blocking on semaphore SSS as the semaphore
was previously posted.

6.12.15.2 Mailboxes

Message 7: ISR reading mailbox “MMM”
This message indicates the mailbox MMM is read in an ISR handler.

Message 8: ”TTT” reading mailbox “MMM”

This message indicates the mailbox MMM is being read by task TTT.

Message 9: “MMM” contained value 0xNNNN

This message indicates what value was read from the mailbox.

Message 10: “TTT” blocks on mailbox MMM (empty)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 288

This message indicates the task TTT is reading mailbox MMM, but as the mailbox is empty,
the task gets blocked.

Message 11: “TTT” not blocked on mailbox MMM (timeout==0)

This message indicates the task TTT is reading mailbox MMM, and even though the
mailbox is empty, the task does not get blocked as the requested timeout specified in
MBXget() was zero.

Message 12: ISR writing mailbox “MMM”

This message indicates the mailbox MMM is written in an ISR handler.

Message 13: Mailbox “MMM” write by “TTT”

This message indicates mailbox MMM is written by task TTT.

Message 14: 0xNNNN written into mailbox ”MMM”

This message indicates the value written in the mailbox.

Message 15: Mailbox “MMM” full, “TTT” blocks

This message indicates task TTT is getting blocked, as the mailbox MMM is full.

Message 16: Mailbox “MMM” full, 0xNNNN not written

This message indicates the mailbox MMM did not get written. This could be due to the
requested timeout specified in MBXget() being zero, or the mailbox write occurred in an
ISR handler.

6.12.15.3 Timer

Message 17: “TTT” added to timeout list, expiry tick is NNNN

This message indicates task TTT is blocked and inserted in the time-out linked list. If the
task does not get normally unblocked, the timeout will unblock the task when the timer
tick counter reaches or exceeds NNNN.

Message 18: “TTT” removed from timer list

This message indicates the task TTT is removed from the time-out linked list. This can
be due to the task getting unblocked on the mechanism it was blocked on, or because the
timeout time was exceeded.

Message 80: New timeout on task “TTT” : NNNN
This message indicates the timeout task TTT is blocked until expiry is set to the new
value NNN. This is a result of the use of TSKtout() or TSKtimeoutKill()
components.

6.12.15.4 Priority / Running

Message 19: “TTT” set to priority NNN

This message indicates the task TTT has its priority changed. This can be due to priority
inversion protection, starvation protection, or a request through the component
TSKprio().

Message 20: “TTT” is running at priority NNN

This message indicates the task TTT is now the running task; a context switch has
occurred.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 289

6.12.15.5 Timer Services

Message 21: Timer service “XXX” has expired
This message indicates the timer XXX has expired, therefore the operation attached to the
timer service is performed.

Message 22: Timer service “XXX” removed from the list
This message indicates the timer service XXX was deactivated. This could be due to a
single shot operation that was performed, or the timer service, which was already active,
being re-programmed, or the component TIMkill() being applied on the timer service.

Message 23: Timer service “XXX” added to list, expiry tick NNN
This message indicates the timer service XXX is deactivated. This could be due to a
periodic operation that was performed, or the timer service, which as already active,
being re-programmed.

6.12.15.6 Event Flags

Message 24: 0xNNNN set in events flags of “TTT”

This message indicates the running task is setting the events flags of task TTT.

Message 25: ISR set value 0xNNNN in events flags of “TTT”
This message indicates an ISR handler is setting the events flags of task TTT.

Message 26: ”TTT” unblocked by event flags
This message indicates the task TTT has its priority changed. This can be due to priority
inversion protection, starvation protection, or a request through TSKprio().

Message 27: ”TTT” not blocked by event flags NNN
This message indicates the task TTT getting its event flags is not getting blocked as the
event flags NNN fulfill the condition masks specified in EVTwait().

Message 28: ”TTT” blocked on event flags NNN
This message indicates the task TTT getting its event flags is getting blocked as the
current event flags NNN do not fulfill the condition masks specified in EVTwait().

6.12.15.7 State changes

Message 29: “TTT” running (round-robin), time-slice NNNN ticks
This message indicates the task TTT is now running due to round robin. The maximum
run-time duration is indicated by NNNN.

Message 30: “TTT” is requested to be suspended
This message indicates the task TTT is going to be suspended. The suspension could be
delayed as long as the task locks one or more mutexes.

Message 31: “TTT” is now suspended
This message indicates the task TTT is now suspended

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 290

Message 32: “TTT” is requested to be resumed
This message indicates the task TTT is requested to be resumed. If the task is in the
suspended state, then it resumes. If the task is not in the suspended state, the pending
suspension request is dropped.

Message 33: “TTT” is yielding CPU
This message indicates the task TTT is yielding the CPU. This message only applies
when the RTOS is built to operate in cooperative mode.

Message 34: “TTT” is not yielding CPU, no other ready to run
This message indicates the task TTT is not yielding the CPU. This occurs when no tasks
of equal or higher priority are in the ready to run state. This message only applies when
the RTOS is built to operate in cooperative mode.

6.12.15.8 Starvation Protection

Message 35: “TTT” added to starvation list
This message indicates the task TTT is now under starvation protection.

Message 36: “TTT” back to pre-starvation priority NNN
This message indicates the task TTT ran long enough under starvation protection and is
going back to its original priority

Message 37: “TTT” removed from starvation list
This message indicates the task TTT is removed from the starvation list. This can be due
to it running normally, that it has run long enough under the starvation protection, or the
task state changed.

6.12.15.9 Priority Inversion

Message 38: “TTT” new priority NNN (Prio invert protection)

This message indicates the task TTT has its priority changed as it locks a mutex and is
under priority inversion protection.

6.12.15.10 Stack monitoring
Message 39: “TTT” stack overflow TOS address at NNN

This message indicates the task TTT has used more stack than was allocated to it. The
application get frozen

6.12.15.11 Memory Block management
Message 40: ISR requesting buffer from memory management “MMM”

This message indicates a buffer from the memory management MMM is being requested in
an ISR handler.

Message 41: ”TTT” requesting buffer form memory management “MMM”

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 291

This message indicates a buffer from the memory management MMM is being requested by
task TTT.

Message 42: “MMM” returned buffer 0xNNNN

This message indicates the pointer of the buffer value was obtained from the memory
management.

Message 43: “TTT” blocks on memory management MMM (empty)

This message indicates the task TTT is requesting a buffer from the memory management
MMM, but as the memory pool is empty, the task gets blocked.

Message 44: “TTT” not blocked on mailbox MMM (timeout==0)

This message indicates the task TTT is requesting a buffer from the memory management
MMM, and even though the memory pool is empty, the task does not get blocked as the
requested timeout specified in MBXalloc() was zero.

Message 45: Buffer return to memory pool “MMM” by “TTT”

This message indicates a buffer is returned to the memory pool MMM is by task TTT.

Message 46: Buffer 0xNNNN returned to memory pool ”MMM”

This message indicates the pointer of the buffer returned to the memory pool MMM.
This message will not be sent out if the pointer to the buffer to return in NULL.

6.12.15.12 SMP multi-core
Message 47: Sending ISR to core #N for load balancing

This message indicates a core is sending an interrupt to another core because a task
switch must occur on the target core (core #N).

Message 48: Performing load balancing check

This message indicates kernel is current performing load balancing as a task switch is
about to happen on one or multiple cores.

Message 49: Got an ISR requesting to check load balancing

This message indicates a core has received an interrupt from another core because a task
switch should occur on it.

Message 50: Task “TTT” remains running

This message indicates there is no task switching after the load balancing was performed

6.12.15.13 Out of Memory Checks
Message 51: Out of alloc memory (increase OS_ALLOC_SIZE)

This message indicates the application has run out of memory used by OSalloc().

Message 52: Out of heap memory

This message indicates the application has run out of memory used by malloc(). This
implies the heap area size should be increased.

Message 53: Out of mailboxes (increase OS_STATIC_MBX)

This message indicates the application has run out of mailbox descriptors allocated by
OS_STATIC_MBX.

Message 54: Out of mailboxes buffer(increase OS_STATIC_BUF_MBX)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 292

This message indicates the application has run out of mailbox memory buffer that was
reserved by OS_STATIC_BUF_MBX.

Message 55: Out of memory blocks (increase OS_STATIC_MBLK)

This message indicates the application has run out of memory block descriptors allocated
by OS_STATIC_MBLK.

Message 56: Out of memory block buffer memory (increase OS_STATIC_BUF_MBLK)

This message indicates the application has run out of memory block buffer that was
reserved by OS_STATIC_BUF_MBLK.

Message 57: Out of name memory (increase OS_STATIC_NAME)

This message indicates the application has run out of memory needed to hold the names
of all services and tasks, which was reserved by OS_STATIC_NAME.

Message 58: Out of semaphores (increase OS_STATIC_SEM)

This message indicates the application has run out of semaphore/mutex descriptors
allocated by OS_STATIC_SEM.

Message 59: Out of stack memory (increase OS_STATIC_STACK)

This message indicates the application has run out of memory needed supply all the tasks
stacks, which was reserved by OS_STATIC_STACK.

Message 60: Out of tasks (increase OS_STATIC_TASK)

This message indicates the application has run out of task descriptors allocated by
OS_STATIC_TASK.

Message 61: Out of timers (increase OS_STATIC_TIM_SRV)

This message indicates the application has run out of timer service descriptors allocated
by OS_STATIC_TIM_SRV.

Message 62: ISR queue overflow (increase OS_MAX_PEND_RQST)

This message indicates the application has run out of room in the queue used to collect
the kernel requests during interrupts. The size of the queue is specified by
OS_MAX_PEND_RQST.

Message 63: Out of groups (increase OS_GROUP)

This message indicates the application has run out of the trigger descriptors used by
groups. The number of pre-allocated trigger descriptors is defined by OS_GROUP set to a
positive value.

6.12.15.14 Group messages

Message 64: Aborting wait on group for task ”TTT” owner is “ZZZ”

This message indicates the call by task TTT to GRPwait() cannot be fulfilled because
the task ZZZ is already waiting on the group.

Message 65: Mailbox "MMM" already attached to another group

This message reports the mailbox MMM is requested to be attached to a group through
GRPaddMBX() component but the operation is aborted because the mailbox is already
attached to another group.

Message 66: Semaphore "SSS" already attached to another group

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 293

This message reports the semaphore SSS is requested to be attached to a group through
GRPaddSEM() or GRPaddSEMbin() components but the operation is aborted because
the semaphore is already attached to another group.

Message 67: "TTT" blocks on group

This message reports the task TTT is performing a call to GRPwait() and becomes
blocked as none of the triggers in the group are valid.

Message 68: "TTT” not blocking on group, data in mailbox "MMM"

This message reports the task TTT is performing a call to GRPwait() and does not block
as the mailbox MMM , which is attached to the group, is not empty.

Message 69: “TTT” not blocking on group, semaphore “SSS" is posted

This message reports the task TTT is performing a call to GRPwait() and does not block
as the semaphore SSS , which is attached to the group, is already posted.

Message 70: Removing mailbox \"%s\" from group

This message indicates a request through GRPrm() or GRPrmAll() to remove the trigger
the mailbox MMM is attached to.

Message 71: Removing semaphore \"%s\" from group

This message indicates a request through GRPrm() or GRPaddSEMbin() to add the
semaphore SSS to a group as one of the triggers.

Message 72: Adding mailbox \"%s\" to group

This message indicates a request through GRPaddMBX()to add the mailbox MMM to a
group as one of the triggers.

Message 73: Adding semaphore \"%s\" to group

This message indicates a request through GRPasSEM() or GRPaddSEMbin() to add the
semaphore SSS to a group as one of the triggers.

Message 74: Mailbox \"%s\" unblocking task \"%s\" waiting on group

A request to the component MBXput() on the mailbox MMM, which is attached to a group,
unblocks task TTT that was waiting on the group through the use of the component
GRPwait().

Message 75: "Semaphore \"%s\" unblocking task \"%s\" waiting on group",

A request to the component SEMpost() on the semaphore SSS, which is attached to a
group, unblocks task TTT that was waiting on the group through the use of the
component GRPwait().

6.12.15.15 Wait Abort messages

Message 76: Aborting wait on semaphore “SSS” for task “TTT",

This message reports a request to SEMabort() is provoking the unblocking of task TTT.

Message 77: Aborting wait on mutex “MMM” for task “TTT”,

This message reports a request to MTXabort()is provoking the unblocking of task TTT.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 294

Message 78: Aborting wait on events for task “TTT”

This message reports a request to EVTabort()is provoking the unblocking of task TTT.

Message 79: Aborting wait on mailbox “MMM” for task “TTT”

This message reports a request to MBXabort()is provoking the unblocking of task TTT.

6.12.15.16 Timeout messages

Message 80: New timeout on task “TTT”: ###

This message reports a request to TSKtout() or TSKtoutKill() to change the timeout
on the task TTT., which is blocked with an expiry time-out. The new timeout is the value
expressed in number of timer ticks and when that value is 0 the request triggers an
instant expiry.

6.12.15.17 Mutex deadlock messages

Note: all three (3) log messages, #81, #82, and #83, for deadlock detection should be
enabled to see the complete report on the tasks and the mutexes involved in the deadlock
condition. As a reminder, a mutex deadlock occurs when task “T1” tries to lock the
mutex “M1” when task “T2” has a lock on it. At the same time, task “T2” is blocked on
the mutex “M2”, which is locked by task “T1” (“T1” is the task trying to obtain the lock
on “M1”).

Message 81: Deadlock – task “TTT” trying to lock mutex “MMM”

This message reports the task (“TTT”) that would create a deadlock when trying to lock
mutex “MMM”. In the reminder example, they are the task “T1” and the mutex “M1”

Message 82: Deadlock – mutex “MMM” is locked by task “TTT”

This message is used twice to report both existing locks that are the inner cause of the
deadlock, i.e. which task locks which mutex, In the reminder example they are the pairs
“T2” - “M1” and “T1” - “M2”

Message 83: Deadlock – task “TTT” is blocked on mutex “MMM”

This message reports the “back lock” involved in the deadlock. In the reminder example,
they are task T2 and mutex M2.

6.12.16 Logging examples

6.12.16.1 Direct writing
Logging with direct writing is straight forward, as the only controls are the On/Off, and individual message
enable/disable. The following table shows a typical use of the logging facilities when configured in direct
write:

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 295

Table 6-29 Direct writing Example

#include “Abassi.h”

…

 LOGallOff(); /* Disable all messages */
 LOGenb(24); /* Enable event set message */
 LOGenb(25); /* Enable event set in ISR message */
 LOGenb(26); /* Enable unblocking by events message */

 …

 LOGon(); /* Allow the writing to the output device */

 …

 LOGoff(); /* Stop the writing to the output device */

 LOGdis(25); /* Disable the event set in ISR message */

 LOGenb(17); /* Enable the timer added in list */
 LOGenb(18); /* Disable the timer removed from list */

 …

 LOGon(); /* Allow the writing to the output device */

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 296

6.12.16.2 Circular buffer
Reusing the previous example, but this time using the circular buffer:

Table 6-30 Circular writing Example

#include “Abassi.h”

…

 LOGallOff(); /* Disable all messages */
 LOGenb(24); /* Enable event set message */
 LOGenb(25); /* Enable event set in ISR message */
 LOGenb(26); /* Enable unblocking by events message */

 …

 LOGonce(); /* Configure the logging to stop when full */
 /* and start the recording */
 …

 LOGoff(); /* Stop the recording */

 LOGdis(25); /* Disable the event set in ISR message */

 LOGenb(17); /* Enable the timer added in list */
 LOGenb(18); /* Disable the timer removed from list */

 …

 LOGon(); /* Allow the recoriding */

 …

 LOGoff(); /* Stop the recording */
 LOGdumpAll(); /* Format & send out the buffer */

 …

 LOGcont(); /* Clear the buffer & set in continuous mode */
 /*and start the recording */
 …

 LOGoff(): /* Stop the recoring */

 /* Retrieve the recoderded information */
 while (NULL != (String = LOGgetNext)) {
 Output(String); /* Output to any ASCII device */
 }

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 297

6.13 Performance Monitoring
Performance monitoring is a facility that collects the operational statistics of all tasks in an application and
it can be added in Abassi through the setting of the build option OS_PERF_MON (See section 4.1.31). When
the performance monitoring facilities are added in Abassi, the file PerfMon.c, supplied in the distribution,
must be included in the build process. The statistics collection is performed by the code in file
PerfMon.c and not inside Abassi.c. This approach was retained to eliminate all risks of breaking the
Abassi kernel code if the performance monitoring needs to be customized for an application.

6.13.1 Description
The performance monitoring collects, in real-time, 4 key statistics on the tasks operations:

Ø Latency between being unblocked and becoming running
Ø Run time from unblocked to blocked
Ø Elapsed time from unblocked to blocked
Ø Pre-emption time

The last run, maxima, minima and averages are computed for all 4 statistics measurements. A diagram
with changes of state of a task is shown in the following figure:

 T1 T2 T3 T4 T5 T6 T7

Figure 6-1 Performance Metrics Measurements

Each time marker (T#) corresponds to the following change of state of a task:

T1 : The task is unblocked, ready to run
T2 : The task starts to run
T3 : The task is pre-empted by another task
T4 : The task is resumed
T5 : The task is pre-empted by another task
T6 : The task is resumed
T7 : The task gets blocked

Using the above figure, the 4 key statistics are measured as flows:

Latency: The latency is defined by the time elapsed from the task getting unblocked (inside the

kernel) to when it starts running. This is the time between T1 and T2 in the figure
above.

Run Time: The run time is the total time a task is in the running task. This is the total time

between T2 and T3, plus the time between T4 and T5, plus the time between T6 and
T7 in the figure above.

Elapsed Time: The elapsed time is the time elapsed between when the task starts to run after being

unblocked until it gets blocked. In the above figure, it is the time between T2 and T7.

Pre-emption Time: The pre-emption time is the individual time spans when a task is preempted; it is not

the total time a task is pre-empted during the elapsed time from being unblocked to

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 298

being blocked. The pre-emption times are the time between T3 and T4 or the time
between T5 and T6. If the total pre-emption time is desired, it can be obtained using
the difference between the elapsed time and the run time.

Note: The time spent in the interrupt handler is not taken off from these measurements. It is assumed
interrupt handler should be as short as possible; as such, their impact on the overall performance of the
application should be negligible.

When performance monitoring is part of the build with the build option OS_PERF_MON set to a non-zero
value, all tasks upon creation are immediately monitored. It is possible to stop and restart the statistics
collection with the components PMstop() (Section 6.13.4) and PMrestart() (Section 6.13.3).

6.13.2 Measurements
The following table lists all the entries held in the task descriptors. Depending on the timer/counter
selected as the performance monitoring time reference, either the RTOS timer tick (G_OStimCnt) or the
port specific timer, the data type OSperfMon_t has a different word length. When using the RTOS timer
tick, OSperfMon_t is an int; when using the port specific timer, the OSperfMon_t data type is typically
64 bits wide.

The average measurements are computed using a “low-pass” filter:

Table 6-31 Computation of the average statistics

 if n == 0 /* First measurement */
 Average(0) = NewValue(0)
 else
 Average(n) = 63*Average(n-1)/64 + NewValue(n)/64

The following table lists and describes each of the entries in a task descriptor that holds the run-time
statistics.

Table 6-32 Performance Monitoring Task Descriptors entries

Name Type Description

PMcumul[] OSperfMon_t Cumulative run time of the task since its creation or since the
statistics have been reset. On single core targets the array is
dimensioned to 1 and on multi-core, each entry is the run time on
each core. The name is new in Abassi version 1.278.266 and
mAbassi version 1.112.111. For backward compatibility, the
Abassi original entry name PMtotalRun and mAbassi
PMcoreRun[] are still available as “C” defines.

PMstartTick OSperfMon_t Performance monitoring timer tick when the was started.

PMlastTick OSperfMon_t Tick counter value when the measurement was stopped.

PMlatentLast OSperfMon_t Last latency time measurement

PMlatentMin OSperfMon_t Shortest latency time of the task since its creation or since the
statistics have been reset.

PMlatentMax OSperfMon_t Longest latency time of the task since creation or since the
statistics have been reset.

PMlatentAvg OSperfMon_t Average latency time of the task since creation or since the
statistics have been reset.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 299

PMlatentStrt OSperfMon_t Timer/counter value when the task got unblocked

PMaliveLast OSperfMon_t Last elapsed time measurement

PMaliveMin OSperfMon_t Shortest elapsed time of the task since its creation or since the
statistics have been reset.

PMaliveMax OSperfMon_t Longest elapsed time of the task since creation or since the
statistics have been reset.

PMaliveAvg OSperfMon_t Average elapsed time of the task since creation or since the
statistics have been reset.

PMaliveStrt OSperfMon_t Timer/counter value when the task started running after being
unblocked

PMrunLast OSperfMon_t Last run time measurement

PMrunMin OSperfMon_t Shortest run time of the task since its creation or since the
statistics have been restarted.

PMrunMax OSperfMon_t Longest run time of the task since creation or since the statistics
have been restarted.

PMrunAvg OSperfMon_t Average run time of the task since creation or since the statistics
have been restarted.

PMrunCum OSperfMon_t Accumulated run time since the task started after being
unblocked. Needed to not take into account the time the task is
pre-empted

PMrunStrt OSperfMon_t Timer/counter value when the task started running after being
unblocked

PMpreemLast OSperfMon_t Last pre-emption time measurement

PMpreemMin OSperfMon_t Shortest time the task has been preempted since its creation or
since the statistics have been restarted.

PMpreemMax OSperfMon_t Longest time the task has been preempted since its creation or
since the statistics have been restarted.

PMpreemAvg OSperfMon_t Average time the task has been preempted since its creation or
since the statistics have been restarted.

PMpreemStrt OSperfMon_t Timer/counter value when the task started being pre-empted

PMpreemCnt uint32_t Number of times the task has been preempted since its creation
or since the statistics have been restarted.

PMblkCnt uint32_t Number of times the task has been blocked since its creation or
since the statistics have been restarted.

PMsemBlkCnt uint32_t Number of times the task has been blocked on semaphores since
its creation or since the statistics have been restarted.

PMmtxBlkCnt uint32_t Number of times the task has been blocked on mutexes since its
creation or since the statistics have been restarted.

PMevtBlkCnt uint32_t Number of times the task has been blocked on its events since its
creation or since the statistics have been restarted. This entry is
only available if the build option OS_EVENTS is non-zero

PMgrpBlkCnt uint32_t Number of times the task has been blocked on groups since its
creation or since the statistics have been restarted. This entry is

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 300

only available if the build option OS_GROUP is non-zero

PMmbxBlkCnt uint32_t Number of times the task has been blocked on mailboxes since
its creation or since the statistics have been restarted. This entry
is only available if the build option OS_MAILBOX is non-zero

PMstrvCnt uint32_t Number of times the task has been under the starvation
protection mechanism since its creation or since the statistics
have been restarted. The count indicates how many times the
task was put under protection, not how many time it ran due to
starvation protection. This entry is only available if the build
option OS_STARVE_WAIT_MAX is non-zero

PMstrvRun uint32_t New in Abassi version 1.278.266 and mAbassi version
1.112.111. Number of times the task has run with its priority
raised by the starvation protection mechanism since its creation
or since the statistics have been restarted. This entry is only
available if the build option OS_STARVE_WAIT_MAX is non-zero

PMstrvRunMax uint32_t New in Abassi version 1.278.266 and mAbassi version
1.112.111. Number of times the task has run the maximum time
allowed with its priority raise under the starvation protection
mechanism since its creation or since the statistics have been
restarted. This entry is only available if the build option
OS_STARVE_WAIT_MAX is non-zero

PMinvertCnt uint32_t Number of times the task has its priority changes for mutex
inversion protection since its creation or since the statistics have
been restarted. This entry is only available if the build option
OS_MTX_INVERSION is non-zero

PMcontrol int Internally used by the performance monitoring to know the state
of the statistic collection (stopped, armed or running).

PMretart int Internally used by the performance monitoring to control the
reset of the statistics. Set to a non-zero value and all task
statistics will get reset the next time the task gets
blocked/preempted or becomes running.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 301

6.13.3 PMrestart

Synopsis

#include “Abassi.h”

void PMretart(TSK_t *Task);

Description

PMrestart() reset and restart the collection of statistics on the task specified by the
argument Task. Once the statistics collection is restarted, the performance monitoring goes
into an “armed” state for the collection and will start the collection only when the task
transits from a blocked or ready-to-run state to the running state.

Availability

Only available when the build option OS_PERF_MON is non-zero.

Arguments

Task Descriptor of the task to restart the statistics collection.

Returns
void

Component type

Macro (unsafe)

Options

N/A

Notes

See also

OS_PERF_MON (Section 4.1.31)
PMstop (Section 6.13.4)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 302

6.13.4 PMstop

Synopsis

#include “Abassi.h”

void PMstop(TSK_t *Task);

Description

PMstop() stop the collection of statistics on the task specified by the argument Task. And
freezes the resuls. Once the statistics collection is stopped, they can only be restarted
meaning the collection start fresh, dropping pas measurements. If the collection is already
stopped, using this component has not effect.

Availability

Only available when the build option OS_PERF_MON is non-zero.

Arguments

Task Descriptor of the task to stop the statistics collection.

Returns
void

Component type

Macro (unsafe)

Options

N/A

Notes

See also

OS_PERF_MON (Section 4.1.31)
PMretart (Section 6.13.3)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 303

6.14 Mix Bag
This section describes components that don’t really fit in any category of services.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 304

6.14.1 G_OSmutex

Synopsis
#include “Abassi.h”

MTX_t *G_OSmutex;

Description

G_OSmutex is the sole mutex the Abassi RTOS uses to protect the access of all shared
resources it handles. These shared resources are only accessed by Abassi when components
are created.

Availability

Always

Arguments

N/A

Returns

N/A

Component type

Mutex descriptor

Options

 N/A

Notes

G_OSmutex is the mutex one should use to protect non- multithread-safe functions in the
standard “C” libraries. The reason is if malloc() is the memory allocator selected to be
used by Abassi, then the RTOS protects malloc() with this mutex. Therefore other calls to
malloc() should be protected with the same mutex. And, as an extension, many other
functions in the standard “C” library.

See also

OS_ALLOC_SIZE (Section 4.1.1)
OSalloc (Section 6.14.3)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 305

6.14.2 G_OSnoName

Synopsis
#include “Abassi.h”

const char G_OSnoName[];

Description

G_OSnoName is the preferable character string to use for unnamed service. This is preferable
to using NULL as some printf() implementations do not detect the NULL pointer and
print gibberish (data at address 0) when encountering a NULL pointer for a string to print.

Availability

Always

Arguments

N/A

Returns

N/A

Component type

Variable

Options

Notes

See also

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 306

6.14.3 OSalloc

Synopsis
#include “Abassi.h”

void *OSalloc(size_t Size);

Description

OSalloc() is the dynamic memory allocator component internally used by the Abassi
RTOS. It behaves the same as the standard “C” malloc().

Availability

Always, but see Options below

Arguments

Size Size in char of the memory block to allocate

Returns

Pointer to the memory block allocated by OSalloc()

Component type

Definition
- Cannot be used in an interrupt -

Options

The build option OS_ALLOC_SIZE controls two aspects of OSalloc(). If the build option
OS_ALLOC_SIZE is set to a value of zero, then OSalloc() is exactly the same as the
standard “C” function malloc(), being defined as such, but protected with the mutex
G_OSmutex. If the build option OS_ALLOC_SIZE is positive, then the value the build option
is set to is the amount of memory reserved at compile/link time for OSalloc(). OSalloc()
then performs true memory allocation, pulling memory blocks from the memory that was
reserved; it is not anymore mapped to malloc(), but the allocator is still protected by the
mutex G_OSmutex.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 307

Notes

To minimize the impact on real-time operation, OSalloc() is a very simple definition, so no
checks are performed to verify if the memory reserved, as indicated by OS_ALLOC_SIZE, has
been exhausted.
The memory blocks retuned by OSalloc() are always aligned to the largest possible data
type (aligned on 8 bytes) in order to fulfill the requirements of some processors. This means
some extra memory should be added to the strict minimum memory allocation requirements
of the application if the memory is not always allocated in block size multiple of 4 or 8.
The memory reserved by OS_ALLOC_SIZE has no relation with the memory reserved by any
of the OS_STATIC_XXX build options.

OSalloc() is the preferred way to allocate dynamic memory as it is always protected by a
mutex, and this is true even when OS_ALLOC_SIZE is set to zero, making malloc() the
memory allocator.

See also

OS_IDLE_STACK (Section 4.1.16)
OS_ALLOC_SIZE (Section 4.1.1)
OS_STATIC_BUF_MBX (Section 4.1.45)
OS_STATIC_MBX (Section 4.1.47)
OS_STATIC_NAME (Section 4.1.48)
OS_STATIC_SEM (Section 4.1.49)
OS_STATIC_STACK (Section 4.1.50)
OS_STATIC_TASK (Section 4.1.51)
G_OSmutex (Section 6.14.1)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 308

6.14.4 OSallocAvail

Synopsis
#include “Abassi.h”

int OSallocAvail(void);

Description

OSallocAvail() is a component that reports how many char are left in the RTOS static
memlory allocator

Availability

OSallocAvail() is only available when the build option OS_ALLOC_SIZE is non-zero in. It
is not available in any releases before Abassi version 1.273.262 and mAbassi version 1.94.97.

Arguments

Mbox Descriptor of the mailbox to report the number of free elements.

Returns

Size in byte available for future allocation.

Component type

Atomic macro (safe)

Options

Notes

See also

OS_ALLOC_SIZE (Section 4.1.1)
OSalloc() (Section 6.14.3)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 309

6.14.5 OSputchar

Synopsis
#include “Abassi.h”

int OSputchar(int Character);

Description

OSputchar() is a definition for the character output interface to use for ASCII logging,
which is enabled when the build option OS_LOGGING_TYPE is set to 1.

Availability

Only available/needed when the build option OS_LOGGING_TYPE is 1.

Arguments

Character Single character to send on the output device.

Returns
N/A

Component type

Definition

Options

Notes

OSputchar() is by default mapped to the standard “C” I/O function putchar().
If a different I/O interface is used in the application, simply replace the definition in the file
Abassi.h.
For libraries that have a mutex based multithreading protection for reentrance, the
multithreading reentrance protection is disabled when using the standard I/O inside the
kernel. This was necessary to eliminate an infinite re-entrance in the kernel, as having the
multi-threading protection active in the kernel would lock / unlock a mutex. This would
create a call to the kernel from within the kernel, and on and on. The multi-threading
protection being temporary turned off, it means it is highly probable the logging facilities will
corrupt the printed text; there should not be any crash issues though.

See also

OS_LOGGING_TYPE (Section 4.1.17)

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 310

6.14.6 OStrap

Synopsis
#include “Abassi.h”

int OStrap(int Error);

Description

OStrap() is a leaf function that never returns. It is called by the RTOS when an un-
recoverable error is encountered. The error is described by the value of argument Error.

OStrap() supports multiple type of error trapping, and what checks are performed depends
on the setting of build options. The following table provides the details:

Table 6-33 OStrap vs. build options

File Name Description
OS_CHECK_DESC != 0 Checks the validity of descriptors used in the RTOS

Detects the use of blocking services in interrupts
OS_STACK_CHECK != 0 Detects task’s stack overflow

Detects the use of blocking services in interrupts
OS_OUT_OF_MEM != 0 Detects out of memory conditions

Detects the use of blocking services in interrupts
OS_MTX_DEADLOCK < 0 When a mutex deadlock is detected

Availability

Available since 2019

Arguments

Error cause of the error trap.

Returns
N/A

Component type

Function

Options

Notes

The function OStrap() is coded in assembler to trigger a breakpoint whenever it’s possible
and / or put the processor in lower power mode. The error number is passed as the argument,
as it is coded in assembly, the specific register holding the error number is port dependent.
When an error indicates an invalid descriptor, the problem is either due to a NULL pointer or
the data structure indicated by the pointer does not have the proper marker(s) for the service
involved.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 311

An easy way to isolate where the un-recoverable error occurred is to use the “call stack trace-
back” feature of the debugger.
A reminder: all blocking operation are semaphore based. A trapping error occurring during
blocking will likely indicate something about a semaphore but it could be the semaphore used
by a mailbox, a task’s event, a memory block etc.

The following list describes all errors trapped as indicated by the argument Error:

 Error cause of the error trap.

 0 – 0x00 Out of heap - malloc() called in OSalloc () returned NULL.
 This error occurs when OS_ALLOC_SIZE is set to a negative value

and OSalloc() is called: this configuration uses malloc()for
dynamic memory allocation. Either reduce the memory allocated
in the application or increase the size of the “C” heap. Calling
directly malloc() cannot trigger this error.

 1 - 0x01 Out of memory to allocate
 This error occurs when OS_ALLOC_SIZE is set to a positive value

and OSalloc() is called> in this configuration the size of
memory to allocated is set by OS_ALLOC_SIZE. Either reduce the
memory allocated in the application or increase the value assigned
to OS_ALLOC_SIZE.

 2 - 0x02 ISR queue overflow
 This error occurs when the queue used to send the requests to the

kernel by the interrupt handlers becomes full. The size of the ISR
queue is set with the build option OS_MAX_PEND_RQST. The
value assigned to it is either too small, or if it is large enough, then
the application has one or more source of interrupts flooding the
kernel with requests faster than the kernel can process them. In
the later case it is most likely an indication the interrupt source is
non-stop triggering interrupts alike if it’s not informed the
interrupt has been handled.

4 - 0x03 OSalloc() called in an interrupt
 This error occurs when OSalloc() is called in an interrupt

context. OSalloc() is protected by a mutex therefore it can’t be
used in an interrupt.

 16 - 0x10 Out of “name” memory
 This error occurs the build options OS_STATIC_NAME and

OS_NAMES are both positive. The value assigned to
OS_STATIC_NAME sets the amount of memory available for
holding the character strings of all names. Either increase
OS_STATIC_NAME or shorten the names of the services.

 32 - 0x20 Too many tasks
 This error occurs when the build option OS_STATIC_TASK is

positive and more tasks are created than the number assigned to
OS_STATIC_TASK. Either reduce the number of tasks in the
application or increase the value assigned to OS_STATIC_TASK.

 33 - 0x21 Out of static stack memory
 This error is not a stack overflow i.e. a task using a larger stack

than was allocated to it. This error occurs when the memory used
by the stacks of all tasks is allocated from a memory pool sized
according to the build option OS_STATIC_STACK (when set to a
positive value). Increase the value assigned to
OS_STATIC_STACK, or if possible, reduce the stack size allocated
to the tasks when using TSKcreate().

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 312

 34 - 0x22 EVTwait() used in an interrupt
 This error occurs when EVTwait() is called in an interrupt

context. EVTwait() is a blocking service therefore it cannot be
used in an interrupt.

 35 - 0x23 TSKyield() used in an interrupt
 This error occurs when TSKyield() is called in an interrupt

context. TSKyield() applies to the task calling
TSKyield()therefore it cannot be used in an interrupt.

 36 - 0x24 TSKcreate() used in an interrupt
 This error occurs when TSKcreate() is called in an interrupt

context. TSKcreate() is protected by a mutex therefore it
cannot be called in an interrupt.

 37 - 0x25 Invalid task descriptor used in EVTabort()
 This error occurs when EVTabort() is used with an invalid task

descriptor.
 38 - 0x26 Invalid task descriptor used in TSKtout() / TSKtoutKill()
 This error occurs when TSKtout(), or TSKtoutKill(), or

internal timeout operations, is used with an invalid task descriptor.
 39 - 0x27 Invalid task descriptor used in TSKresume() / TSKsusp()
 This error occurs when TSKresume() or TSKsusp()is used with

an invalid task descriptor.
 40 - 0x28 Invalid task descriptor used in EVTset()
 This error occurs when EVTset()is used with an invalid task

descriptor.
 41 - 0x29 Invalid task descriptor used in priority change operation
 This error occurs when TSKsetPrio() is used, or internally

through the starvation or priority inversion protection, with an
invalid task descriptor.

 42 - 0x2A Invalid task descriptor used when unblocking a task
 This is an internal error when the kernel has to unblock a task

with an invalid descriptor.
 43 - 0x2B Invalid task descriptor used when blocking a task
 This is an internal error when internally the kernel has to unblock

a task with an invalid descriptor.
 44 - 0x2C Invalid task descriptor in semaphore/ mutex blocked linked list
 All tasks blocked on a service are held in a linked list and this

error indicates there is an invalid task descriptor is in the linked
list. The most likely culprit is a memory corruption that would
have occurred in the application.

 45 - 0x2D Invalid task descriptor in mutex owner entry
 When a mutex is locked, an entry in the mutex descriptor holds

the descriptor of the task locking the mutex (the mutex owner)
and this error indicates an invalid task descriptor for the mutex
owner. The most likely culprit is a memory corruption that would
have occurred in the application.

 46 - 0x2E Invalid task descriptor in the timeout linked-list
 All tasks blocked with non-infinite expiry time are held in a

linked list and this error indicates there is an invalid task
descriptor is in the linked list. The most likely culprit is a memory
corruption that would have occurred in the application.

 47 - 0x2F Invalid task descriptor in ready to run linked list
 All tasks ready to run are held in linked lists, one linked list per

priority, and this error indicates there is an invalid task descriptor
is in the linked list. The most likely culprit is a memory corruption
that would have occurred in the application.

 48 - 0x30 Too many semaphores / mutexes

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 313

 This error occurs when the build option OS_STATIC_SEM is
positive and more semaphores and mutexes are created than the
number assigned to OS_STATIC_SEM. Increase the value
assigned to OS_STATIC_SEM, or if possible reduce the number of
semaphores & mutexes required by the application.

 49 - 0x31 Mutex deadlock detected
 This error occurs when a mutex deadlock condition is detected

(Section 9). The only way to eliminate this error is at the
application architectural level because the problem is related on
the way multiple tasks are accessing shared resources protected by
mutexes.

 50 - 0x32 MTXlock() used in an interrupt
 This error occurs when MTXlock() is called in an interrupt

context. MTXlock() is a blocking service therefore it cannot be
used in an interrupt.

 51 - 0x33 SEMwaitBin() used in an interrupt
 This error occurs when SEMwaitBin() is called in an interrupt

context. SEMwaitBin() is a blocking service therefore it cannot
be used in an interrupt.

 52 - 0x34 SEMwait() / TSKselfSusp() / TSKsleep() used in an interrupt
 This error occurs when SEMwait() / TSKselfSusp() /

TSKsleep() are called in an interrupt context. SEMwait() /
TSKselfSusp() / TSKsleep() are blocking services therefore
they cannot be used in an interrupt.

 53 - 0x35 SEMopen() / MTXopen() used in an interrupt
 This error occurs when SEMopen() / MTXopen() are called in an

interrupt context. SEMopen() / MTXopen() are protected by a
mutex so they can’t be used in an interrupt.

 54 - 0x36 Invalid semaphore descriptor used in SEMabort()
 This error occurs when SEMabort() is used with an invalid

semaphore descriptor.
 55 - 0x37 Invalid mutex descriptor used in MTXabort()
 This error occurs when MTXabort() is used with an invalid

mutex descriptor.
 56 - 0x38 Invalid mutex descriptor used in MTXunlock()
 This error occurs when MTXunlock() is used with an invalid

mutex descriptor.
 57 - 0x39 Invalid task descriptor used in SEMpost() / SEMpostAll()
 This error occurs when SEMpost() or SEMpostAll() is used

with an invalid sempahore descriptor.
 58 - 0x3A Invalid mutex descriptor used in MTXlock()
 This error occurs when MTXlock() is used with an invalid mutex

descriptor.
 59 - 0x3B Invalid task descriptor used in SEMwait() / SEMwaitBin()
 This error occurs when SEMwait() or SEMwaitBin() is used

with an invalid semaphore descriptor.
 60 - 0x3C Invalid mutex descriptor used during priority inversion protection
 This is an internal error that occurs when the kernel is performing

priority inversion protection on a mutex with an invalid descriptor
 61 - 0x3D Invalid semaphore / mutex descriptor held in the task’s blocker entry
 When a task is blocked, an entry in its descriptor holds the

descriptor of the service it is blocked on. The most likely culprit is
a memory corruption that would have occurred in the application.

 62 - 0x3E Invalid mutex descriptor in task’s mutex linked list
 All mutexes locked by a task are held in a linked list and this error

indicates there is an invalid mutex descriptor in the linked list.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 314

The most likely culprit is a memory corruption that would have
occurred in the application.

 63 - 0x3F Invalid semaphore descriptor to block on
 This is an internal error that reports when a task is getting blocked

and the semaphore (all blocking services are semaphore based) to
block on has an invalid descriptor. This error occurs during
internal kernel operations. The most likely culprit is a memory
corruption that would have occurred in the application.

 64 - 0x40 Too many mailboxes
 This error occurs when the build option OS_STATIC_MBX is

positive and more mailboxes are created than the number assigned
to OS_STATIC_MBX. Increase the value assigned to
OS_STATIC_MBX, or if possible reduce the number of mailboxes
required in the application. This error is not about the memory
used by the internal buffers of the mailboxes.

 65 - 0x41 Out of static mailboxes buffer memory
 This error occurs when the build option OS_STATIC_BUF_MBX is

positive and the total size of all mailboxes created exceeds the
number assigned to OS_STATIC_BUF_MBX. Increase the value
assigned to OS_STATIC_BUF_MBX, or if possible reduce the sizes
of the mailboxes in the application. This error is not about the
number of mailboxes themselves.

 66 - 0x42 MBXopen() used in an interrupt
 This error occurs when MBXopen() is called in an interrupt

context. MBXopen() is protected by a mutex therefore it can’t be
used in an interrupt.

 67 - 0x43 Invalid mailbox descriptor used in MBXget()
 This error occurs when MBXget() is used with an invalid mailbox

descriptor.
 68 - 0x44 Invalid mailbox descriptor used in MBXput()
 This error occurs when MBXput() is used with an invalid mailbox

descriptor.
 69 - 0x46 Invalid mailbox descriptor used in MBXabort()
 This error occurs when MBXabort() is used with an invalid

mailbox descriptor.
 70 - 0x46 Invalid group descriptor used in MBXput()
 When a mailbox is attached to a group, the mailbox descriptor

memorizes the group it is attached to. This error occurs when
MBXput() is used with a valid mailbox descriptor but the group
descriptor is invalid. The most likely culprit is a memory
corruption that would have occurred in the application.

 71 - 0x46 Invalid group descriptor used in MBXget()
 When a mailbox is attached to a group, the mailbox descriptor

memorizes the group it is attached to. This error occurs when
MBXget() is used with a valid mailbox descriptor but the group
descriptor is invalid. The most likely culprit is a memory
corruption that would have occurred in the application.

 80 - 0x50 Too many timer services
 This error occurs when the build option OS_STATIC_TIM_SRV is

positive and more timer services are created than the number
assigned to OS_STATIC_TIM_SRV. Either increase the value
assigned to OS_STATIC_TIM_SRV, or if possible reduce the
number of timer services required by the application.

 81 – 0x51 Kernel request in a Timer Service callback function
 This error occurs when a callback function attached to a Timer

Service performs a kernel request. When the callback function is

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 315

executed it is done from within the kernel. Because the kernel is
not reentrant, Timer Services call back functions are not
authorized to perform kernel requests. Remove the kernel request
and if a kernel request is needed upon timer expiry create a task
blocked on a semaphore or a mailbox and use a semaphore
posting or mailbox deposit as the callback mechanism.

 82 - 0x52 TIMopen() used in an interrupt
 This error occurs when TIMopen() is called in an interrupt

context. TIMopen() is protected by a mutex so it can’t be used in
an interrupt.

 83 - 0x53 Invalid timer descriptor used in timer service operation
 This error occurs any of timer service operation is called with an

invalid timer service descriptor.
 84 - 0x54 Invalid descriptor in the timer service linked list
 All active timer services are kept in a linked list and this error

indicates there is an invalid timer service descriptor is in the
linked list. The most likely culprit is a memory corruption that
would have occurred in the application.

 96 - 0x60 Too many memory blocks
 This error occurs when the build option OS_STATIC_MBLK is

positive and more memory blocks are created than the number
assigned to OS_STATIC_MBLK. Either increase the value assigned
to OS_STATIC_MBLK, or if possible reduce the number of
memory blocks required by the application. This error is not
about the memory held in the memory blocks.

 97 - 0x61 Out of memory block memory
 This error occurs when the build option OS_STATIC_BUF_MBLK

is positive and the total size of all the memory required by the all
memory blocks created exceeds the number assigned to
OS_STATIC_BUF_MBLK. Either increase the value assigned to
OS_STATIC_BUF_MBLK, or if possible reduce the sizes of the
memory reserved required by the memory. This error is not about
the number of memory blocks themselves.

 98 - 0x62 MBLKopen() used in an interrupt
 This error occurs when MBLKopen() is called in an interrupt

context. MBLKopen() is protected by a mutex so it can’t be used
in an interrupt.

 99 - 0x63 Invalid memory block descriptor used in MBLKalloc()
 This error occurs when MBLKalloc() is used with an invalid

memory block descriptor.
100 - 0x64 Invalid memory block descriptor used in MBLKfree()
 This error occurs when MBLKfree() is used with an invalid

memory block descriptor.
101 - 0x65 Invalid task descriptor blocked on a memory block
 When a task gets blocked trying to obtain a memory block, that

task descriptor is held in the memory block descriptor. This error
indicates the task blocked is identified with an invalid task
descriptor. The most likely culprit is a memory corruption that
would have occurred in the application.

112 - 0x70 Too many groups
 This error occurs when the build option OS_GROUP is positive and

more groups are created than the number assigned to OS_GROUP.
Either increase the value assigned to OS_GROUP, or if possible
reduce the number of groups in the application.

113 - 0x71 GRPadd() used in an interrupt

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 316

 This error occurs when GRPadd() is called in an interrupt
context. GRPadd() is protected by a mutex so it can’t be used in
an interrupt.

114 - 0x72 GRPrm() used in an interrupt
 This error occurs when GRPrm() is called in an interrupt context.

GRPadd() is protected by a mutex so it can’t be used in an
interrupt.

115 - 0x73 GRPwait() used in an interrupt
 This error occurs when GRPwait() is called in an interrupt

context. GRPwait() is a blocking service therefore it cannot be
called in an interrupt.

116 - 0x74 Invalid service descriptor used in group-add
 This error occurs when GTPaddMbx() / GRPaddSEM() /

GRPaddSEMbin() / is used with an invalid service (semaphore or
mailbox).

117 - 0x75 Invalid group owner descriptor in a semaphore / mailbox
 When a semaphore or a mailbox is attached to a group, the

semaphore / mailbox descriptor memorizes the group it is attached
to. This internal error occurs when the kernel is internally
processing groups. The most likely culprit is a memory
corruption that would have occurred in the application.

118 - 0x76 Invalid task owner descriptor in a group
 When a group is created, the descriptor of the task that has created

the group is held in the group descriptor. This internal error occurs
when the kernel is processing groups. The most likely culprit is a
memory corruption that would have occurred in the application.

119 - 0x77 Invalid group descriptor used in group-add
 This error occurs when when GRPwait() / GRPaddSEM() /

GRPaddSEMbin() is used with an invalid group descriptor.
120 - 0x78 Invalid group descriptor used in GRPrm()
 This error occurs when GRPrm() is used with an invalid group

descriptor.
121 - 0x79 Invalid group descriptor used in GRPwait()
 This error occurs when GRPwait() / GRPaddSEM() /

GRPaddSEMbin() / is used with an invalid group descriptor.
122 - 0x7A Invalid mailbox descriptor attached to a group
 When a mailbox is attached to a group, the group memorizes the

mailbox that was attached. This internal error occurs when the
kernel is processing groups and it detects an attached invalid
mailbox descriptor. The most likely culprit is a memory
corruption that would have occurred in the application.

123 - 0x7B Invalid semaphore descriptor attached to a group
 When a semaphore is attached to a group, the group memorizes

the semaphore that was attached. This internal error occurs when
the kernel is processing groups and it detects an attached invalid
semaphore descriptor. The most likely culprit is a memory
corruption that would have occurred in the application.

124 - 0x7C Invalid group descriptor in the group trigger list
 When services are attached to a group, each service is represented

by a group descriptor and these are attached together in a linked
list. This error indicates there is an invalid group descriptor in
that linked list. The most likely culprit is a memory corruption
that would have occurred in the application.

125 - 0x7D Invalid group descriptor in the group parking lot

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 317

 All groups “deleted” with GRPrm() are kept in a parking lot
linked list for later re-use with GRPadd(). This error indicates
there is an invalid group descriptor in that linked list. The most
likely culprit is a memory corruption that would have occurred in
the application.

126 - 0x7D Task blocked on an invalid group descriptor
 When a task is blocked on a group, the task the group memorizes

the group it is blocked on. This internal error occurs when the
kernel detects an attached invalid group descriptor. The most
likely culprit is a memory corruption that would have occurred in
the application.

128 - 0x80 Invalid task descriptor to perform starvation protection
 This internal error occurs when the kernel is expected to perform

starvation protection on an invalid task descriptor. The most
likely culprit is a memory corruption that would have occurred in
the application.

129 - 0x81 Invalid task descriptor to in the starvation protection linked list
 All ready to run tasks under starvation protection are held in a

linked list and this error indicates there is an invalid task
descriptor is in that linked list. The most likely culprit is a
memory corruption that would have occurred in the application.

240+ – 0xE0+ Core #N stack overflow (Single core: N always equates 0)
 This error occurs when a stack overflow is detected. The error

number indicates the core number, i.e. the core number is error
number - 240 (or 0xE0). The task suffering from the stack
overflow can be determined by looking at the global variable
G_OStaskNow, which holds the task descriptor. Either increase
the stack size when creating the task with TSKcreate() or
reduce the stack use by the task.

See also

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 318

7 Appendix A: Priority inversion

The definition of priority inversion, as stated in Wikipedia [R2]:

“In computer science, priority inversion is a problematic scenario in scheduling when a
higher priority task is indirectly preempted by a lower priority task effectively "inverting"
the relative priorities of the two tasks.

This violates the priority model that high priority tasks can only be prevented from running
by higher priority tasks and briefly by low priority tasks which will quickly complete their
use of a resource shared by the high and low priority tasks.”

There are two well-known safeguard techniques that can be used against priority inversion. The first one
is called priority inheritance, where the low-priority task locking a mutex inherits the priority of the
higher-priority task that becomes blocked when it tries to lock the mutex. As defined in Wikipedia [R3]:

“In real-time computing, priority inheritance is a method for eliminating priority inversion
problems. Using the programming method, a process scheduling algorithm will increase the
priority of a process to the maximum priority of any process waiting for any resource on which
the process has a resource lock“

The second is called priority ceiling, where the shared resource is assigned a priority. Any task that
accesses that share resource gets its priority set to the shared resource priority. As defined in Wikipedia
[R4]:

“In real-time computing, the priority ceiling protocol is a synchronization protocol for shared
resources to avoid unbounded priority inversion and mutual deadlock due to wrong nesting of
critical sections. In this protocol each resource is assigned a priority ceiling, which is a priority
equal to the highest priority of any task, which may lock the resource.”

The Abassi RTOS support both priority inversion protection methods. When the build option
OS_MTX_INVERSION is positive, the priority inheritance mechanism is activated; when the build option is
negative, the priority ceiling mechanism is activated.

7.1 Priority Inheritance
Priority inheritance is a mechanism where a task locking/owning a mutex will see its priority increased
when a higher priority task tries to lock said mutex. The task owning the mutex gets its priority increased
to the priority level of the task trying to lock the mutex. If another task tries to lock the same mutex, the
mutex owner task gets its priority increased again if the task trying to lock the mutex is of higher priority
than the new priority of the mutex owner. When the mutex owner unlocks the mutex, the priority of the
task that has unlocked the mutex is brought back to its original priority. If that task locks another mutex,
and the priority inheritance rules also apply to that mutex, then the task will have its priority level lowered
to the priority level of the highest priority task trying to lock that new mutex. In effect, priority inheritance
removes any possibility of a high priority task becoming the slave of a lower priority task.

Priority inheritance operates a bit differently if the RTOS is build for a single task per priority or for
multiple tasks per priority. The latter case operates exactly as described in the previous paragraph. For the
former, because two tasks cannot be at the same priority level, a task that has it priority level raised
because of priority inheritance gets a priority level of one level higher than the priority of the highest
priority task blocked on the mutex.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 319

7.1.1 Single Task per priority
As explained in the previous section, when the RTOS is built for single task per priority, the priority
inheritance mechanism assigns a priority level one level higher than normally required. This is done to not
have two or more tasks at the same priority levels. This is true only if the application does not have a task
assigned to that priority level + 1. So, as a simple rule, when priority inheritance is enabled in a RTOS
built for single task per priority, the N priority levels above any task that can lock a mutex should remain
unassigned, where the value for N is the maximum number of mutex a single task can have a lock on at the
same time. N unused priority must be kept above all tasks that can lock a mutex.

To better understand this requirement, consider the following example:

Ø Task A (high priority) use Mutex X

Ø Task B (mid priority) uses Mutex X and Mutex Y

Ø Task C (low priority) uses Mutex Y

If the following sequence of events happen:

1) Task B locks Mutex X

2) Task A tries to lock Mutex X, priority of Task B raised above current Task A

3) Task C locks mutex Y

4) Task B tries to lock mutex Y, priority of Task C is raised above current Task B

The final priority order of the tasks will be:

 Task B: original priority level of Task A + 1

 Task C: current priority level of Task B + 1 (== original priority level of Task A + 2)

 Task A: same priority

7.2 Priority Ceiling
The Abassi RTOS completely automates the priority ceiling mechanism, which means there is no need for
the designer to set the priority at which a task locking a mutex must operate at. The RTOS memorizes the
priority of the highest priority task locking the mutex. Also, the implementation of priority ceiling does not
match exactly what the standard definition implies. When a task locks a mutex and no other tasks are
blocked on that mutex, the priority of the locker is not modified; neither is the ceiling priority updated.

As explained in the previous section on priority inheritance, the priority ceiling mechanism operates a bit
differently depending if the build allows multiple tasks running at the same priority. When multiple tasks
are allowed to run at the same priority level, the priority ceiling raises the priority of the task that locks the
mutex to exactly the same priority as the highest-priority task that ever used the mutex. But when the build
option does not allow multiple tasks to run at the same priority, the priority is raised one level above the
maximum, without exceed the numerical value zero, which is the highest priority level allowed in an
application.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 320

For priority ceiling, it is not possible to give a general rule that will allow priority ceiling to properly
operate when a task can lock two or more mutexes at the same time. This is because the priority ceiling
mechanism attaches a priority to a mutex and that priority is always one level above the highest priority
task that can lock the mutex. So if the highest priority task can lock two or more mutexes, each one of
these mutex may have the same priority attached to them; multiple mutexes means possibly multiple tasks
locking one of the mutexes. The only solution when multiple mutexes can have the same ceiling priority
attached to them is to modify these ceiling priority to be different through the use of the
MTXsetCeilPrio() component (Section 6.5.16). Obviously there cannot be any task set to run at any of
the different ceiling priority.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 321

8 Appendix B: Task Starvation
The condition known as task starvation occurs when higher priority tasks consume all the CPU available,
forcing the lower priority tasks to remain in the ready to run state for an extended period of time. On most
applications, the duration of time when the task starvation condition occurs is short enough to not impact
the overall behavior of the application. But, when an application is constantly operating very close to the
maximum CPU all the time, task starvation may start to have a negative impact. If some lower priority
tasks must run in order to maintain the proper behavior of the application, then there is obviously a need
for a mechanism to guarantee some CPU for all tasks. The most common technique used to fulfill this
requirement is called “priority aging”.

Wikipedia defines Priority aging as [R5]:

“Aging is the process of gradually increasing the priority of a task, based on its waiting
time. The aging technique estimates the time a process will run based on a weighted average
of previous estimates and measured values. Aging can be used to reduce starvation of low
priority tasks. Aging is used to ensure that jobs in the lower level queues will eventually
complete their execution.”

In a hard real-time environment, it may not be desirable to implement priority aging as is. For example, if
a low priority task needs a fair amount of CPU, by increasing its priority, it may reach a priority level such
that the CPU time consumed by it creates another task starvation, this one for a critical, high priority task.

A modified priority aging mechanism is available in Abassi when the build option OS_STARVE_WAIT_MAX
(Section 4.1.43) is non-zero. The basic priority aging mechanism is retained where a ready to run task gets
its priority increased one level at a time if it does not reach the running state. The value of build option
OS_STARVE_WAIT_MAX specifies, in number of timer ticks, the maximum time a task must remain in the
ready to run state before its priority is increased by 1 level. The priority level is increased one level at a
time until it reaches the priority value set by the build option OS_STARVE_PRIO (Section 4.1.41), and
remains at that priority until it reaches the running state. When the aged priority task becomes running, it
is allowed to be running for a maximum duration; this duration is specified in number of timer ticks with
the build option OS_STARVE_TIME_MAX (Section 4.1.42). Once it has run, the task priority returns to its
original priority.

There is only one task at a time that can get its priority level increased with the priority aging process.
This choice was made to eliminate the risk that promoting multiple tasks could result in many tasks
reaching the running state at the same time. If that was to happen, the combined CPU usage could
aggravate the problem of task starvation, affecting a higher priority task. So only a single task gets its
priority increased step by step. After the task becomes running for a maximum of
OS_STARVE_TIME_MAX, it returns at the end of an internal queue. That internal queue holds all the tasks
in the application that are in the ready to run state with a priority value less than OS_STARVE_PRIO. The
task that has been held in the ready to run state the longest is always the task on which priority aging is
performed. If a task in the queue becomes running, it is removed from the queue, and when it reaches the
ready to run state, it is inserted at the end of the queue.

As a simple design rule, the build option OS_STARVE_PRIO should always be set at the priority level
where the tasks at higher priority than OS_STARVE_PRIO have a hard real-time requirement. The value of
OS_STARVE_PRIO can also be increased (lower the priority) to a value where only the tasks below that
priority level are known to risk suffering from starvation.

Task starvation is disabled on a task if the starvation priority is equal to OS_PRIO_MIN, or if it is greater or
equal to the run priority of the task. The former was added as an invalid case because the Idle Task is
always set at a priority value of OS_PRIO_MIN and should never be forced to run, as it may be where the
processor is put into sleep mode. Having the starvation mechanism applied to the Idle Task would then put
the processor into sleep once in a while when it is not appropriate.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 322

9 Appendix C: Mutex Deadlock
The most simple mutex deadlock problem is when two tasks lock one mutex each and are mutually blocked
on the mutex the other task locks. This can be extrapolated to the generic mutex deadlock problem when
more than two mutexes and two tasks are involved. Here as a generic description of the mutex deadlock
problem:

1) Task N locks Mutex N

2) For Task K in N+1 to M

Task K locks Mutex K / becomes blocked trying to lock Mutex K-1

3) Task N blocked trying to lock Mutex M

The deadlock occurs at step 3) as the first task (Task N) tries to lock mutex M. In a mutex deadlock
condition, there is a chain of locked mutex – task pairs that goes back to a mutex the task locks.

Abassi has a provision to detect any type of mutex deadlock. This feature is enabled when the build option
OS_MTX_DEADLOCK (Section 4.1.25) is set to a non-zero value. As there are no very simple mathematical
techniques to quickly detect a mutex deadlock (other than using matrices), the operation performed in the
RTOS is to traverse the chains of locked mutex – task pairs.

The Abassi deadlock detection algorithm is show in its simplified form below:

Table 9-1 Mutex deadlock detection pseudo-code

if the task get blocked on a mutex
 if the task locks one or more mutexes
 Owner ß Owner of the mutex the task will block on
 while Owner valid
 Locker ß Task that Owner is blocked on
 if Locker is valid
 Mtx = Mutex locked by Locker
 while Mtx valid
 if Mtx == Locker
 DEADLOCK DETECTED
 Mtx ß Next Mutex locked by Locker
 endwhile
 Owner ß Task locking mutex locker is blocked on
 endif
 endwhile
 endif
endif

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 323

10 Appendix D: Round Robin
Round robin is quite simple: it gives equal access to the CPU for all running / ready to run tasks at the same
priority. Abassi offers a unique implementation of round robin:

Ø The CPU can be distributed unevenly amongst tasks at the same priority

Ø Round robin tasks can co-exist with tasks that will run until blocking/completion

The usefulness of uneven round robin CPU distribution amongst tasks at the same priority is to allocate the
available CPU according to the needs of the tasks. Many applications have tasks that can run at low
priority, but the relative complexities of these tasks are quite different. One task may be used for a few
simple operations, while another needs a fair amount of CPU to complete its processing. Trying to build an
application using different priority levels, to give fair access to the CPU according to their needs, is quite
complex. However, using the component TSKsetRR() (Section 6.3.21) reduces the headache of the CPU
distribution to a simple arithmetic problem.

For example, assume three tasks need to share the available CPU, and the complexity of the tasks is such
that the first task needs 1/2 the CPU of third task to complete its processing, and the second needs 1/4 the
CPU the third task to complete its CPU. This means the first task needs access to 2/7 of the CPU, the
second needs access to 1/7 of the CPU, and the third for 4/7 of the CPU.

If the design is such that a full round robin cycle between these three task is desired within 40 timer ticks,
then the arguments for the components TSKsetRR() are:

Ø 1st Task: (2/7) * 40 = 11 timer ticks

Ø 2nd Task: (1/7) * 40 = 6 timer ticks

Ø 3rd Task: (4/7) * 40 = 23 timer ticks

Having tasks that are allowed to run until blocking/completion co-existing with tasks at the same priority
that a share the CPU in a round robin fashion is an extension of the uneven CPU distribution amongst these
tasks.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 324

11 Appendix E: Cooperative mode
The Abassi kernel offers two types of cooperative operation. The first one is a full emulation of a
cooperative RTOS, and the second allows the use of a cooperative mode amongst tasks at the same priority.

11.1 Cooperative RTOS emulation
The Abassi kernel can be configured to fully emulate a cooperative OS by setting the build option
OS_COOPERATIVE (Section 4.1.4) to a non-zero value. It is important to understand that this is an
emulation, and not a real cooperative task dispatcher. As a drawback, the cooperative emulation cannot use
a single stack, therefore every task in an application still requires their own individual stack. But the
emulation removes the typical constrains a single stack cooperative RTOS has, namely:

Ø The CPU can be relinquished (or blocked due to the use of a synchronization component) at any
call level: it is not necessary to relinquish the CPU/block only at the primary level (task level);

Ø Automatic variables are preserved upon relinquishing the CPU, therefore it is not necessary to
declare the persistent variables as static;

Ø All preemption synchronization mechanisms are available: typically a single stack cooperative
RTOS only offers events and mutexes with priority ceiling.

When the RTOS is configured to operate in cooperative mode, the native preemption mechanism of Abassi
is disabled (truly, it is removed from the kernel code). Therefore, task switching can only happen when the
running task relinquishes the CPU through the TSKyield() component (Section 6.3.32), or when it blocks
on a semaphore, mutex, event, or mailbox. The standard interrupt dispatcher is still required because the
dispatcher is the element that allows Abassi to not disable interrupts as the technique to protect the RTOS
critical regions.

11.2 Same priority cooperative
Instead of using the native time sliced round robin of Abassi, it is possible to make tasks at the same
priority decide when they relinquish the CPU to the others tasks at the same priority. First, for this type of
behavior to exist, it is necessary to set he build option OS_ROUND_ROBIN (Section 4.1.36) to a negative
value, to activate the programmable duration for the time slices in round robin. If one remembers, setting
the round robin time slice duration, through the component TSKsetRR() (Section 6.3.21), to a zero value
allows the task to keep using the CPU as long as it does not become blocked or preempted. When
preempted, upon release of the preemption, the task still uses the CPU. When blocked, the task will
relinquish the CPU to the next task at the same priority.

So, all there is to do to have multiples task at the same priority share the CPU in a cooperative manner is to
set the round robin time slice duration of the task to a value of 0, though the component TSKsetRR().
Then, with the component TSKyield(), the sharing of the CPU can be controlled.

It is not necessary to set to zero the round robin time slice duration of all tasks at the same priority. If there
is a mix of time slice durations of zero and non-zero, the two types co-exist without issue, as the tasks must
either relinquish the CPU or Abassi’s native round robin mechanism forces the task to relinquish the CPU
upon reaching its maximum duration.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 325

12 Appendix F: Protecting “C” libraries for multithreading
There are two issues to take into account when discussing protection of the “C” runtime library for
multithreading. One aspect about multithreading protection involves non-reentrant functions, and the other
aspect is related to the internal global variables used inside the library. Examples of non-reentrant
functions are dynamic memory allocation functions such as malloc() and free(). These functions
manipulate at least one internal linked list, and cannot be re-entered, otherwise the linked list could become
corrupted. Examples for the internal global variables are the errno or locale services. Ideally, in a
multithreading environment, each task would have access to its own copy of each one of the internal
variables used by the library.

Some development tool suites (sometimes only for selected processors) have run-time libraries that can
have hooks that allow them be protected for re-entrance. When a tool suite support only re-entrance
protection, not the private set of variables, Abassi comes either pre-configured to use the protection
mechanism, or the port document explains how to activate the protection. When re-entrance protection is
not available, it becomes necessary to protect against re-entrance by using either a mutex or
enabling/disabling interrupts. For all cases, all there is to do is as shown in the following tables, using
malloc() as an example:

Table 12-1 Multithread protection with a mutex

 MTXlock(G_OSmutex, -1)
 Ptr = malloc(SIZE_OF_ARRAY);
 MTXunlock(G_OSmutex)

 …

 MTXlock(G_OSmutex, -1)
 free(Ptr);
 MTXunlock(G_OSmutex)

Table 12-2 Multithread protection through interrupt disabling

 ISRstate = OSintOff();
 Ptr = malloc(SIZE_OF_ARRAY);
 OSintBack(ISRstate);

 …

 ISRstate = OSintOff();
 free(Ptr);
 OSintBack(ISRstate);

The example with the mutex uses G_OSmutex, which is the mutex used internally by Abassi. It is highly
recommended to use G_OSmutex to protect the library against re-entrance as this mutex is always
available, and it is already used to perform multithreading protection. Using G_OSmutex eliminates the
risk of encountering mutex deadlock issues.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 326

Non-reentrant functions from the run-time library, when such functions are protected by a mutex, must
never be used in an interrupt. The reason is quite simple: assuming a mutex is already locked because the
function is already in use by a task, when trying to lock it again in an interrupt, it will block the task that
was interrupted. It will not block the interrupt operation. Even if it was possible to block the interrupt
operation, the application would lock-up.

Full multithreading support, combining protection against re-entrance with a private set of the library
global internal variables for each task, is rare. Forcing the tasks in an application to have access to their
own private set of variables is not often needed by an application. For that reason, the activation of the
private set of variable is user selectable. Typically, the options offered for multi-threading protection are
either no protection, full protection, or re-entrance protection with selected tasks with their own private set
of the library internal variables. The port document always describes in detail all the options offered by
Abassi.

If the run-time library does not support hooks to deliver private sets of its internal variables to each task, it
is still possible to protect the library, but the code modifications becomes very cumbersome, as it is
necessary to swap through copying the internal variables at every task switch. If the target application
needs private sets of the internal variables for a library that does not support the feature, contact Code Time
Technologies to learn how to perform the modifications.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 327

13 Appendix G: Hashing
When runtime creation and names are supported (build options OS_RUNTIME and OS_NAMES), Abassi
keeps track of every services and tasks that have been created. This is done mainly to support the run-time
safe service creation, which removes the requirement to create a service before it is accessible by any of
the application tasks. The run-time safe service creation done by automatically creating services when the
first opening of the service is done. Abassi keeps track of the existing services through linked lists, one
link list per services / tasks. When a service is opened, Abassi scans the relevant link list to see if the
service to open already exists or not. If it does not exist, it creates it and adds it to the linked list. If the
service has already been created, it reports the existing service for the opening operation. Traversing the
linked list for the check is fairly lightweight as long as there isn’t too many services already created.

If the number of services of the same type created in an application is quite large, alike 100’s, then using
hashing will help reduce the time required to open a service. To reduce the serach time, all there is to do is
to define and set to a value greater than 1 the build option OS_HASH_XXX associated to the service one
wants to reduce the search time. Statistically, the search time becomes 1/OS_HASH_xxx the time required
using a single linked list.

When hashing is enable, the “C” string of the name of the service is used to compute the hash code, which
is simply done by using the sum of each ones of the ASCII characters in the string, modulo the hashing
table size, which is sized to OS_HASH_XXX entries. This hashing code is then used to select the hashing
table entry corresponding to one of the OS_HASH_XXX linked lists holding the already created services. The
way the hashing is computed is definitely not optimal; it has been kept very simple to minimize the code
size and the real-time requirements.

Abassi RTOS Abassi User’s Guide 2022.11.01

Rev 1.54 Page 328

14 References
[R1] C Standard 1999, available at: http://www.open-std.org/JTC1/SC22/WG14/
[R2] http://en.wikipedia.org/wiki/Priority_inversion, definition of Priority Inversion.
[R3] Priority Inheritance on Wikipedia, http://en.wikipedia.org/wiki/Priority_inheritance
[R4] Priority Ceiling on Wikipedia, http://en.wikipedia.org/wiki/Priority_ceiling_protocol
[R5] http://en.wikipedia.org/wiki/Aging_(scheduling), definition of Priority Aging.
[R6] Abassi System Calls Layer, available on http://www.code-time.com

