
Copyright Information

This document is copyright Code Time Technologies Inc. ©2012. All rights reserved. No part of this document may be reproduced
or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of Code Time

Technologies Inc.

Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

Abassi RTOS

Porting Document

ARM Cortex-A9 – CCS

Disclaimer

Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,

but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the

document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in

the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

ARM and Cortex are registered trademarks of ARM Limited. Code Composer Studio is a registered trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 3

Table of Contents

1 INTRODUCTION .. 6

1.1 DISTRIBUTION CONTENTS ... 6
1.2 LIMITATIONS ... 6
1.3 FEATURES .. 7

2 TARGET SET-UP .. 8

2.1 STACKS SET-UP ... 8
2.2 SATURATION BIT SET-UP ..10
2.3 VFP / NEON SET-UP ..12

3 INTERRUPTS ...13

3.1 INTERRUPT HANDLING ...13
3.1.1 Interrupt Table Size ...13
3.1.2 Interrupt Installer ..14

3.2 FAST INTERRUPTS ...15
3.3 NESTED INTERRUPTS ..15

4 STACK USAGE...16

5 SEARCH SET-UP ...17

6 CHIP SUPPORT ...20

7 MEASUREMENTS ...21

7.1 MEMORY ..21
7.2 LATENCY ..24

8 APPENDIX A: BUILD OPTIONS FOR CODE SIZE ...28

8.1 CASE 0: MINIMUM BUILD ...28
8.2 CASE 1: + RUNTIME SERVICE CREATION / STATIC MEMORY ..29
8.3 CASE 2: + MULTIPLE TASKS AT SAME PRIORITY ...30
8.4 CASE 3: + PRIORITY CHANGE / PRIORITY INHERITANCE / FCFS / TASK SUSPEND31
8.5 CASE 4: + TIMER & TIMEOUT / TIMER CALL BACK / ROUND ROBIN ..32
8.6 CASE 5: + EVENTS / MAILBOXES ..33
8.7 CASE 6: FULL FEATURE BUILD (NO NAMES) ...34
8.8 CASE 7: FULL FEATURE BUILD (NO NAMES / NO RUNTIME CREATION) ..35
8.9 CASE 8: FULL BUILD ADDING THE OPTIONAL TIMER SERVICES ...36

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 4

List of Figures
FIGURE 2-1 PROJECT FILE LIST ... 8
FIGURE 2-2 GUI SET OF SYSTEM STACK SIZE ... 9
FIGURE 2-3 GUI SET OF OS_SUPER_STACK_SIZE ..10
FIGURE 2-4 GUI SET OF SATURATION BIT CONFIGURATION ...11
FIGURE 3-1 GUI SET OF OS_N_INTERRUPTS ...14
FIGURE 7-1 MEMORY MEASUREMENT CODE OPTIMIZATION SETTINGS ...22
FIGURE 7-2 LATENCY MEASUREMENT CODE OPTIMIZATION SETTINGS ...24

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 5

List of Tables
TABLE 1-1 DISTRIBUTION ... 6
TABLE 2-1 STACK SIZE TOKENS .. 8
TABLE 2-2 OS_IRQ_STACK_SIZE MODIFICATION... 9
TABLE 2-3 COMMAND LINE SET OF OS_SUPER_STACK_SIZE ..10
TABLE 2-4 SATURATION BIT CONFIGURATION ...11
TABLE 2-5 COMMAND LINE SET OF SATURATION BIT CONFIGURATION ..11
TABLE 2-6 COMMAND LINE ENABLING OF THE VFPV3 ...12
TABLE 2-7 COMMAND LINE ENABLING OF THE VFPV3D16 ..12
TABLE 2-8 COMMAND LINE ENABLING OF THE NEON ...12
TABLE 3-1 COMMAND LINE SET THE INTERRUPT TABLE SIZE ..13
TABLE 3-2 ATTACHING A FUNCTION TO AN INTERRUPT ...14
TABLE 3-3 INVALIDATING AN ISR HANDLER ..15
TABLE 4-1 CONTEXT SAVE STACK REQUIREMENTS ...16
TABLE 5-1 SEARCH ALGORITHM CYCLE COUNT ..18
TABLE 7-1 “C” CODE MEMORY USAGE ...23
TABLE 7-2 ASSEMBLY CODE MEMORY USAGE ..23
TABLE 7-3 MEASUREMENT WITHOUT TASK SWITCH ..25
TABLE 7-4 MEASUREMENT WITHOUT BLOCKING ...25
TABLE 7-5 MEASUREMENT WITH TASK SWITCH ..25
TABLE 7-6 MEASUREMENT WITH TASK UNBLOCKING ..26
TABLE 7-7 LATENCY MEASUREMENTS ..27
TABLE 8-1: CASE 0 BUILD OPTIONS ..28
TABLE 8-2: CASE 1 BUILD OPTIONS ..29
TABLE 8-3: CASE 2 BUILD OPTIONS ..30
TABLE 8-4: CASE 3 BUILD OPTIONS ..31
TABLE 8-5: CASE 4 BUILD OPTIONS ..32
TABLE 8-6: CASE 5 BUILD OPTIONS ..33
TABLE 8-7: CASE 6 BUILD OPTIONS ..34
TABLE 8-8: CASE 7 BUILD OPTIONS ..35
TABLE 8-9: CASE 8 BUILD OPTIONS ..36

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 6

1 Introduction

This document details the port of the Abassi RTOS to the ARM Cortex-A9 processor, commonly known as

Arm9. The port is also valid for the ARMv4, ARMv5, ARMv6 and ARMv7 core architectures. The

software suite used for this specific port is the Code Composer Studio from Texas Instruments (abbreviated

CCS); the version used for the port and all tests is Version 5.2.0.00069.

1.1 Distribution Contents

The set of files supplied with this distribution are listed in Table 1-1 below:

Table 1-1 Distribution

File Name Description

Abassi.h Include file for the RTOS

Abassi.c RTOS “C” source file

Abassi_CORTEXA9_CCS.s RTOS assembly file for the ARM Cortex-A9 to use with

the Code Composer Studio

Demo_3_PANDA_A9_CCS.c Demo code that runs on the Pandaboard ES evaluation

board

AbassiDemo.h Build option settings for the demo code

1.2 Limitations

The RTOS uses SWI (software interrupts) numbers 0, 1 and 2. A hook is made available for the application

to use the SWI, as long as the numbers used are not 0, 1 or 2.

Fast Interrupts (FIQ) are not handled by the RTOS, as they are left untouched by the RTOS to fulfill their

intended purpose of interrupts not requiring kernel accesses. Only the interrupts mapped to the IRQ

interrupt are handled by the RTOS.

The hybrid stack is not available in this port, as ARM’s GIC (General Interrupt Controller) does not allow

nesting of the interrupts (except FIQ nesting the IRQ).

Some linker issues have been found when the test suite was run. One should avoid setting the optimization

level to 4 as it was found a few time that calls to the library function strcpy() was replaced by faulty

code. When the optimization is set to 4, it enables the linker to inline function code that is called once, or

when in-lining produces smaller code than a function call.

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 7

1.3 Features

All tasks run in User mode.

The assembly file was coded using only ARMv4 non-superseded instructions. This means the RTOS for

the Arm9 can also be used with ARMv5, ARMv6, and ARMv7; so the Arm5, Arm8, Arm9 and Arm15 are

also supported with this port.

The assembly file does not use the BL or BLX instruction when branching/calling an external module.

This was done to first allow the assembly file to access the whole 4 Gigabytes address space and, second, to

be usable with ARMv4 devices.

The RTOS assembly file is coded with 32-bit instructions, but co-exists with 16-bit instruction modules,

including Thumb, Thumb2, or ThumbEE (Jazelle RCT).

The VFPv3 or VPFv3D16, and NEON, are supported, and their registers are optionally saved as part of the

task context save and/or interrupt context save.

All Code Composer application binary interfaces (tiabi, ti_arm9_abi, and eabi) are supported in the

assembly file.

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 8

2 Target Set-up

Very little is needed to configure the Code Composer Studio development environment to use the Abassi

RTOS in an application. All there is to do is to add the files Abassi.c and Abassi_CORTEXA9_CCS.s in

the source files of the application project, and make sure the configuration settings in the file

Abassi_CORTEXA9_CCS.s (the 6 stack size definitions, as described in Section 2.1, OS_HANDLE_PSR_Q

as described in Section 2.2, and the VFP setting, as described in Section 2.3) are set according to the needs

of the application. As well, update the include file path in the C/C++ compiler preprocessor options with

the location of Abassi.h. There is no need to include a start-up file, as Abassi_CORTEXA9_CCS.s is the

start-up file.

Figure 2-1 Project File List

NOTE: By default, the Code Composer Studio runtime libraries are not multithread-safe, but Code

Composer Studio has a rudimentary hook to make some part of the libraries multithread-safe. The

required hooks are applied in the file Abassi.h by attaching the Abassi internal mutex

(G_OSmutex) during runtime in OSstart(). This implies that any of the Code Composer Studio

runtime libraries protected against multi-threading cannot be used in an interrupt, as locking a

mutex in an interrupt is an invalid kernel request.

2.1 Stacks Set-up

The Arm9 handles 6 individual stacks, which are selected according to the processor mode. The following

table describes each stack, and the build token use to define the size of associated stack:

Table 2-1 Stack Size Tokens

Description Token Name

User / System mode N/A

Supervisor mode OS_SUPER_STACK_SIZE

Abort mode OS_ABORT_STACK_SIZE

Undefined mode OS_UNDEF_STACK_SIZE

Interrupt mode OS_IRQ_STACK_SIZE

Fast Interrupt mode OS_FIQ_STACK_SIZE

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 9

The User / System mode stack size is defined with the linker line option –stack_size. Or through the

GUI in the “Properties” menu “Build / ARM Linker / Basic Options / Set C system stack size (--stack_size,

-stack)”.

Figure 2-2 GUI set of System Stack Size

The other stack sizes are individuality controlled by the value set by the definition OS_XXX_STACK_SIZE,

located between lines 30 and 50 in the file Abassi_CORTEXA9_CCS.s. To not reserve a stack, set the

definition of OS_XXX_STACK_SIZE to a value of zero. To specify the stack size, set the definition of

OS_XXX_STACK_SIZE to the desired size in bytes (see Section 4 for information on stack sizing). As

supplied in the distribution, the Supervisor and IRQ stacks are set to a size of 512 bytes each, and the FIQ,

Undefined and Abort stacks are all set to a size of 64 bytes each.

To modify the size of a stack, all there is to do is to change the numerical value associated to the token;

taking the IRQ stack for example, setting its stack size to 1024 bytes is shown in the following table:

Table 2-2 OS_IRQ_STACK_SIZE modification

 .if !($$defined(OS_IRQ_STACK_SIZE))

OS_IRQ_STACK_SIZE .equ 1024

 .endif

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 10

Alternatively, it is possible to overload the OS_XXX_STACK_SIZE value set in Abassi_CORTEXA9_CCS.s

by using the assembler command line option –asm_define and specifying the desired hybrid stack size, as

shown in the following example, where the Supervisor stack size is set to 1024 bytes:

Table 2-3 Command line set of OS_SUPER_STACK_SIZE

cl470 … -asm_define=OS_SUPER_STACK_SIZE=1024 …

The stack sizes can also be set through the GUI, in the “Build / ARM Compiler / Advanced Options /

Assembler Options” menu, as shown in the following figure:

Figure 2-3 GUI set of OS_SUPER_STACK_SIZE

2.2 Saturation Bit Set-up

In the ARM Cortex-A9 status register, there is a sticky bit to indicate if an arithmetic saturation or overflow

has occurred during a DSP instruction; this is the Q flag in the status register (bit #27). By default, this bit

is not kept localized at the task level, as it needs extra processing during a context switch to do so; instead,

it is propagated across all tasks. This choice was made because most applications do not care about the

value of this bit.

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 11

If this bit is relevant for an application, even in a single task, then it must be kept locally in each task. To

keep the meaning of the saturation bit localized, the token OS_HANDLE_PSR_Q must be set to a non-zero

value; to disable it, it must be set to a zero value. This is located at around line 25 in the file

Abassi_CORTEXA9_CCS.s. The distribution code disables the localization of the Q bit, setting the token

OS_HANDLE_PSR_Q to zero, as shown in the following table:

Table 2-4 Saturation Bit configuration

 .if !($$defined(OS_HANDLE_PSR_Q))

OS_HANDLE_PSR_Q .equ 0 ; If we keep the Q bit (saturation) on per tasks

 .endif

Alternatively, it is possible to overload the OS_HANDLE_PSR_Q value set in Abassi_CORTEXA9_CCS.s by

using the assembler command line option –asm_define and specifying the desired setting with the

following:

Table 2-5 Command line set of Saturation Bit configuration

cl470 … -asm_define=OS_HANDLE_PSR_Q=0 …

The saturation bit configuration can also be set through the GUI, in the “Build / ARM Compiler / Advanced

Options / Assembler Options” menu, as shown in the following figure:

Figure 2-4 GUI set of Saturation Bit configuration

NOTE: The saturation bit is not supported by the ARMv4 architecture. Enabling OS_HANDLE_PSR_Q has

no negative effect, aside from making the context switch take a bit more CPU for no reason.

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 12

2.3 VFP / NEON set-up

The assembly file Abassi_CORTEXA9_CCS.s, depending on its configuration, handles four different types

of VFP. They are:

 No VPU coprocessor

 VPUv3FPU

 VPUv3D16

 NEON

The file Abassi_CORTEXA9_CCS.s is aware of the presence of a VFP, and the type of VFP, when the

assembler command line option –float_support is used, or when set through the GUI, in the “Build /

ARM Compiler / Processor Options Options” menu, as shown in the following figure:

--FIGURE—

Table 2-6 Command line enabling of the VFPv3

Cl470 … --float_support=vfpv3 …

Table 2-7 Command line enabling of the VFPv3D16

Cl470 … --float_support=vfpv3d16 …

Table 2-8 Command line enabling of the NEON

Cl470 … --neon …

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 13

3 Interrupts

The Abassi RTOS needs to be aware when kernel requests are performed inside or outside an interrupt

context. For all IRQ sources, the Abassi RTOS provides an interrupt dispatcher, which allows it to be

interrupt-aware. This dispatcher achieves two goals. First, the kernel uses it to know if a request occurs

within an interrupt context or not. Second, using this dispatcher reduces the code size, as all interrupts

share the same code for the decision making of entering the kernel or not at the end of the interrupt.

The distribution makes provision for 256 sources of interrupts, as specified by the token

OS_N_INTERRUPTS in the file Abassi_CortexA9_CCS.s, and the internal default value used by

Abassi.c. Even though the Generic Interrupt Controller (GIC) peripheral supports a maximum of 1244

interrupts, it was decided to set the distribution maximum value to 256 as this seems to be a typical

maximum supported by the different devices on the market.

3.1 Interrupt Handling

3.1.1 Interrupt Table Size

Most devices do not require all 256 interrupts, as they typically only handle between 64 and 128 sources of

interrupts; or some devices require more than 256. The interrupt table can be easily reduced to recover

code space, and at the same time recover the same amount of data memory. All there is to do is define the

build option OS_N_INTERRUPTS to the desired value. This can be done by using the compiler command

line option -D and specifying the desired setting with the following:

Table 3-1 Command line set the interrupt table size

Cl470 … -d=OS_N_INTERRUPTS=49 …

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 14

The interrupt table look-up size can also be set through the GUI, in the “Build / ARM Compiler / Advance

Options / Predefined Symbols” menu, as shown in the following figure:

 Figure 3-1 GUI set of OS_N_INTERRUPTS

3.1.2 Interrupt Installer

Attaching a function to a regular interrupt is quite straightforward. All there is to do is use the RTOS

component OSisrInstall() to specify the interrupt number and the function to be attached to that

interrupt number. For example, Table 3-2 shows the code required to attach the private timer interrupt on

an OMAP4460 (ID #29) to the RTOS timer tick handler (TIMtick):

Table 3-2 Attaching a Function to an Interrupt

#include “Abassi.h”

 …

 OSstart();

 …

 OSisrInstall(29, &TIMtick);

 /* Set-up the count reload and enable SysTick interrupt */

 … /* More ISR setup */

 OSeint(1); /* Global enable of all interrupts */

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 15

At start-up, once OSstart() has been called, all OS_N_INTERRUPTS interrupt handler functions are set to

a “do nothing” function, named OSinvalidISR(). If an interrupt function is attached to an interrupt

number using the OSisrInstall() component before calling OSstart(), this attachment will be

removed by OSstart(), so OSisrInstall() should never be used before OSstart() has ran. When an

interrupt handler is removed, it is very important and necessary to first disable the interrupt source, then the

handling function can be set back to OSinvalidISR(). This is shown in Table 3-3:

Table 3-3 Invalidating an ISR handler

#include “Abassi.h”

 …

 /* Disable the interrupt source */

 OSisrInstall(Number, &OSinvalidISR);

 …

When an application needs to disable/enable the interrupts, the RTOS supplied functions OSdint() and

OSeint() should be used.

The interrupt number indicated by Generic Interrupt Controller (GIC) interrupt is acknowledged by the ISR

dispatcher, but the dispatcher does not remove the request by a peripheral if the peripheral generates a level

interrupt instead of a pulse.

3.2 Fast Interrupts

Fast interrupts are supported on this port as the FIQ interrupts. The ISR dispatcher is designed to only

handle the IRQ interrupts.

3.3 Nested Interrupts

Interrupt nesting, other than a FIQ nesting an IRQ, is not supported on this port. The reason is simply

based on the fact the Generic Interrupt Controller is not a nested controller.

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 16

4 Stack Usage

The RTOS uses the tasks’ stack for two purposes. When a task is blocked, or ready to run but not running,

the stack holds the register context that was preserved when the task got blocked or preempted. Also, when

an interrupt occurs, the register context of the running task must be preserved in order for the operations

performed during the interrupt to not corrupt the contents of the registers used by the task when it got

interrupted. For the Cortex-A9, the context save contents of a blocked or pre-empted task is different from

the one used in an interrupt. The following table lists the number of bytes required by each type of context

save operation:

Table 4-1 Context Save Stack Requirements

Description Context save

Blocked/Preempted task context save 48 bytes

Blocked/Preempted task context save / VFP enable (VFPv3 or VFPv3D16) 112 bytes

Interrupt dispatcher context save (IRQ stack) 48 bytes

Interrupt dispatcher context save (User Stack) 64 bytes

Interrupt dispatcher context save (User Stack) / VFPv3D16 enable 128 bytes

Interrupt dispatcher context save (User Stack) / VFPv3 enable 256 bytes

When sizing the stack to allocate to a task, there are three factors to take in account. The first factor is

simply that every task in the application needs at least the area to preserve the task context when it is

preempted or blocked. Second, one must also take into account the stack needs interrupts have. Finally,

add to all this the stack required by the code implementing the task operation.

NOTE: The ARM Cortex-A9 processor needs alignment on 8 bytes for some instructions accessing

memory. When stack memory is allocated, Abassi guarantees the alignment. This said, when

sizing OS_STATIC_STACK or OS_ALLOC_SIZE, make sure to take in account that all allocation

performed through these memory pools are by block size multiple of 8 bytes.

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 17

5 Search Set-up

The Abassi RTOS build option OS_SEARCH_FAST offers three different algorithms to quickly determine

the next running task upon task blocking. The following table shows the measurements obtained for the

number of CPU cycles required when a task at priority 0 is blocked, and the next running task is at the

specified priority. The number of cycles includes everything, not just the search cycle count. The number

of cycles was measured using Code Composer’s Arm9e cycle accurate simulator. The second column is

when OS_SEARCH_FAST is set to zero, meaning a simple array traversing. The third column, labeled Look-

up, is when OS_SEARCH_FAST is set to 1, which uses an 8 bit look-up table. Finally, the last column is

when OS_SEARCH_FAST is set to 5 (CCS/Cortex-A9 int are 32 bits, so 2^5), meaning a 32 bit look-up

table, further searched through successive approximation. The compiler optimization for this measurement

was set to High optimization (-O3) / Optimize for speed (‑mf5) without debugging information. The RTOS

build options were set to the minimum feature set, except for option OS_PRIO_CHANGE set to non-zero.

The presence of this extra feature provokes a small mismatch between the result for a difference of priority

of 1, with OS_SEARCH_FAST set to zero, and the latency results in Section 7.2.

When the build option OS_SEARCH_ALGO is set to a negative value, indicating to use a 2-dimensional

linked list search technique instead of the search array, the number of CPU cycles is constant at 190 cycles.

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 18

Table 5-1 Search Algorithm Cycle Count

Priority Linear search Look-up Approximation

1 196 223 266

2 201 228 266

3 207 233 267

4 213 238 266

5 219 243 267

6 225 248 267

7 231 253 268

8 237 222 266

9 243 228 267

10 249 233 267

11 255 238 268

12 261 243 267

13 267 248 268

14 273 253 268

15 279 258 269

16 285 231 266

17 291 237 267

18 297 242 267

19 303 247 268

20 309 252 267

21 315 257 268

22 321 262 268

23 327 267 269

24 333 240 267

When OS_SEARCH_FAST is set to 0, each extra priority level to traverse requires exactly 6 CPU cycles.

When OS_SEARCH_FAST is set to 1, each extra priority level to traverse requires exactly 5 CPU cycles,

except when the priority level is an exact multiple of 8; then there is a sharp reduction of CPU usage.

Overall, setting OS_SEARCH_FAST to 1 adds around 25 cycles of CPU for the search, compared to setting

OS_SEARCH_FAST to zero. But when the next ready to run priority is less than 8, 16, 24, … then there is

around 5 cycles needed, but without the 8 times 5 cycle accumulation. Finally, the third option, when

OS_SEARCH_FAST is set to 5, delivers a quasi-perfectly constant CPU usage, as the algorithm utilizes a

successive approximation search technique (when the delta is 32 or more, the CPU cycle count is 273 +/- 2,

for 64 or more, it is 282 +/- 2).

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 19

It is easy to observe, when looking at this table, that when an application has tasks spanning less than 7 or 8

priority levels, then the first option (OS_SEARCH_FAST set to 0) delivers the best performance. When an

application has tasks spanning less than around 24 to 29
1
 priority levels, then the second option

(OS_SEARCH_FAST set to 1) delivers overall the best performance. The third option (OS_SEARCH_FAST set

to 5) becomes interesting only when an application has tasks spanning a very large number of priority

levels, e.g. 50 or 60.

Setting the build option OS_SEARCH_ALGO to a non-negative value minimizes the time needed to change

the state of a task from blocked to ready to run, and not the time needed to find the next running task upon

blocking/suspending of the running task. If the application needs are such that the critical real-time

requirement is to get the next running task up and running as fast as possible, then set the build option

OS_SEARCH_ALGO to a negative value.

1
 At 29 priority changes, the CPU cycle count is 265

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 20

6 Chip Support

No chip support is provided with the distribution.

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 21

7 Measurements

This section gives an overview of the memory requirements and the CPU latency encountered when the

RTOS is used on the Arm9e and compiled with Code Composer Studio.

7.1 Memory

The memory numbers are supplied for the two limit cases of build options (and some in-between): the

smallest footprint is the RTOS built with only the minimal feature set, and the other with almost all the

features. For both cases, names are not part of the build. This feature was removed from the metrics

because it is highly probable that shipping products utilizing this RTOS will not include the naming of

descriptors, as its usefulness is mainly limited to debugging and making the opening/creation of

components runtime safe.

The code size numbers are expressed with “less than” as they have been rounded up to multiples of 25 for

the “C” code. These numbers were obtained using the beta release of the RTOS and may change. One

should interpret these numbers as the “very likely” numbers for the released version of the RTOS.

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 22

The code memory required by the RTOS includes the “C” code and assembly language code used by the

RTOS. The code optimization settings of the compiler that were used for the memory measurements are:

1. Debugging model: Off
2

2. Optimization level: 3
3

3. Optimize for speed: 0

4. Instruction size 16

5. Target 5e

Figure 7-1 Memory Measurement Code Optimization Settings

2
 Debugging is turned off as it restricts the optimizer.

3
 The highest optimization level on Code Composer is 4, but level 4 adds linker optimization over what

optimization level 3 does. The linker optimization is not used for the memory measurements as it converts

small function into in-line operations, removing these functions from the memory map, skewing the

memory sizing measurements.

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 23

Table 7-1 “C” Code Memory Usage

Description Code Size

Minimal Build < 775 bytes

+ Runtime service creation / static memory < 1025 bytes

+ Multiple tasks at same priority < 1125 bytes

+ Runtime priority change

+ Mutex priority inheritance

+ FCFS

+ Task suspension

< 1550 bytes

+ Timer & timeout

+ Timer call back

+ Round robin

< 2075 bytes

+ Events

+ Mailbox

< 2700 bytes

Full Feature Build (no names) < 3225 bytes

Full Feature Build (no name / no runtime creation) < 2825 bytes

Full Feature Build (no names / no runtime creation)

+ Timer services module

< 3200 bytes

Table 7-2 Assembly Code Memory Usage

Description Size

Assembly code size 804 bytes

VFPv3 +128 bytes

VFPv3D16 +116 bytes

Saturation Bit Enabled +36 bytes

There are two aspects when describing the data memory usage by the RTOS. First, the RTOS needs its

own data memory to operate, and second, most of the services offered by the RTOS require data memory

for each instance of the service. As the build options affect either the kernel memory needs or the service

descriptors (or both), an interactive calculator has been made available on the Code Time Technologies

website.

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 24

7.2 Latency

Latency of operations has been measured using the cycle accurate simulator of Code Composer. The

simulator was used instead of a real device as the development boards that were used during the

development all used caches. The CPU required for any module becomes then dependent on the cache

type, cache size and the type of code. Instead, using the simulator delivers an exact cycle count without the

impact of a cache. Because the simulator was used, the measurements of latency involving interrupts were

not performed. The code optimization settings that were used for the latency measurements are:

1. Debugging model: Off
4

2. Optimization level: 3

3. Optimize for speed: 5

4. Instruction size 32

5. Target 5e

6. FPU None

Figure 7-2 Latency Measurement Code Optimization Settings

There are 5 types of latencies that are measured, and these 5 measurements are expected to give a very

good overview of the real-time performance of the Abassi RTOS for this port. For all measurements, three

tasks were involved:

1. Adam & Eve set to a priority value of 0;

2. A low priority task set to a priority value of 1;

3. The Idle task set to a priority value of 20.

4
 Debugging is turned off as it restricts the optimizer.

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 25

The sets of 5 measurements are performed on a semaphore, on the event flags of a task, and finally on a

mailbox. The first 2 latency measurements use the component in a manner where there is no task

switching. The third measurements involve a high priority task getting blocked by the component. The

fourth measurements are about the opposite: a low priority task getting pre-empted because the component

unblocks a high priority task. Finally, the reaction to unblocking a task, which becomes the running task,

through an interrupt is provided.

The first set of measurements counts the number of CPU cycles elapsed starting right before the component

is used until it is back from the component. For these measurement there is no task switching. This means:

Table 7-3 Measurement without Task Switch

 Start CPU cycle count

 SEMpost(…); or EVTset(…); or MBXput();

 Stop CPU cycle count

The second set of measurements, as for the first set, counts the number of CPU cycles elapsed starting right

before the component is used until it is back from the component. For these measurement there is no task

switching. This means:

Table 7-4 Measurement without Blocking

 Start CPU cycle count

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 Stop CPU cycle count

The third set of measurements counts the number of CPU cycles elapsed starting right before the

component triggers the unblocking of a higher priority task until the latter is back from the component used

that blocked the task. This means:

Table 7-5 Measurement with Task Switch

 main()

 {

 …

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 Stop CPU cycle count

 …

 }

 TaskPrio1()

 {

 …

 Start CPU cycle count

 SEMpost(…); or EVTset(…); or MBXput(…);

 …

 }

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 26

The fourth set of measurements counts the number of CPU cycles elapsed starting right before the

component blocks on a high priority task until the next ready to run task is back from the component it was

blocked on; the blocking was provoked by the unblocking of a higher priority task. This means:

Table 7-6 Measurement with Task unblocking

 main()

 {

 …

 Start CPU cycle count

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 …

 }

 TaskPrio1()

 {

 …

 SEMpost(…); or EVTset(…); or MBXput(…);

 Stop CPU cycle count

 …

 }

Table 7-7 lists the results obtained, where the cycle count is measured using the number of CPU cycle

measure with Code Composer cycle accurate simulator on the Cortex-A9.

The saturation bit (controlled through OS_HANDLE_PSR_Q) was not enabled in any of these tests.

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 27

In the following table, the latency numbers between parentheses are the measurements when the build

option OS_SEARCH_ALGO is set to a negative value. The regular number is the latency measurements when

the build option OS_SEARCH_ALGO is set to 0.

Table 7-7 Latency Measurements

Description Minimal Features Full Features

Semaphore posting no task switch 108 (108) 162 (162)

Semaphore waiting no blocking 118 (114) 175 (175)

Semaphore posting with task switch 160 (180) 270 (282)

Semaphore waiting with blocking 179 (172) 305 (295)

Semaphore posting in ISR with task switch n/a (n/a) n/a (n/a)

Event setting no task switch n/a 159 (159)

Event getting no blocking n/a 186 (186)

Event setting with task switch n/a 278 (290)

Event getting with blocking n/a 317 (307)

Event setting in ISR with task switch n/a n/a (n/a)

Mailbox writing no task switch n/a 204 (204)

Mailbox reading no blocking n/a 208 (208)

Mailbox writing with task switch n/a 323 (335)

Mailbox reading with blocking n/a 352 (342)

Mailbox writing in ISR with task switch n/a n/a (n/a)

Interrupt Latency n/a n/a

Interrupt overhead entering the kernel n/a (n/a) n/a (n/a)

Interrupt overhead NOT entering the kernel n/a n/a

Context switch 28 29

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 28

8 Appendix A: Build Options for Code Size

8.1 Case 0: Minimum build

Table 8-1: Case 0 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 2 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 2 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 0 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 29

8.2 Case 1: + Runtime service creation / static memory

Table 8-2: Case 1 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 2 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 2 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 0 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 30

8.3 Case 2: + Multiple tasks at same priority

Table 8-3: Case 2 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 31

8.4 Case 3: + Priority change / Priority inheritance / FCFS / Task suspend

Table 8-4: Case 3 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 32

8.5 Case 4: + Timer & timeout / Timer call back / Round robin

Table 8-5: Case 4 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 33

8.6 Case 5: + Events / Mailboxes

Table 8-6: Case 5 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 34

8.7 Case 6: Full feature Build (no names)

Table 8-7: Case 6 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 35

8.8 Case 7: Full feature Build (no names / no runtime creation)

Table 8-8: Case 7 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

Abassi RTOS Port – ARM Cortex-A9 – CCS 2012.07.18

Rev 1.1 Page 36

8.9 Case 8: Full build adding the optional timer services

Table 8-9: Case 8 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 1 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

