
Copyright Information

This document is copyright Code Time Technologies Inc. ©2012. All rights reserved. No part of this document may be reproduced
or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of Code Time

Technologies Inc.

Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

Abassi RTOS

Porting Document

ARM Cortex-M0 – Keil Suite

`

Disclaimer

Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,

but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the

document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in

the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

Vision is a registered trademark of Keil Elektronik GmbH / Keil Software Inc. ARM and Cortex are registered trademarks of ARM
Limited. All other trademarks are the property of their respective owners.

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 3

Table of Contents

1 INTRODUCTION .. 6

1.1 DISTRIBUTION CONTENTS ... 6
1.2 LIMITATIONS ... 6

2 TARGET SET-UP .. 7

2.1 OS_HEAP_SIZE AND OS_STACK_SIZE SET-UP ... 7
2.2 INTERRUPT STACK SET-UP .. 8
2.3 MULTITHREADING PROTECTION .. 9

2.3.1 Standard Library Multithreading Protection ...10

2.3.1.1 Full Protection ... 10

2.3.1.2 Partial Protection ... 11

2.3.2 MicroLIB Multithreading Protection ...12

3 INTERRUPTS ...13

3.1 INTERRUPT HANDLING ...13
3.1.1 Interrupt Table Size ...13
3.1.2 Interrupt Installer ..15

3.2 INTERRUPT PRIORITY AND ENABLING ..16
3.3 FAST INTERRUPTS ...16
3.4 NESTED INTERRUPTS ..19

4 STACK USAGE...20

5 SEARCH SET-UP ...21

6 CHIP SUPPORT ...24

7 MEASUREMENTS ...25

7.1 MEMORY ..25
7.2 LATENCY ..27

8 APPENDIX A: BUILD OPTIONS FOR CODE SIZE ...31

8.1 CASE 0: MINIMUM BUILD ...31
8.2 CASE 1: + RUNTIME SERVICE CREATION / STATIC MEMORY ..32
8.3 CASE 2: + MULTIPLE TASKS AT SAME PRIORITY ...33
8.4 CASE 3: + PRIORITY CHANGE / PRIORITY INHERITANCE / FCFS / TASK SUSPEND34
8.5 CASE 4: + TIMER & TIMEOUT / TIMER CALL BACK / ROUND ROBIN ..35
8.6 CASE 5: + EVENTS / MAILBOXES ..36
8.7 CASE 6: FULL FEATURE BUILD (NO NAMES) ...37
8.8 CASE 7: FULL FEATURE BUILD (NO NAMES / NO RUNTIME CREATION) ..38
8.9 CASE 8: FULL BUILD ADDING THE OPTIONAL TIMER SERVICES ...39

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 4

List of Figures
FIGURE 2-1 PROJECT FILE LIST ... 7
FIGURE 2-2 GUI SET OF HEAP AND STACK SIZES .. 8
FIGURE 2-3 GUI SET OF OS_ISR_STACK ... 9
FIGURE 2-4 GUI SET OF OS_KEIL_REENT ..10
FIGURE 2-5 C LIBRARY HELP ...12
FIGURE 3-1 GUI SET OF THE INTERRUPT TABLE SIZE ..14
FIGURE 3-2 GUI SET OF THE INTERRUPT TABLE SIZE ..15
FIGURE 7-1 MEMORY MEASUREMENT CODE OPTIMIZATION SETTINGS ...25
FIGURE 7-2 LATENCY MEASUREMENT CODE OPTIMIZATION SETTINGS ...27

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 5

List of Tables
TABLE 1-1 DISTRIBUTION ... 6
TABLE 2-1 OS_STACK_SIZE AND OS_HEAP_SIZE .. 7
TABLE 2-2 COMMAND LINE SET OF HEAP AND STACK SIZES ... 8
TABLE 2-3 OS_ISR_STACK .. 8
TABLE 2-4 COMMAND LINE SET OF OS_ISR_STACK .. 9
TABLE 2-5 COMMAND LINE SET OF MULTITHREAD CONFIGURATION ..10
TABLE 2-6 SETTING A TASK TO USE RE-ENTRANT LIBRARY ..11
TABLE 3-1 ABASSI_CORTEXM0_KEIL.S INTERRUPT TABLE SIZING ...13
TABLE 3-2 COMMAND LINE SET THE INTERRUPT TABLE SIZE ..13
TABLE 3-3 OVERLOADING THE INTERRUPT TABLE SIZING FOR ABASSI.C ..14
TABLE 3-4 ATTACHING A FUNCTION TO AN INTERRUPT ...15
TABLE 3-5 INVALIDATING AN ISR HANDLER ..16
TABLE 3-6 DISTRIBUTION INTERRUPT TABLE CODE ..16
TABLE 3-7 LPC11U24 UART 0 / 1 FAST INTERRUPTS ...17
TABLE 3-8 FAST INTERRUPT WITH DEDICATED STACK ..18
TABLE 3-9 REMOVING INTERRUPT NESTING ...19
TABLE 3-10 PROPAGATING INTERRUPT NESTING ..19
TABLE 4-1 CONTEXT SAVE STACK REQUIREMENTS ...20
TABLE 5-1 SEARCH ALGORITHM CYCLE COUNT ..22
TABLE 7-1 “C” CODE MEMORY USAGE ...26
TABLE 7-2 ASSEMBLY CODE MEMORY USAGE ..26
TABLE 7-3 MEASUREMENT WITHOUT TASK SWITCH ..28
TABLE 7-4 MEASUREMENT WITHOUT BLOCKING ...28
TABLE 7-5 MEASUREMENT WITH TASK SWITCH ..28
TABLE 7-6 MEASUREMENT WITH TASK UNBLOCKING ..29
TABLE 7-7 LATENCY MEASUREMENTS ..30
TABLE 8-1: CASE 0 BUILD OPTIONS ..31
TABLE 8-2: CASE 1 BUILD OPTIONS ..32
TABLE 8-3: CASE 2 BUILD OPTIONS ..33
TABLE 8-4: CASE 3 BUILD OPTIONS ..34
TABLE 8-5: CASE 4 BUILD OPTIONS ..35
TABLE 8-6: CASE 5 BUILD OPTIONS ..36
TABLE 8-7: CASE 6 BUILD OPTIONS ..37
TABLE 8-8: CASE 7 BUILD OPTIONS ..38
TABLE 8-9: CASE 8 BUILD OPTIONS ..39

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 6

1 Introduction

This document details the port of the Abassi RTOS to the ARM Cortex-M0 processor. The software suite

used for this specific port is the MDK-ARM Microcontroller Development Kit, more commonly known as

Keil Vision4; the version used for the port and all tests is V4.50.0.0.

1.1 Distribution Contents

The set of files supplied with this distribution are listed in Table 1-1 below:

Table 1-1 Distribution

1.2 Limitations

To optimize the reaction time of the Abassi RTOS components, it was decided to require the processor to

always operate in privileged mode (which is the default mode for Cortex-M microcontrollers) and to

always use the main stack pointer (MSP). The start-up code supplied in the distribution fulfills these

constraints and one must be careful to not change these settings in the application.

The SVCall interrupt (interrupt number -5 / interrupt vector number 11) is not available as it is reserved for

the OS, and the Abassi RTOS uses it.

File Name Description

Abassi.h Include file for the RTOS

Abassi.c RTOS “C” source file

Abassi_CORTEXM0_KEIL.s RTOS assembly file for the ARM Cortex-M0 to use with

the MDK-ARM

Demo_2_BB_LPC11U24_KEIL.c Demo code that runs on the NGX LPC11U24 evaluation

board

Demo_3_BB_LPC11U24_KEIL.c Demo code that runs on the NGX LPC11U24 evaluation

board

Demo_6_BB_LPC11U24_KEIL.c Demo code that runs on the NGX LPC11U24 evaluation

board

AbassiDemo.h Build option settings for the demo code

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 7

2 Target Set-up

Very little is needed to configure the Keil Vision4 development environment to use the Abassi RTOS in

an application. All there is to do is to add the files Abassi.c and Abassi_CORTEXM0_KEIL.s in the

source files of the application project, and make sure the four configuration settings in the file

Abassi_CORTEXM0_KEIL.s (OS_HEAP_SIZE and OS_STACK_SIZE as described in Section 2.1,

OS_ISR_STACK as described in Section 2.2, and OS_N_INTERRUPTS as described in Section 3.1.1) are set

according to the needs of the application. As well, update the include file path in the C/C++ compiler

preprocessor options with the location of Abassi.h.

Figure 2-1 Project File List

2.1 OS_HEAP_SIZE and OS_STACK_SIZE Set-up

The file Abassi_CORTEXM0_KEIL.s contains the start-up code for “C” applications built with the Keil

Vision development suite that use the Abassi RTOS. There should be no other start-up file included in

the project.

There are two definitions that are used to set-up the heap size (memory used by malloc()) and the stack

size for the function main(), which is the highest priority task at start-up (known in Abassi as

Adam&Eve). These definitions are located at around line 30 in the Abassi_CORTEXM0_KEIL.s file and

are shown in the following table:

Table 2-1 OS_STACK_SIZE and OS_HEAP_SIZE

 IF (:DEF: OS_HEAP_SIZE) == {FALSE}

OS_HEAP_SIZE EQU 4096 ; Heap size (malloc()) in bytes / Set-up to your needs

 ENDIF

 IF (:DEF: OS_STACK_SIZE) == {FALSE}

OS_STACK_SIZE EQU 1024 ; A&E stack size in bytes / Set-up to your needs

 ENDIF

A heap size of 4096 bytes and a stack size of 1024 bytes are the values set in the distribution code; modify

these values according to the needs of the application.

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 8

Alternatively, it is possible to overload the values of OS_HEAP_SIZE and OS_STACK_SIZE set in

Abassi_CORTEXM0_KEIL.s by using the assembler command line option –predefine and specifying

the desired heap size and stack size as shown in the following example, where the heap size is set to 2048

bytes, and the stack size is set to 512 bytes:

Table 2-2 Command line set of Heap and Stack sizes

armasm … -predefine “OS_HEAP_SIZE SETA 2048” –predefine “OS_STACK_SIZE SETA 512” …

The heap and stack sizes can also be set through the GUI, in the “Asm” menu, as shown in the following

figure:

Figure 2-2 GUI set of Heap and Stack sizes

2.2 Interrupt Stack Set-up

It is possible, and is highly recommended, to use a hybrid stack when nested interrupts occur in an

application. Using this hybrid stack, specially dedicated to the interrupts, removes the need to allocate

extra room to the stack of every task in the application to handle the interrupt nesting. This feature is

controlled by the value set by the definition OS_ISR_STACK, located around line 35 in the file

Abassi_CORTEXM0_KEIL.s. To disable this feature, set the definition of OS_ISR_STACK to a value of

zero. To enable it, and specify the interrupt stack size, set the definition of OS_ISR_STACK to the desired

size in bytes (see Section 4 for information on stack sizing). As supplied in the distribution, the hybrid

stack feature is enabled and a stack size of 1024 bytes is allocated; this is shown in the following table:

Table 2-3 OS_ISR_STACK

 IF (:DEF: OS_ISR_STACK) == {FALSE}

OS_ISR_STACK EQU 1024 ; If using a dedicated stack for the nested ISRs

 ENDIF ; 0 if not used, otherwise size of stack in bytes

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 9

Alternatively, it is possible to overload the values of OS_ISR_STACK set in Abassi_CORTEXM0_KEIL.s

by using the assembler command line option –predefine and specifying the desired hybrid stack size as

shown in the following example, where the hybrid stack size is set to 512 bytes:

Table 2-4 Command line set of OS_ISR_STACK

armasm … –predefine “OS_ISR_STACK SETA 512” …

The hybrid stack size can also be set through the GUI, in the “Asm” menu, as shown in the following

figure:

Figure 2-3 GUI set of OS_ISR_STACK

2.3 Multithreading protection

By default, the Keil “C” runtime library is not multithread safe. There are two aspects to take into account

when protecting the library for multithreading. The first one involves reentrance; a few library functions

are not reentrant, therefore two tasks accessing the same function at the same time can create major issues.

A good example of non-reentrant functions are the dynamic memory allocation, malloc() and free().

As they internally use a static buffer, a few pointers and some linked lists, if two tasks access the internals

of the dynamic memory allocation at the same time, corruption could occur. Protecting the non-reentrant

functions is straightforward: all there is to do is to make sure there is only a single task that can access the

function at any time. This is done with a mutex, as it is the perfect mechanism to guarantee exclusive

access to a resource.

The second type of function and variables that are not multithread safe are due to internal data used by the

library; data that is truly a global resource. Such examples of these are: the errno variable or the locale

information. The only efficient way to protected these functions and variables against multithreading is to

have the library setup to use a per task internal static data. There are multiple ways to implement the data

swapping, but fundamentally, if the library does not provided such a swapping mechanism, it becomes

cumbersome to solve the issue. It would require manually swapping the contents, by copying the

individual internal static variables of the library at every task switch.

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 10

Keil’s standard library fully supports mechanisms to make the library multithread safe. The MicroLIB

does not have such a mechanism. The following sub-sections describe how to make each of the two

libraries multithread safe.

2.3.1 Standard Library Multithreading Protection

The Keil standard library (not the MicroLIB, see Section 2.3.2 for the MicroLIB) can be set to be

completely protected against reentrance and also be multithread-safe. The type of multithreading

protection is selected according to the definition of the build option OS_KEIL_REENT; this is not a standard

build option, as it only is used with the Keil development suite on ARM processors. If this build option is

not defined, or if it is defined with a value of zero, the library is neither protected against reentrance nor

multithreading. If the build option is positive, the library is fully multithread-safe and protected against

reentrance for every task in the application. If the build option value is negative, only user-selected tasks

that are configured access the library in a multithread-safe fashion; the library still remains protected

against reentrance for all tasks.

2.3.1.1 Full Protection

For full multithreading protection of the standard library, all there is to do is to define the build option

OS_KEIL_REENT with a positive value. The build option OS_KEIL_REENT for the multithreading

protection must be given to the compiler. This can be done with the command line option –D and

specifying the setting with the following:

Table 2-5 Command line set of multithread configuration

armcc … -DOS_KEIL_REENT=1 …

The multithreading configuration can also be set through the GUI, in the “C/C++” menu, as shown in the

following figure:

 Figure 2-4 GUI set of OS_KEIL_REENT

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 11

2.3.1.2 Partial Protection

The use of full multithread protection for the library requires 96 bytes of extra data memory for each task in

the application. The extra memory required is not due to Abassi, but it is the amount of memory the library

requires to hold all its internal static data. It may not be desirable to use multithread protection for all tasks,

or on data memory restricted applications it may be impossible to use full multithreading protection.

Setting the build option OS_KEIL_REENT to a negative value allows the designer to select the tasks where

multithreading protection is required. The library modules that are non-reentrant are still protected by a

mutex; only the static area of the library becomes under control. The build option OS_KEIL_REENT is set

the same way as described in the previous section, only it must be set to a negative value for partial

protection.

Partial multithreading means that only the tasks that are set up to use the library in a multithread safe

manner will require the 96 bytes block of extra data memory. Not only is memory needed for the library

internal data, but if file I/O is used in the task, more memory is also needed for the buffering of the file or

stream. It may be good practice to use the standard library function setbuf(), or setvbuf() to tailor

each stream buffer size.

If a task uses none of the library multithread unsafe static data, then the task does not need to access the

library internal data in an exclusive manner, so there is no need to reserve and assign the memory block of

96 bytes of data memory. If a task uses the library multithread unsafe static data, but it is the only task

using that data, there is still no need to make the library multithread safe for that task. Only when two or

more tasks use the same internal data of the library do these tasks need to access the library in a multithread

safe manner.

For more information on which library functions and/or variables are non-reentrant and/or multithread

unsafe, refer to Section 2.3.2.

A task is set to use the library in a multithread safe manner with the following:

Table 2-6 Setting a task to use re-entrant library

#include “Abassi.h”

TSK_t *TskReent

int ReentData[96/sizeof(int)];

…

 /* First the task must be created */

 /* in the suspended state */

TskReent = TSKcreate(“TaskName”, TskPrio, StackSize, TaskFct, 0);

memset(&ReentData[0], sizeof(ReentData), 0); /* Buffer must be set to zero */

TskReent->XtraData[0] = (intptr_t)&ReentData; /* Attach the libspace to the task */

TSKresume(TskReent); /* The task may now be resumed */

The declaration “int ReentData[96/sizeof(int)];” can be replaced by a dynamic memory

allocation of (size_t)96. If a task does not require access to the library in a multithread safe manner,

the above code is not required.

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 12

2.3.2 MicroLIB Multithreading Protection

Contrary to the standard library, the MicroLIB does not offer internal support for multithreading protection.

Some functions in the Keil C MicroLIB runtime library are not reentrant. If these functions are only used

in one task, then there will be no problems. But if they are used by more than one task, they need to be

protected by an Abassi mutex. The preferred way is to re-use the G_OSmutex for all multithread unsafe

functions, as this will avoid deadlocks. Therefore, non-reentrant functions must be manually protected with

a mutex.

For the multithread unsafe functions and/or variables, there is no simple way to make these functions or

variables multithread safe.

Figure 2-5 shows the page in the Vision help that describes all the functions that are multithread unsafe.

When there is mention of _mutex_*, it means the function is not reentrant and must be protected by a

mutex. When there is mention of __user_libspace or __user_perthread_libspace, it indicates the

function, or variable, is not multithread safe, as it relies on static data.

Figure 2-5 C Library Help

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 13

3 Interrupts

The Abassi RTOS needs to be aware when kernel requests are performed inside or outside an interrupt

context. For all interrupt sources (except interrupt numbers less than -1) the Abassi RTOS provides an

interrupt dispatcher, which allows it to be interrupt-aware. This dispatcher achieves two goals. First, the

kernel uses it to know if a request occurs within an interrupt context or not. Second, using this dispatcher

reduces the code size, as all interrupts share the same code for the decision making of entering the kernel or

not at the end of the interrupt: there is no need to add a preamble / epilogue in the functions handling the

interrupts.

The distribution makes provision for 241 sources of interrupts, as specified by the token

OS_N_INTERRUPTS in the file Abassi_CORTEXM0_KEIL.s, and the internal default value used by

Abassi.c. Even though the Nested Vectored Interrupt Controller (NVIC) peripheral supports a maximum

of 256 interrupts on the Cortex-M0, the first 15 entries of the interrupt vector table are hard mapped to

dedicated handlers (the interrupt number -1, which is attached to SysTick, is not hard mapped but is

handled by the ISR dispatcher).

3.1 Interrupt Handling

3.1.1 Interrupt Table Size

Most devices do not require all 256 interrupts as they typically only handle between 64 and 128 sources of

interrupts. The interrupt table can be easily reduced to recover code space, and at the same time recover the

same amount of data memory. There are two files affected: in Abassi_CORTEXM0_KEIL.s, the ARM

interrupt table itself must be shrunk, and the value used in the file Abassi.c, in order to reduce the ISR

dispatcher table look-up. The interrupt table size is defined by the token OS_N_INTERRUPTS in the file

Abassi_CORTEXM0_KEIL.s around line 35. For the value used by Abassi.c, the default value can be

overloaded by defining the token OS_N_INTERRUPTS when compiling Abassi.c . The distribution table

size is set to 241; that is the NVIC maximum of 256 minus the 15 hard mapped exceptions.

For example, the LPC11U24 device from NXP uses only the first 48 entries of the interrupt table (32

external interrupts plus the standard 16 exceptions). The 256 entries table can therefore be reduced to 48.

The value to set in Abassi_CORTEXM0_KEIL.s files is 33, which is the total of 48 entries minus 15

(there are 15 hard mapped exceptions). The changes are shown in the following table:

Table 3-1 Abassi_CORTEXM0_KEIL.s interrupt table sizing

 …

 IF (:DEF: OS_N_INTERRUPTS) == {FALSE} ; # of entries in the interupt table mapped to

OS_N_INTERUPTS EQU 33 ; ISRdispatch()

 ENDIF

 …

Alternatively, it is possible to overload the OS_N_INTERRUPTS value set in Abassi_CORTEXM0_KEIL.s

by using the assembler command line option –predefine and specifying the desired setting with the

following:

Table 3-2 Command line set the interrupt table size

armasm … –predefine “OS_N_INTERRUPTS SETA 33” …

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 14

The overloading of the default interrupt vector look-up table used by Abassi.c is done by using the

compiler command line option –D and specifying the desired setting with the following:

Table 3-3 Overloading the interrupt table sizing for Abassi.c

armcc … -DOS_N_INTERRUPTS=33 …

The interrupt table size used by Abassi_CORTEXM0_KEIL.s can also be set through the GUI, in the

“Asm” menu, as shown in the following figure:

Figure 3-1 GUI set of the interrupt table size

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 15

The interrupt table look-up size used by Abassi.c can also be overloaded through the GUI, in the

“C/C++” menu, as shown in the following figure:

Figure 3-2 GUI set of the interrupt table size

3.1.2 Interrupt Installer

Attaching a function to a regular interrupt is quite straightforward. All there is to do is use the RTOS

component OSisrInstall() to specify the interrupt number and the function to be attached to that

interrupt number. For example, Table 3-4 shows the code required to attach the SysTick interrupt to the

RTOS timer tick handler (TIMtick):

Table 3-4 Attaching a Function to an Interrupt

#include “Abassi.h”

 …

 OSstart();

 …

 OSisrInstall(-1, &TIMtick);

 /* Set-up the count reload and enable SysTick interrupt */

 … /* More ISR setup */

 OSeint(1); /* Global enable of all interrupts */

NOTE: OSisrInstall() uses the interrupt number, NOT the interrupt vector number.

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 16

At start-up, once OSstart() has been called, all OS_N_INTERRUPTS interrupt handler functions are set to

a “do nothing” function, named OSinvalidISR(). If an interrupt function is attached to an interrupt

number using the OSisrInstall() component before calling OSstart(), this attachment will be

removed by OSstart(), so OSisrInstall() should never be used before OSstart() has ran. When an

interrupt handler is removed, it is very important and necessary to first disable the interrupt source, then the

handling function can be set back to OSinvalidISR(). This is shown in Table 3-5:

Table 3-5 Invalidating an ISR handler

#include “Abassi.h”

 …

 /* Disable the interrupt source */

 OSisrInstall(Number, &OSinvalidISR);

 …

When an application needs to disable/enable the interrupts, the RTOS supplied functions OSdint() and

OSeint() should be used.

The Nested Vectored Interrupt Controller (NVIC) on the Cortex-M0 does not clear the interrupt generated

by a peripheral; neither does the RTOS. If the generated interrupt is a pulse (as for the SysTick interrupt),

there is nothing to do to clear the interrupt request. However, if the generated interrupt is a level interrupt,

the peripheral generating the interrupt must be informed to remove the interrupt request. This operation

must be performed in the interrupt handler otherwise the interrupt will be re-entered over and over.

3.2 Interrupt Priority and Enabling

To properly configure interrupts, the interrupt priority must be set, and the peripheral configured to

generate interrupts and enable them. There is no software provided to perform these operations, as this

functionality is already available. First, Keil Vision4 supports the Cortex Microcontroller Software

Interface Standard (CMSIS), which provides everything required to program the processor peripherals.

Second, most chip manufacturers provide code to configure the specifics on their devices.

3.3 Fast Interrupts

Fast interrupts are supported on this port. A fast interrupt is an interrupt that never uses any component

from Abassi, and as the name says, is desired to operate as fast as possible. To set-up a fast interrupt, all

there is to do is to set the address of the interrupt function in the corresponding entry in the interrupt vector

table used by the Cortex-M0 processor. The area of the interrupt vector table to modify is located in the

file Abassi_CORTEXM0_KEIL.s around line 90. For example, on a Texas Instruments LPC11U24 device,

TIMER16 #0 is attached to interrupt number 16 (interrupt vector number 32) and the TIMER16 #1 is

attached to the interrupt number 17 (interrupt vector number 33). The code to modify is located in the

macro loop that initializes the interrupt table that sets the ISR dispatcher as the default interrupt handler.

All there is to do is add checks on the token holding the interrupt number, such that, when the interrupt

number value matches the desired interrupt number, the appropriate address gets inserted in the table

instead of the address of ISRdispatch(). The original macro loop code and modified one are shown in

the following two tables:

Table 3-6 Distribution interrupt table code

 GBLA INT_NMB ; Interrupt number in the loop

INT_NMB SETA -1 ; Can’t use < as < is unsigned

 WHILE INT_NMB != (OS_N_INTERRUPTS-1) ; Map all external interrupts to ISRdispatch()

 DCD ISRdispatch

INT_NMB SETA INT_NMB+1

 WEND

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 17

Attaching a fast interrupt handler to the UART #0 and another one to UART #1, assuming the names of the

interrupt functions to attach are respectively UART0_IRQhandler() and UART1_IRQhandler(), is

shown in the following table:

Table 3-7 LPC11U24 UART 0 / 1 Fast Interrupts

 EXTERN TIMER16_0_IRQhandler

 EXTERN TIMER16_1_IRQhandler

 …

 GBLA INT_NMB ; Interrupt number in the loop

INT_NMB SETA -1 ; Can’t use < as < is unsigned

 WHILE INT_NMB != (OS_N_INTERRUPTS-1) ; Map all external interrupts to ISRdispatch()

 IF INT_NMB == 16 ; When is interrupt #16, set TIMER16 #0 handler

 DCD TIMER16_0_IRQhandler

 ELSEIF INT_NMB == 17 ; When is interrupt #16, set TIMER16 #1 handler

 DCD TIMER16_1_IRQhandler

 ELSE ; All others interrupt # set to ISRdispatch()

 DCD ISRdispatch

 ENDIF

INT_NMB SETA INT_NMB+1

 WEND

 …

It is important to add the EXTERN statement otherwise there will be an error during the assembly of the file.

NOTE: If an Abassi component is used inside a fast interrupt, the application will misbehave.

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 18

Even if the hybrid interrupt stack feature is enabled (see Section 2.2), fast interrupts will not use that stack.

This translates into the need to reserve room on all task stacks for the possible nesting of fast interrupts. To

make the fast interrupts also use a hybrid interrupt stack, a prologue and epilogue must be used around the

call to the interrupt handler. The prologue and epilogue code to add is almost identical to what is done in

the regular interrupt dispatcher. Reusing the example of the TIMER #0 on the LPC11U24 device, this

would look something like:

Table 3-8 Fast Interrupt with Dedicated Stack

 …

 ELSEIF INT_NMB == 16

 DCD Timer16_0_preHandler ; Set the address of the pre handler

 ; in the interrupt table

 …

 …

 THUMB

 ALIGN

 AREA |.text|, CODE, READONLY

 EXTERN TIMER16_0_handler

Timer16_0_preHandler

 cpsid I ; Disable ISR to protect against nesting

 mov r0, sp ; Memo current stack pointer

 ldr sp, =TIMER16_0_stack ; Stack dedicated to this fast interrupt

 cpsie I ; The stack is now hybrid, nesting safe

 push {r0, lr} ; Preserve original sp & EXC_RETURN

 bl TIMER16_0_handler ; Enter the interrupt handler

 pop {r0, lr} ; Recover original sp & EXC_RETURN

 mov sp, r0 ; Recover pre-isr stack

 bx lr ; Exit from the interrupt

 …

 ALIGN

 AREA HEAP, NOINIT, READWRITE, ALIGN=3

 SPACE TIMER16_0_stack_size ; Room for the fast interrupt stack

TIMER16_0_stack

 …

The same code, with unique labels, must be repeated for each of the fast interrupts.

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 19

3.4 Nested Interrupts

The interrupt controller allows nesting of interrupts; this means an interrupt of higher priority will interrupt

the processing of an interrupt of lower priority. Individual interrupt sources can be set to one of 8 levels,

where level 0 is the highest and 7 is the lowest. This implies that the RTOS build option

OS_NESTED_INTS must be set to a non-zero value. The exception to this is an application where all

enabled interrupts handled by the RTOS ISR dispatcher are set, without exception, to the same priority;

then interrupt nesting will not occur. In that case, and only that case, can the build option

OS_NESTED_INTS be set to zero. As this latter case is quite unlikely, the build option OS_NESTED_INTS

is always overloaded when compiling the RTOS for the ARM Cortex-M0. If the latter condition is

guaranteed, the overloading located after the pre-processor directive can be modified. The code affected in

Abassi.h is shown in Table 3-9 below and the line to modify is the one with #define

OX_NESTED_INTS 1:

Table 3-9 Removing interrupt nesting

#elif defined(__CC_ARM)

 …

 #define OX_NESTED_INTS 0 /* The ARM has 8 nested (NIVC) interrupt levels */

Or if the build option OS_NESTED_INTS is desired to be propagated:

Table 3-10 Propagating interrupt nesting

#elif defined(__CC_ARM)

 …

 #define OX_NESTED_INTS OS_NESTED_INTS

The Abassi RTOS kernel never disables interrupts, but there is a few very small regions within the interrupt

dispatcher where interrupts are temporarily disabled due to the nesting (a total of between 10 to 20

processor instructions).

The kernel is never entered as long as interrupt nesting exists. In all interrupt functions, when a RTOS

component that needs to access some kernel functionality is used, the request(s) is/are put in a queue. Only

once the interrupt nesting is over (i.e. when only a single interrupt context remains) is the kernel entered at

the end of the interrupt, when the queue contains one or more requests, and when the kernel is not already

active. This means that only the interrupt handler function operates in an interrupt context, and only the

time the interrupt function is using the CPU are other interrupts of equal or lower level blocked by the

interrupt controller.

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 20

4 Stack Usage

The RTOS uses the tasks’ stack for two purposes. When a task is blocked or ready to run but not running,

the stack holds the register context that was preserved when the task got blocked or preempted. Also, when

an interrupt occurs, the register context of the running task must be preserved in order for the operations

performed during the interrupt to not corrupt the contents of the registers used by the task when it got

interrupted. For the Cortex-M0, the context save contents of a blocked or pre-empted task is different from

the one used in an interrupt. The following table lists the number of bytes required by each type of context

save operation:

Table 4-1 Context Save Stack Requirements

Description Context save

Blocked/Preempted task context save 40 bytes

Interrupt dispatcher context save (OS_ISR_STACK == 0) 40 bytes

Interrupt dispatcher context save (OS_ISR_STACK != 0) 48 bytes

The numbers for the interrupt dispatcher context save include the 32 bytes the processor pushes on the

stack when it enters the interrupt servicing.

When sizing the stack to allocate to a task, there are three factors to take in account. The first factor is

simply that every task in the application needs at least the area to preserve the task context when it is

preempted or blocked. Second, one must take into account how many levels of nested interrupts exist in

the application. As a worst case, all levels of interrupts may occur and becoming fully nested. So if N

levels of interrupts are used in the application, provision should be made to hold N times the size of an ISR

context save on each task stack, plus any added stack used by all the interrupt handler functions. Finally,

add to all this the stack required by the code implementing the task operation.

NOTE: The ARM Cortex-M0 processor needs alignment on 8 bytes for some instructions accessing

memory. When stack memory is allocated, Abassi guarantees the alignment. This said, when

sizing OS_STATIC_STACK or OS_ALLOC_SIZE, make sure to take in account that all allocation

performed through these memory pools are by block size multiple of 8 bytes.

If the hybrid interrupt stack (see Section 2.2) is enabled, then the above description changes: it is only

necessary to reserve room on task stacks for a single interrupt context save (this excludes the interrupt

function handler stack requirements) and not the worst-case nesting. With the hybrid stack enabled, the

second, third, and so on interrupts use the stack dedicated to the interrupts. The hybrid stack is enabled

when the OS_ISR_STACK token in the file Abassi_CORTEXM0_KEIL.s is set to a non-zero value (see

Section 2.2).

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 21

5 Search Set-up

The Abassi RTOS build option OS_SEARCH_FAST offers three different algorithms to quickly determine

the next running task upon task blocking. The following table shows the measurements obtained for the

number of CPU cycles required when a task at priority 0 is blocked, and the next running task is at the

specified priority. The number of cycles includes everything, not just the search cycle count. The number

of cycles was measured using the SysTick peripheral, which decrements the counter once every CPU

cycle. The second column is when OS_SEARCH_FAST is set to zero, meaning a simple array traversing.

The third column, labeled Look-up, is when OS_SEARCH_FAST is set to 1, which uses an 8 bit look-up

table. Finally, the last column is when OS_SEARCH_FAST is set to 5 (Keil/Cortex-M0 int are 32 bits, so

2^5), meaning a 32 bit look-up table, further searched through successive approximation. The compiler

optimization for this measurement was set to Level 3 (-O3), optimized for time. The build options were set

to the minimum feature set, except for option OS_PRIO_CHANGE set to non-zero. The presence of this extra

feature provokes a small mismatch between the result for a difference of priority of 1, with

OS_SEARCH_FAST set to zero, and the latency results in Section 7.2.

When the build option OS_SEARCH_ALGO is set to a negative value, indicating to use a 2-dimensional

linked list search technique instead of the search array, the number of CPU cycles is constant at 268 cycles.

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 22

Table 5-1 Search Algorithm Cycle Count

Priority Linear search Look-up Approximation

1 277 312 353

2 281 320 353

3 289 328 353

4 297 336 353

5 305 344 353

6 313 352 353

7 321 360 353

8 329 317 353

9 337 321 353

10 345 329 353

11 353 337 353

12 361 345 353

13 369 353 353

14 377 361 353

15 385 369 353

16 393 326 353

17 401 330 353

18 409 338 353

19 417 346 353

20 425 354 353

21 433 362 353

22 441 370 353

23 449 378 353

24 457 335 353

When OS_SEARCH_FAST is set to 0, each extra priority level to traverse requires exactly 8 CPU cycles.

When OS_SEARCH_FAST is set to 1, each extra priority level to traverse requires exactly 8 CPU cycles,

except when the priority level is an exact multiple of 8; then there is a sharp reduction of CPU usage.

Overall, setting OS_SEARCH_FAST to 1 adds 39 cycles of CPU for the search compared to setting

OS_SEARCH_FAST to zero. But when the next ready to run priority is less than 8, 16, 24, … then there is an

extra 8 cycles needed, but without the 8 times 8 cycle accumulation. Finally, the third option, when

OS_SEARCH_FAST is set to 5, delivers a perfectly constant CPU usage, as the algorithm utilizes a

successive approximation search technique (when the delta is 32 or more, the CPU cycle count is 363, for

64 or more, it is 373).

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 23

The only real observation, when looking at this table, is that the third option, when OS_SEARCH_FAST is set

to 1, is almost all the time either less CPU efficient than the first option, the one when OS_SEARCH_FAST is

set to 0, or less efficient than the third option OS_SEARCH_FAST is set to 5. So, the build option

OS_SEARCH_FAST should never be set to 1, as it is the least efficient method. The other observation is that

the first option (OS_SEARCH_FAST set to 0) delivers better CPU performance than the third option

(OS_SEARCH_FAST set to 5) when the search spans less than 10 priority levels. So, if an application has

tasks spanning less than 10 priority levels, the build option OS_SEARCH_FAST should be set to 0; for all

other cases, the build option OS_SEARCH_FAST should be set to 5.

Setting the build option OS_SEARCH_ALGO to a non-negative value minimizes the time needed to change

the state of a task from blocked to ready to run, and not the time needed to find the next running task upon

blocking/suspending of the running task. If the application needs are such that the critical real-time

requirement is to get the next running task up and running as fast as possible, then set the build option

OS_SEARCH_ALGO to a negative value.

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 24

6 Chip Support

No custom chip support is provided with the distribution code because the Keil µVision suite supports the

Cortex Microcontroller Software Interface Standard (CMSIS). Therefore, all standard peripherals on the

Cortex-M can be accessed through the CMSIS. Also, most device manufacturers provide code to configure

the peripherals on their devices. The distribution code contains some of the manufacturer’s open source

libraries, e.g NXP.

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 25

7 Measurements

This section gives an overview of the memory requirements and the CPU latency encountered when the

RTOS is used on the ARM Cortex-M0 and compiled with Keil’s Vision4. The CPU cycles are exactly

the CPU clock cycles, as the processor executes one instruction at every clock transition.

7.1 Memory

The memory numbers are supplied for the two limit cases of build options (and some in-between): the

smallest footprint is the RTOS built with only the minimal feature set, and the other with almost all the

features. For both cases, names are not part of the build. This feature was removed from the metrics

because it is highly probable that shipping products utilizing this RTOS will not include the naming of

descriptors, as its usefulness is mainly limited to debugging and making the opening/creation of

components run-time safe.

The code size numbers are expressed with “less than” as they have been rounded up to multiples of 25 for

the “C” code. These numbers were obtained using the beta release of the RTOS and may change. One

should interpret these numbers as the “very likely” numbers for the released version of the RTOS.

The code memory required by the RTOS includes the “C” code and assembly language code used by the

RTOS. The code optimization settings of the compiler that were used for the memory measurements are:

1. Optimization: Level 3 (-O3)

2. Optimize for Time: Disabled

3. Split Load and Store Multiple: Disabled

All other options are disabled, as they do not affect the code generated.

Figure 7-1 Memory Measurement Code Optimization Settings

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 26

Table 7-1 “C” Code Memory Usage

Description Code Size

Minimal Build < 725 bytes

+ Runtime service creation / static memory < 900 bytes

+ Multiple tasks at same priority < 975 bytes

+ Runtime priority change

+ Mutex priority inheritance

+ FCFS

+ Task suspension

< 1500 bytes

+ Timer & timeout

+ Timer call back

+ Round robin

< 1950 bytes

+ Events

+ Mailbox

< 2525 bytes

Full Feature Build (no names) < 3000 bytes

Full Feature Build (no names / no runtime creation) < 2675 bytes

Full Feature Build (no names / no runtime creation)

+ Timer services module

< 3025 bytes

Table 7-2 Assembly Code Memory Usage

Description Size

Assembly code size 300 bytes

Vector table (per interrupt handler entry) +4 bytes

Hybrid Stack Enabled +16 bytes

There are two aspects when describing the data memory usage by the RTOS. First, the RTOS needs its

own data memory to operate, and second, most of the services offered by the RTOS require data memory

for each instance of the service. As the build options affect either the kernel memory needs or the service

descriptors (or both), an interactive calculator has been made available on Code Time Technologies

website.

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 27

7.2 Latency

Latency of operations has been measured on a NGX LPC11U24 development board populated with a

48 MHz LPC11U24 device. For the purpose of the latency measurements, the device was clocked at

24 MHz in order to operate the Flash at full clock rate, eliminating the insertion of wait states. All

measurements have been performed on the real platform, with the SysTick timer used to count the cycles.

This means the interrupt latency measurements had to be instrumented to read the SysTick counter value.

This instrumentation can add up to 5 or 6 cycles to the measurements. The code optimization settings that

were used for the latency measurements are:

1. Optimization: Level 3 (-O3)

2. Optimize for Time: Enable

3. Split Load and Store Multiple: Disabled

All other options are disabled, as they do not affect the efficiency of the code generated.

Figure 7-2 Latency Measurement Code Optimization Settings

There are 5 types of latencies that are measured, and these 5 measurements are expected to give a very

good overview of the real-time performance of the Abassi RTOS for this port. For all measurements, three

tasks were involved:

1. Adam & Eve set to a priority value of 0;

2. A low priority task set to a priority value of 1;

3. The Idle task set to a priority value of 20.

The sets of 5 measurements are performed on a semaphore, on the event flags of a task, and finally on a

mailbox. The first 2 latency measurements use the component in a manner where there is no task

switching. The third measurements involve a high priority task getting blocked by the component. The

fourth measurements are about the opposite: a low priority task getting pre-empted because the component

unblocks a high priority task. Finally, the reaction to unblocking a task, which becomes the running task,

through an interrupt is provided.

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 28

The first set of measurements counts the number of CPU cycles elapsed starting right before the component

is used until it is back from the component. For these measurement there is no task switching. This means:

Table 7-3 Measurement without Task Switch

 Start CPU cycle count

 SEMpost(…); or EVTset(…); or MBXput();

 Stop CPU cycle count

The second set of measurements, as for the first set, counts the number of CPU cycles elapsed starting right

before the component is used until it is back from the component. For these measurement there is no task

switching. This means:

Table 7-4 Measurement without Blocking

 Start CPU cycle count

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 Stop CPU cycle count

The third set of measurements counts the number of CPU cycles elapsed starting right before the

component triggers the unblocking of a higher priority task until the latter is back from the component used

that blocked the task. This means:

Table 7-5 Measurement with Task Switch

 main()

 {

 …

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 Stop CPU cycle count

 …

 }

 TaskPrio1()

 {

 …

 Start CPU cycle count

 SEMpost(…); or EVTset(…); or MBXput(…);

 …

 }

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 29

The forth set of measurements counts the number of CPU cycles elapsed starting right before the

component blocks of a high priority task until the next ready to run task is back from the component it was

blocked on; the blocking was provoked by the unblocking of a higher priority task. This means:

Table 7-6 Measurement with Task unblocking

 main()

 {

 …

 Start CPU cycle count

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 …

 }

 TaskPrio1()

 {

 …

 SEMpost(…); or EVTset(…); or MBXput(…);

 Stop CPU cycle count

 …

 }

The fifth set of measurements counts the number of CPU cycles elapsed from the beginning of an interrupt

using the component, until the task that was blocked becomes the running task and is back from the

component used that blocked the task. The interrupt latency measurement includes everything involved in

the interrupt operation, even the cycles the processor needs to push the interrupt context before entering the

interrupt code. The interrupt function, attached with OSisrInstall(), is simply a two line function that

uses the appropriate RTOS component followed by a return.

Table 7-7 lists the results obtained, where the cycle count is measured using the SysTick peripheral on the

Cortex-M0. This timer decrements its counter by 1 at every CPU cycle. As was the case for the memory

measurements, these numbers were obtained with a beta release of the RTOS. It is possible the released

version of the RTOS may have slightly different numbers.

The interrupt latency is the number of cycles elapsed when the interrupt trigger occurred and the ISR

function handler is entered. This includes the number of cycles used by the processor to set-up the interrupt

stack and branch to the address specified in the interrupt vector table. The latency measurement includes

the cycles required to acknowledge the interrupt.

The interrupt overhead without entering the kernel is the measurement of the number of CPU cycles used

between the entry point in the interrupt vector and the return from interrupt, with a “do nothing” function in

the OSisrInstall(). The interrupt overhead when entering the kernel is calculated using the results

from the third and fifth tests. Finally, the OS context switch is the measurement of the number of CPU

cycles it takes to perform a task switch, without involving the wrap-around code of the synchronization

component.

The hybrid interrupt stack feature was not enabled, neither was the saturation bit, in any of these tests.

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 30

In the following table, the latency numbers between parentheses are the measurements when the build

option OS_SEARCH_ALGO is set to a negative value. The regular numbers are the latency measurements

when the build option OS_SEARCH_ALGO is set to 0.

Table 7-7 Latency Measurements

Description Minimal Features Full Features

Semaphore posting no task switch 144 (143) 218 (220)

Semaphore waiting no blocking 147 (145) 231 (233)

Semaphore posting with task switch 232 (262) 376 (403)

Semaphore waiting with blocking 251 (247) 406 (409)

Semaphore posting in ISR with task switch 478 (507) 636 (661)

Event setting no task switch n/a 214 (216)

Event getting no blocking n/a 254 (256)

Event setting with task switch n/a 398 (425)

Event getting with blocking n/a 424 (427)

Event setting in ISR with task switch n/a 659 (684)

Mailbox writing no task switch n/a 275 (277)

Mailbox reading no blocking n/a 279 (281)

Mailbox writing with task switch n/a 450 (477)

Mailbox reading with blocking n/a 459 (462)

Mailbox writing in ISR with task switch n/a 706 (731)

Interrupt Latency 45 45

Interrupt overhead entering the kernel 246 (245) 260 (258)

Interrupt overhead NOT entering the kernel 68 68

Context switch 55 53

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 31

8 Appendix A: Build Options for Code Size

8.1 Case 0: Minimum build

Table 8-1: Case 0 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 2 /* Maximum number of requests in ISRs */

#define OS_MIN_STACK_USE 0 /* Not minimizing the ernel stack usage */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 2 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 0 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 32

8.2 Case 1: + Runtime service creation / static memory

Table 8-2: Case 1 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 2 /* Maximum number of requests in ISRs */

#define OS_MIN_STACK_USE 0 /* Not minimizing the ernel stack usage */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 2 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 0 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 33

8.3 Case 2: + Multiple tasks at same priority

Table 8-3: Case 2 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MIN_STACK_USE 0 /* Not minimizing the ernel stack usage */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 34

8.4 Case 3: + Priority change / Priority inheritance / FCFS / Task suspend

Table 8-4: Case 3 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MIN_STACK_USE 0 /* Not minimizing the ernel stack usage */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 35

8.5 Case 4: + Timer & timeout / Timer call back / Round robin

Table 8-5: Case 4 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MIN_STACK_USE 0 /* Not minimizing the ernel stack usage */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 36

8.6 Case 5: + Events / Mailboxes

Table 8-6: Case 5 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MIN_STACK_USE 0 /* Not minimizing the ernel stack usage */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 37

8.7 Case 6: Full feature Build (no names)

Table 8-7: Case 6 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MIN_STACK_USE 0 /* Not minimizing the ernel stack usage */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 38

8.8 Case 7: Full feature Build (no names / no runtime creation)

Table 8-8: Case 7 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MIN_STACK_USE 0 /* Not minimizing the ernel stack usage */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

Abassi RTOS Port – ARM Cortex-M0 – Keil Suite 2012.12.04

Rev 1.1 Page 39

8.9 Case 8: Full build adding the optional timer services

Table 8-9: Case 8 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MIN_STACK_USE 0 /* Not minimizing the ernel stack usage */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 1 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

