
Copyright Information

This document is copyright Code Time Technologies Inc. ©2012. All rights reserved. No part of this document may be reproduced
or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of Code Time

Technologies Inc.

Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

Abassi RTOS

Porting Document

ARM Cortex-M4 – Atollic

Disclaimer

Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,

but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the

document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in

the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

Atollic TrueSTUDIO is a registered trademark of Atollic AB. ARM and Cortex are registered trademarks of ARM Limited. All other
trademarks are the property of their respective owners.

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 3

Table of Contents

1 INTRODUCTION .. 6

1.1 DISTRIBUTION CONTENTS ... 6
1.2 LIMITATIONS ... 6

2 TARGET SET-UP .. 7

2.1 INTERRUPT STACK SET-UP .. 7
2.2 SATURATION BIT SET-UP ... 8
2.3 FPU SET-UP ..10
2.4 MULTITHREADING ..14

2.4.1 Full multithreading ..14
2.4.2 Partial multithreading ...16

3 INTERRUPTS ...18

3.1 INTERRUPT HANDLING ...18
3.1.1 Interrupt Table Size ...18
3.1.2 Interrupt Installer ..21

3.2 INTERRUPT PRIORITY AND ENABLING ..21
3.3 FAST INTERRUPTS ...22
3.4 NESTED INTERRUPTS ..24

4 STACK USAGE...25

5 SEARCH SET-UP ...26

6 CHIP SUPPORT ...29

7 MEASUREMENTS ...30

7.1 MEMORY ..30
7.2 LATENCY ..33

8 APPENDIX A: BUILD OPTIONS FOR CODE SIZE ...38

8.1 CASE 0: MINIMUM BUILD ...38
8.2 CASE 1: + RUNTIME SERVICE CREATION / STATIC MEMORY ..39
8.3 CASE 2: + MULTIPLE TASKS AT SAME PRIORITY ...40
8.4 CASE 3: + PRIORITY CHANGE / PRIORITY INHERITANCE / FCFS / TASK SUSPEND41
8.5 CASE 4: + TIMER & TIMEOUT / TIMER CALL BACK / ROUND ROBIN ..42
8.6 CASE 5: + EVENTS / MAILBOXES ..43
8.7 CASE 6: FULL FEATURE BUILD (NO NAMES) ...44
8.8 CASE 7: FULL FEATURE BUILD (NO NAMES / NO RUNTIME CREATION) ..45
8.9 CASE 8: FULL BUILD ADDING THE OPTIONAL TIMER SERVICES ...46

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 4

List of Figures
FIGURE 2-1 PROJECT FILE LIST ... 7
FIGURE 2-2 GUI SET OF OS_ISR_STACK ... 8
FIGURE 2-3 GUI SET OF SATURATION BIT CONFIGURATION ...10
FIGURE 2-4 GUI ENABLING OF THE FPU ..11
FIGURE 2-5 GUI SET OF OS_FPU_ON_OFF ..13
FIGURE 2-6 GUI SET OF OS_ATOLLIC_REENT ...15
FIGURE 2-7 GUI SET OF OS_ATOLLIC_REENT ...16
FIGURE 3-1 GUI SET OF OS_N_INTERRUPTS ...19
FIGURE 3-2 GUI SET OF OS_N_INTERRUPTS ...20
FIGURE 7-1 MEMORY MEASUREMENT CODE OPTIMIZATION SETTINGS ...31
FIGURE 7-2 LATENCY MEASUREMENT CODE OPTIMIZATION SETTINGS ...33

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 5

List of Tables
TABLE 1-1 DISTRIBUTION ... 6
TABLE 2-1 OS_ISR_STACK .. 7
TABLE 2-2 COMMAND LINE SET OF OS_ISR_STACK .. 8
TABLE 2-3 SATURATION BIT CONFIGURATION .. 9
TABLE 2-4 COMMAND LINE SET OF SATURATION BIT CONFIGURATION ... 9
TABLE 2-5 COMMAND LINE DISABLING THE FPU ...11
TABLE 2-6 FPU RUN TIME ON / OFF CONFIGURATION ..12
TABLE 2-7 COMMAND LINE SET OF OS_FPU_ON_OFF ...12
TABLE 2-8 ASSEMBLY FILE MULTITHREAD CONFIGURATION ..14
TABLE 2-9 COMMAND LINE SET OF MULTITHREAD CONFIGURATION ..14
TABLE 2-10 COMMAND LINE SET OF MULTITHREAD CONFIGURATION ..15
TABLE 2-11 SETTING A TASK TO USE RE-ENTRANT LIBRARY ..17
TABLE 3-1 ABASSI_CORTEXM4_ATOLLIC.S INTERRUPT TABLE SIZING ..18
TABLE 3-2 COMMAND LINE SET THE INTERRUPT TABLE SIZE ..18
TABLE 3-3 OVERLOADING THE INTERRUPT TABLE SIZING FOR ABASSI.C ..19
TABLE 3-4 ATTACHING A FUNCTION TO AN INTERRUPT ...21
TABLE 3-5 INVALIDATING AN ISR HANDLER ..21
TABLE 3-6 DISTRIBUTION INTERRUPT TABLE CODE ..22
TABLE 3-7 STM32F407 UART 1 / 2 FAST INTERRUPTS ...22
TABLE 3-8 FAST INTERRUPT WITH DEDICATED STACK ..23
TABLE 3-9 REMOVING INTERRUPT NESTING ...24
TABLE 3-10 PROPAGATING INTERRUPT NESTING ..24
TABLE 4-1 CONTEXT SAVE STACK REQUIREMENTS ...25
TABLE 5-1 SEARCH ALGORITHM CYCLE COUNT ..27
TABLE 7-1 “C” CODE MEMORY USAGE ...32
TABLE 7-2 “C” LIBRARY MULTI-THREADING PROTECTION ...32
TABLE 7-3 ASSEMBLY CODE MEMORY USAGE ..32
TABLE 7-4 MEASUREMENT WITHOUT TASK SWITCH ..34
TABLE 7-5 MEASUREMENT WITHOUT BLOCKING ...34
TABLE 7-6 MEASUREMENT WITH TASK SWITCH ..35
TABLE 7-7 MEASUREMENT WITH TASK UNBLOCKING ..35
TABLE 7-8 LATENCY MEASUREMENTS FPU OFF ..36
TABLE 7-9 LATENCY MEASUREMENTS FPU ON ..37
TABLE 8-1: CASE 0 BUILD OPTIONS ..38
TABLE 8-2: CASE 1 BUILD OPTIONS ..39
TABLE 8-3: CASE 2 BUILD OPTIONS ..40
TABLE 8-4: CASE 3 BUILD OPTIONS ..41
TABLE 8-5: CASE 4 BUILD OPTIONS ..42
TABLE 8-6: CASE 5 BUILD OPTIONS ..43
TABLE 8-7: CASE 6 BUILD OPTIONS ..44
TABLE 8-8: CASE 7 BUILD OPTIONS ..45
TABLE 8-9: CASE 8 BUILD OPTIONS ..46

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 6

1 Introduction

This document details the port of the Abassi RTOS to the ARM Cortex-M4 processor. The software suite

used for this specific port is the Atollic TrueSTUDIO for ARM; the version used for the port and all tests is

V3.1.0 Pro.

1.1 Distribution Contents

The set of files supplied with this distribution are listed in Table 1-1 below:

Table 1-1 Distribution

File Name Description

Abassi.h Include file for the RTOS

Abassi.c RTOS “C” source file

syscalls.c Minimum system call file modified for multi-tasking

Abassi_CORTEXM4_ATOLLIC.s RTOS assembly file for the ARM Cortex-M4 to use with

the ATOLLIC TrueSTUDIO.

Demo_1_STM32_P407_ATOLLIC.c Demo code that runs on the Olimex STM32-P407

evaluation board

Demo_3_STM32_P407_ATOLLIC.c Demo code that runs on the Olimex STM32-P407

evaluation board

Demo_5_STM32_P407_ATOLLIC.c Demo code that runs on the Olimex STM32-P407

evaluation board

Demo_7_STM32_P407_ATOLLIC.c Demo code that runs on the Olimex STM32-P407

evaluation board

AbassiDemo.h Build option settings for the demo code

NOTE: The supplied file syscalls.c MUST be used with all applications based on Abassi. This

syscalls.c is a slightly modified version of the default Atollic file. Not using the supplied file

will most likely fail memory allocation through malloc(), or not report malloc() failures.

Even if the application does not use memory allocation, the library itself internally calls

malloc().

1.2 Limitations

To optimize reaction time of the Abassi RTOS components, it was decided to require the processor to

always operate in privileged mode (which is the default start-up mode for Cortex-M microcontrollers) and

to always use the main stack pointer (MSP). The start-up code supplied in the distribution fulfills these

constraints and one must be careful to not change these settings in the application.

The SVCall interrupt (interrupt number -5 / interrupt vector number 11) is not available as it is reserved for

the OS, and the Abassi RTOS uses it.

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 7

2 Target Set-up

Very little is needed to configure the Atollic TrueSTUDIO development environment to use the Abassi

RTOS in an application. All there is to do is to add the files Abassi.c, Abassi_CORTEXM4_ATOLLIC.s

and syscalls.c (the one supplied with the distribution) in the source files of the application project, and

make sure the four configuration settings in the file Abassi_CORTEXM4_ATOLLIC.s (OS_ISR_STACK as

described in Section 2.1, OS_HANDLE_PSR_Q as described in Section 2.2, OS_FPU_ON_OFF described in

Section 2.3, and OS_ATOLLIC_REENT described in Section 2.4) are set according to the needs of the

application. As well, update the include file path in the C/C++ compiler preprocessor options with the

location of Abassi.h. There is no need to include a start-up file, nor a file for the interrupt table, as the

Abassi_CORTEXM4_ATOLLIC.s file contains all the start-up operations, including the interrupt table and

exception handlers.

Figure 2-1 Project File List

2.1 Interrupt Stack Set-up

It is possible, and is highly recommended, to use a hybrid stack when nested interrupts occur in an

application. Using this hybrid stack, specially dedicated to the interrupts, removes the need to allocate

extra room to the stack of every task in the application to handle the interrupt nesting. This feature is

controlled by the value set by the definition OS_ISR_STACK, located around line 25 in the file

Abassi_CORTEXM4_ATOLLIC.s. To disable this feature, set the definition of OS_ISR_STACK to a value

of zero. To enable it, and specify the interrupt stack size, set the definition of OS_ISR_STACK to the

desired size in bytes (see Section 4 for information on stack sizing). As supplied in the distribution, the

hybrid stack feature is enabled, and a size of 1024 bytes is allocated; this is shown in the following table:

Table 2-1 OS_ISR_STACK

 #ifndef OS_ISR_STACK

 .equ OS_ISR_STACK, 1024 /* If using a dedicated stack for the nested ISRs */

 #endif /* 0 if not used, otherwise size of stack in bytes */

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 8

Alternatively, it is possible to overload the OS_ISR_STACK value set in Abassi_CORTEXM4_ATOLLIC.s

by using the assembler command line option –D and specifying the desired hybrid stack size, as shown in

the following example, where the hybrid stack size is set to 512 bytes:

Table 2-2 Command line set of OS_ISR_STACK

arm-atollic-eabi-gcc assembler-with-cpp … -DOS_ISR_STACK=512 …

The hybrid stack size can also be set through the GUI, in the “C/C++ Build Settings Tool Setting

Assembler Symbols” menu, as shown in the following figure:

Figure 2-2 GUI set of OS_ISR_STACK

2.2 Saturation Bit Set-up

In the ARM Cortex-M4 status register, there is a sticky bit to indicate if an arithmetic saturation or

overflow has occurred during a DSP instruction; this is the Q flag in the status register (bit #27). By

default, this bit is not kept localized at the task level, as it needs extra processing during a context switch to

do so; instead, it is propagated across all tasks. This choice was made because most applications do not

care about the value of this bit.

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 9

If this bit is relevant for an application, even in a single task, then it must be kept locally in each task. To

keep the meaning of the saturation bit localized, the token OS_HANDLE_PSR_Q must be set to a non-zero

value; to disable it, it must be set to a zero value. This is located at around line 35 in the file

Abassi_CORTEXM4_ATOLLIC.s. The distribution code disables the localization of the Q bit, setting the

token OS_HANDLE_PSR_Q to zero, as shown in the following table:

Table 2-3 Saturation Bit configuration

 #ifndef OS_HANDLE_PSR_Q

 .equ OS_HANDLE_PSR_Q, 0 /* If we keep the Q bit (saturation) on per tasks */

 #endif

Alternatively, it is possible to overload the OS_HANDLE_PSR_Q value set in

Abassi_CORTEXM4_ATOLLIC.s by using the assembler command line option –D and specifying the

desired setting with the following:

Table 2-4 Command line set of Saturation Bit configuration

arm-atollic-eabi-gcc assembler-with-cpp … -DOS_HANDLE_PSR_Q=1 …

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 10

The saturation bit configuration can also be set through the GUI, in the “C/C++ Build Settings Tool

Setting Assembler Symbols” menu, as shown in the following figure:

 Figure 2-3 GUI set of Saturation Bit configuration

2.3 FPU set-up

The assembly file Abassi_CORTEXM4_ATOLLIC.s, depending on its configuration, handles three different

types of FPU use. They are:

 The FPU is always disabled

 The FPU is always enabled

 The FPU is turned on and turned off during runtime

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 11

The file Abassi_CORTEXM4_ATOLLIC.s is aware of the enabling or disabling of the FPU by the assembly

setting in the GUI in “C/C++ Build Settings Tool Settings Assembler Target Floating

point” which ends up defining the symbol __SOFTFP__ when the floating point setting is set to “Software

implementation”; the symbol __SOFTFP__ is not defined for the two other settings, meaning the FPU is

used.

There are two ways to set-up the assembler to support the FPU instructions. This is done on the command

line through the option –mfloat-abi=softfp. If the command line option –mfloat-abi=softfp is

specified, then all floating point operations use the software implementation, and the FPU is not used. If

the command line option –mfloat-abi=softfp is not specified, then the FPU is used:

Table 2-5 Command line disabling the FPU

arm-atollic-eabi-gcc assembler-with-cpp … -mfloat-abi=softfp …

The enabling of the FPU can also be performed through the GUI, in the “C/C++ Build Settings Tool

Settings Assembler Target Floating point” menu, by setting the Floating Point to a setting

different than Software implementation. If the setting for Floating Point is set to Software implementation,

then the FPU is turned off.

 Figure 2-4 GUI enabling of the FPU

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 12

NOTE: The setting of the CPU must be identical for both the assembler AND the compiler. A mismatch

between the two settings will most likely result in a run time hard fault.

When the FPU is enabled, each task can use a different configuration of the FPU (through the FPCSR

register), as the contents of this register are part of the task context save. All tasks upon start will have their

local FPCSR value set according to the value of FPCSR register upon calling OSstart(). This means if the

application globally requires a different setting of the FPU than the default set by the compiler, the FPCSR

must be modified before calling OSstart().

It is also possible to turn on and turn off the FPU during runtime, and the ON / OFF setting is also kept on a

per task basis. For this feature to be available, the FPU must be used (the token __SOFTFP__ not defined,

or the GUI configuration for the compiler and assembler not set to “Software implementation”). This

means the FPU can be enabled in a set of tasks, and not for the other tasks in the application. All tasks,

upon start, will inherit the same ON / OFF state of the FPU as when OSstart() was called. When this

feature is required, the build option OS_FPU_ON_OFF, located around line 40 in the file

Abassi_CORTEXM4_ATOLLIC.s, must be set to a non-zero value. The distribution code does not enable

the capability of turning the FPU ON and OFF during runtime, setting the token OS_FPU_ON_OFF to zero,

as shown in the following table:

Table 2-6 FPU run time ON / OFF configuration

 #ifndef OS_FPU_ON_OFF

 .equ OS_FPU_ON_OFF, 0 /* If the FPU can be turned ON/OFF during runtime */

 #endif

Alternatively, it is possible to overload the OS_FPU_ON_OFF value set in Abassi_CORTEXM4_ATOLLIC.s

by using the assembler command line option –D and specifying the desired setting for OS_FPU_ON_OFF

with the following:

Table 2-7 Command line set of OS_FPU_ON_OFF

arm-atollic-eabi-gcc assembler-with-cpp … -mfloat-abi=softfp -DOS_FPU_ON_OFF=1 …

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 13

The indication the FPU is turned on and off during runtime can also be set through the GUI, in the “C/C++

Build Settings Tool Setting Assembler Symbols” menu, as shown in the following figure:

 Figure 2-5 GUI set of OS_FPU_ON_OFF

There are two requirements to fulfill when the FPU is turned on and off during runtime. The first one,

which is not related to the RTOS but is a restriction by the Cortex-M4 core, is to never have a different

enable setting of the FPU between the entry and the exit of an ISR. This means that turning ON and then

OFF the FPU in an interrupt is safe. But turning it ON, without turning it OFF before exiting the interrupt,

will crash the application. If the FPU is ON upon entry in the interrupt and it gets turned OFF in the

interrupt without being turned back ON, it will trigger an access fault exception. Beware of interrupt

nesting when turning on and off the FPU in an interrupt. If two interrupts that can be nested turn on and off

the FPU, then turning off the FPU at the end of the interrupt will break the required condition. Instead, the

entry state of the FPU must be restored at the exit of the interrupt.

The second requirement when the FPU is turned ON and OFF during runtime is that it is necessary to set

the SVCall (Service call exception vector #11, interrupt #-5) priority to the highest level. This is

configured in the System Handler Priority Register 2 (SHPR2) register. If this register is not modified, then

at start-up the priority of the SVCall exception is set to the higher level.

NOTE: When the FPU is turned OFF in a task, the setting of the FPCSR will quite likely be set back to the

task start-up value upon turning ON the FPU afterward.

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 14

2.4 Multithreading

The Atollic libc library can be set to be fully reentrant and multithread-safe. The multithreading setting

on how the library is used depends on the definition of the build option OS_ATOLLIC_REENT. If this build

option is not defined, or if it is defined with a value of zero, the library is neither reentrant nor

multithread-safe. If the build option is positive, the library is multithread-safe and reentrant for each one of

the tasks. If the build option value is negative, only selected tasks use the library in a multithread-safe and

reentrant manner.

2.4.1 Full multithreading

For full multithreading of the library, all there is to do is to define the build option OS_ATOLLIC_REENT

with a positive value, for both the compiler and the assembler.

The build option can be set directly in the assembly file; this is located at around line 45 in the file

Abassi_CORTEXM4_ATOLLIC.s. The distribution code disables multithreading, setting the token

OS_ATOLLIC_REENT to zero, as shown in the following table:

Table 2-8 Assembly file multithread configuration

 #ifndef OS_ATOLLIC_REENT /* When library re-entrance is required, when +ve the */

 .equ OS_ATOLLIC_REENT, 0 /* task context switch updates the _impure_ptr variable*/

 #endif /* with the task's libc context */

Alternatively, it is possible to overload the OS_ATOLLIC_REENT value set in

Abassi_CORTEXM4_ATOLLIC.s by using the assembler command line option –D and specifying the

desired setting with the following:

Table 2-9 Command line set of multithread configuration

arm-atollic-eabi-gcc assembler-with-cpp … -DOS_ATOLLIC_REENT=1 …

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 15

The multithreading configuration can also be set through the GUI, in the “C/C++ Build Settings Tool

Setting Assembler Symbols” menu, as shown in the following figure:

 Figure 2-6 GUI set of OS_ATOLLIC_REENT

The exact same definition of OS_ATOLLIC_REENT as the one specified for the assembler must be must be

given to the compiler. This can be done with the command line option –D and specifying the setting with

the following:

Table 2-10 Command line set of multithread configuration

arm-atollic-eabi-gcc … -DOS_ATOLLIC_REENT=1 …

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 16

The multithreading configuration can also be set through the GUI, in the “C/C++ Build Settings Tool

Setting C Compiler Symbols” menu, as shown in the following figure:

 Figure 2-7 GUI set of OS_ATOLLIC_REENT

2.4.2 Partial multithreading

The use of full multithread protection for the library requires around ¼ kilobyte of extra data memory for

each task in the application. The extra memory required is not due to Abassi, but is what the library

requires to be set reentrant. On data memory restricted applications, it may be impossible to use full

multithreading protection. Setting the build option OS_ATOLLIC_REENT to a negative value allows you to

select specific tasks where reentrance is required. The library is still multithread-safe, even when the build

option is negative, only the reentrance is selectable.

The build option OS_ATOLLIC_REENT is set the same way as described in the previous section.

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 17

Partial multithreading means that only the tasks that are set up to use the library in a reentrant manner

require the ¼ kilobyte block of extra data memory. Not only is memory needed for the library context data

structure, but if file I/O is used in the task, more memory is allocated for the buffering of the file or stream.

It is a good practice to use the standard library function setbuf(), or setvbuf() to tailor each stream

buffer size, as the library default buffer size (defined as BUFSIZ in stdio.h) is set to 1024 bytes. The

most well known modules that are under reentrance control in the library are:

 The time structure tm

 atexit()

 stdio

 File I/O for stdin, stdout, stderr

 Rand / Rand48

 Errno

 Signals

 Locale

 And a few more

If a task uses none of the above modules, then the task does not need to access the library in a reentrant

manner, so there is no need to reserve the memory block of ¼ kilobyte of data memory. If a task uses one

or more modules, but it is the only task using this/these module(s), there is still no need to make the library

reentrant for that task. Only when two or more tasks use the same modules for the library do these tasks

need to access the library in a reentrant manner.

A task is set to use the library in a reentrant manner with the following:

Table 2-11 Setting a task to use re-entrant library

#inclde “Abassi.h”

TSK_t *TskReent_1

struct _reent Reent_1;

…

 /* First the task must be created */

 /* in the suspended state */

TskReent_1 = TSKcreate(“TaskName”, TskPrio, StackSize, TaskFct, 0);

REENT_INIT_PTR(&Reent_1); /* Initialzation of the libc context */

TskReent_1->XtraData[0] = (intptr_t)&Reent_1; /* Attach the context to the task */

TSKreseum(TskReent_1); /* The task may now be resumed */

The declaration “struct _reent Reent_1;” can be replaced by a memory allocation of

sizeof(struct _reent).

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 18

3 Interrupts

The Abassi RTOS needs to be aware when kernel requests are performed inside or outside an interrupt

context. For all interrupt sources (except interrupt numbers less than -1) the Abassi RTOS provides an

interrupt dispatcher, which allows it to be interrupt-aware. This dispatcher achieves two goals. First, the

kernel uses it to know if a request occurs within an interrupt context or not. Second, using this dispatcher

reduces the code size, as all interrupts share the same code for the decision making of entering the kernel or

not at the end of the interrupt: there is no need to add a preamble / epilogue in the functions handling the

interrupts.

The distribution makes provision for 241 sources of interrupts, as specified by the token

OS_N_INTERRUPTS in the file Abassi_CORTEXM4_ATOLLIC.s, and the internal default value used by

Abassi.c. Even though the Nested Vectored Interrupt Controller (NVIC) peripheral supports a maximum

of 256 interrupts on the Cortex-M4, the first 15 entries of the interrupt vector table are hard mapped to

dedicated handlers (the interrupt number -1, which is attached to SysTick, is not hard mapped but is

handled by the ISR dispatcher).

3.1 Interrupt Handling

3.1.1 Interrupt Table Size

Most devices do not require all 256 interrupts, as they typically only handle between 64 and 128 sources of

interrupts. The interrupt table can be easily reduced to recover code space, and at the same time recover the

same amount of data memory. There are two files affected: in Abassi_CORTEXM4_ATOLLIC.s, the ARM

interrupt table itself must be shrunk, and the value used in the file Abassi.c, in order to reduce the ISR

dispatcher table look-up. The interrupt table size is defined by the token OS_N_INTERRUPTS in the file

Abassi_CORTEXM4_ATOLLIC.s around line 35. For the value used by Abassi.c, the default value can

be overloaded by defining the token OS_N_INTERRUPTS when compiling Abassi.c . The distribution

table size is set to 241; that is the NVIC maximum of 256 minus the 15 hard mapped exceptions.

For example, the STM32F407 device from ST Microelectronics uses only the first 100 entries of the

interrupt table (84 external interrupts plus the standard 16 exceptions). The 256 entries table can therefore

be reduced to 100. The value to set in Abassi_CortexM4_ATOLLIC.s is 85, which is the total of 100

entries minus 15 (there are 15 hard mapped exceptions). The changes are shown in the following table:

Table 3-1 Abassi_CORTEXM4_ATOLLIC.s interrupt table sizing

 …

 #ifndef OS_N_INTERRUPTS /* # of entries in the interupt table mapped to */

 .equ OS_N_INTERUPTS, 85 /* ISRdispatch() */

 #endif

 …

Alternatively, it is possible to overload the OS_N_INTERRUPTS value set in

Abassi_CORTEXM4_ATOLLIC.s by using the assembler command line option –D and specifying the

desired setting with the following:

Table 3-2 Command line set the interrupt table size

arm-atollic-eabi-gcc assembler-with-cpp … -DOS_N_INTERRUPTS=85 …

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 19

The overloading of the default interrupt vector look-up table used by Abassi.c is done by using the

compiler command line option –D and specifying the desired setting with the following:

Table 3-3 Overloading the interrupt table sizing for Abassi.c

arm-atollic-eabi-gcc … -DOS_N_INTERRUPTS=85 …

The interrupt table size used by Abassi_CORTEXM4_ATOLLIC.s can also be set through the GUI, in the

“C/C++ Build Settings Tool Setting Assembler Symbols” menu, as shown in the following

figure:

 Figure 3-1 GUI set of OS_N_INTERRUPTS

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 20

The interrupt table look-up size used by Abassi.c can also be overloaded through the GUI, in the “C/C++

Build Settings Tool Setting C Compiler Symbols” menu, as shown in the following figure:

 Figure 3-2 GUI set of OS_N_INTERRUPTS

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 21

3.1.2 Interrupt Installer

Attaching a function to a regular interrupt is quite straightforward. All there is to do is use the RTOS

component OSisrInstall() to specify the interrupt number and the function to be attached to that

interrupt number. For example, Table 3-4 shows the code required to attach the SysTick interrupt to the

RTOS timer tick handler (TIMtick):

Table 3-4 Attaching a Function to an Interrupt

#include “Abassi.h”

 …

 OSstart();

 …

 OSisrInstall(-1, &TIMtick);

 /* Set-up the count reload and enable SysTick interrupt */

 … /* More ISR setup */

 OSeint(1); /* Global enable of all interrupts */

NOTE: OSisrInstall() uses the interrupt number, NOT the interrupt vector number.

At start-up, once OSstart() has been called, all OS_N_INTERRUPTS interrupt handler functions are set to

a “do nothing” function, named OSinvalidISR(). If an interrupt function is attached to an interrupt

number using the OSisrInstall() component before calling OSstart(), this attachment will be

removed by OSstart(), so OSisrInstall() should never be used before OSstart() has ran. When an

interrupt handler is removed, it is very important and necessary to first disable the interrupt source, then the

handling function can be set back to OSinvalidISR(). This is shown in Table 3-5:

Table 3-5 Invalidating an ISR handler

#include “Abassi.h”

 …

 /* Disable the interrupt source */

 OSisrInstall(Number, &OSinvalidISR);

 …

When an application needs to disable / enable the interrupts, the RTOS supplied functions OSdint() and

OSeint() should be used.

The Nested Vectored Interrupt Controller (NVIC) on the Cortex-M4 does not clear the interrupt generated

by a peripheral; neither does the RTOS. If the generated interrupt is a pulse (as for the SysTick interrupt),

there is nothing to do to clear the interrupt request. However, if the generated interrupt is a level interrupt,

the peripheral generating the interrupt must be informed to remove the interrupt request. This operation

must be performed in the interrupt handler otherwise the interrupt will be re-entered over and over.

3.2 Interrupt Priority and Enabling

To properly configure interrupts, the interrupt priority must be set, and the peripheral configured to

generate interrupts and enable them. There is no software provided to perform these operations, as this

functionality is already available. First, Atollic supports the Cortex Microcontroller Software Interface

Standard (CMSIS), which provides everything required to program the processor peripherals. Second,

most chip manufacturers provide code to configure the specifics on their devices.

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 22

3.3 Fast Interrupts

Fast interrupts are supported on this port. A fast interrupt is an interrupt that never uses any component

from Abassi, and as the name says, is desired to operate as fast as possible. To set-up a fast interrupt, all

there is to do is to set the address of the interrupt function in the corresponding entry in the interrupt vector

table used by the Cortex-M4 processor. The area of the interrupt vector table to modify is located in the

file Abassi_CORTEXM4_ATOLLIC.s around line 100.

For example, on a ST Microelectronics STM32F407 device, UART #1 is attached to interrupt number 37

(interrupt vector number 53) and the UART #2 is attached to the interrupt number 38 (interrupt vector

number 54). The code to modify is located in the macro loop that initializes the interrupt table that sets the

ISR dispatcher as the default interrupt handler. All there is to do is add checks on the token holding the

interrupt number, such that, when the interrupt number value matches the desired interrupt number, the

appropriate address gets inserted in the table instead of the address of ISRdispatch(). The original

macro loop code and modified one are shown in the following two tables:

Table 3-6 Distribution interrupt table code

 .set INT_NMB, -1

 .rept OS_N_INTERRUPTS /* Map all external interrupts to ISRdispatch() */

 .word ISRdispatch

 .set INT_NMB, INT_NMB+1

 .endr

Attaching a fast interrupt handler to the UART #1 and another one to UART#2, assuming the names of the

interrupt functions to attach are respectively UART1_IRQhandler() and UART2_IRQhandler() is shown

in Table 3-7:

Table 3-7 STM32F407 UART 1 / 2 Fast Interrupts

 .global USART0_IRQhandler

 .global USART1_IRQhandler

 …

 .set INT_NMB, -1

 .rept OS_N_INTERRUPTS /* Map all external interrupts to ISRdispatch() */

 .if INT_NMB == 5 /* When is interrupt # 5, set UART #0 handler */

 .word USART0_IRQhandler

 .elseif INT_NMB == 6 /* When is interrupt # 6, set UART #1 handler */

 .word USART1_IRQhandler

 .else /* All others interrupt # set to ISRdispatch() */

 .word ISRdispatch

 .endif

 .set INT_NMB, INT_NMB+1

 .endr

 …

It is important to add the EXTERN statement, otherwise there will be an error during the assembly of the file.

NOTE: If an Abassi component is used inside a fast interrupt, the application will misbehave.

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 23

Even if the hybrid interrupt stack feature is enabled (see Section 2.1), fast interrupts will not use that stack.

This translates into the need to reserve room on all task stacks for the possible nesting of fast interrupts. To

make the fast interrupts also use a hybrid interrupt stack, a prologue and epilogue must be used around the

call to the interrupt handler. The prologue and epilogue code to add is almost identical to what is done in

the regular interrupt dispatcher. Reusing the example of the UART #1 on the STM32F407 device, this

would look something like:

Table 3-8 Fast Interrupt with Dedicated Stack

 …

 .if INT_NMB == 5 /* When is interrupt # 5, set UART #0 handler */

 .word UART0preHandler

 …

 …

 .section .text.UART0preHandler

 .align 2

 .code 16

 .thumb_func

 .type OScontext, %function

 EXTERN UART0handler

UART0preHandler:

 cpsid I /* Disable ISR to protect against nesting */

 mov r0, sp /* Memo current stack pointer */

 ldr sp, =UART0_stack /* Stack dedicated to this fast interrupt */

 cpsie I /* The stack is now hybrid, nesting safe */

 push {r0, lr} /* Preserve original sp & EXC_RETURN */

 bl UART0handler /* Enter the interrupt handler */

 pop {r0, lr} /* Recover original sp & EXC_RETURN */

 mov sp, r0 /* Recover pre-isr stack */

 bx lr /* Exit from the interrupt */

 …

 …

 .bss

 .space UART0_stack_size /* Room for the fast interrupt stack */

UART0_stack:

 …

The same code, with unique labels, must be repeated for each of the fast interrupts.

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 24

3.4 Nested Interrupts

The interrupt controller allows nesting of interrupts; this means an interrupt of higher priority will interrupt

the processing of an interrupt of lower priority. Individual interrupt sources can be set to one of 8 levels,

where level 0 is the highest and 7 is the lowest. This implies that the RTOS build option

OS_NESTED_INTS must be set to a non-zero value. The exception to this is an application where all

enabled interrupts handled by the RTOS ISR dispatcher are set, without exception, to the same priority;

then interrupt nesting will not occur. In that case, and only that case, can the build option

OS_NESTED_INTS be set to zero. As this latter case is quite unlikely, the build option OS_NESTED_INTS

is always overloaded when compiling the RTOS for the ARM Cortex-M4. If the latter condition is

guaranteed, the overloading located after the pre-processor directive can be modified. The code affected in

Abassi.h is shown in Table 3-9 below and the line to modify is the one with #define

OX_NESTED_INTS 1:

Table 3-9 Removing interrupt nesting

#elif defined(__GNUC__) \

 && (defined(__ARM_ARCH_6M__) || defined(__ARM_ARCH_7M__) ||

defined(__ARM_ARCH_7EM__))

 #define OX_NESTED_INTS 0 /* The ARM has 8 nested (NIVC) interrupt levels */

Or if the build option OS_NESTED_INTS is desired to be propagated:

Table 3-10 Propagating interrupt nesting

#elif defined(__GNUC__) \

 && (defined(__ARM_ARCH_6M__) || defined(__ARM_ARCH_7M__) ||

defined(__ARM_ARCH_7EM__))

 #define OX_NESTED_INTS OS_NESTED_INTS

The Abassi RTOS kernel never disables interrupts, but there is a few very small regions within the interrupt

dispatcher where interrupts are temporarily disabled due to the nesting (a total of between 10 to 20

instructions).

The kernel is never entered as long as interrupt nesting exists. In all interrupt functions, when a RTOS

component that needs to access some kernel functionality is used, the request(s) is/are put in a queue. Only

once the interrupt nesting is over (i.e. when only a single interrupt context remains) is the kernel entered at

the end of the interrupt, when the queue contains one or more requests, and when the kernel is not already

active. This means that only the interrupt handler function operates in an interrupt context, and only the

time the interrupt function is using the CPU are other interrupts of equal or lower level blocked by the

interrupt controller.

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 25

4 Stack Usage

The RTOS uses the tasks’ stack for two purposes. When a task is blocked or ready to run but not running,

the stack holds the register context that was preserved when the task got blocked or preempted. Also, when

an interrupt occurs, the register context of the running task must be preserved in order for the operations

performed during the interrupt to not corrupt the contents of the registers used by the task when it got

interrupted. For the Cortex-M4, the context save contents of a blocked or pre-empted task is different from

the one used in an interrupt, and is also different if the compiler is set to use the FPU or not. The following

table lists the number of bytes required by each type of context save operation:

Table 4-1 Context Save Stack Requirements

Description Context save

Blocked/Preempted task context save (FPU OFF) 40 bytes

Interrupt dispatcher context save (OS_ISR_STACK == 0) (FPU OFF) 40 bytes

Interrupt dispatcher context save (OS_ISR_STACK != 0) (FPU OFF) 48 bytes

Blocked/Preempted task context save (FPU ON) 112 bytes

Interrupt dispatcher context save (OS_ISR_STACK == 0) (FPU ON) 120 bytes

Interrupt dispatcher context save (OS_ISR_STACK != 0) (FPU ON) 128 bytes

The numbers for the interrupt dispatcher context save include the 32 bytes (FPU OFF) or the 96 bytes (FPU

ON) the processor pushes on the stack when it enters the interrupt servicing.

When sizing the stack to allocate to a task, there are three factors to take in account. The first factor is

simply that every task in the application needs at least the area to preserve the task context when it is

preempted or blocked. Second, one must take into account how many levels of nested interrupts exist in

the application. As a worst case, all levels of interrupts may occur and becoming fully nested. So if N

levels of interrupts are used in the application, provision should be made to hold N times the size of an ISR

context save on each task stack, plus any added stack used by all the interrupt handler functions. Finally,

add to all this the stack required by the code implementing the task operation.

NOTE: The ARM Cortex-M4 processor needs alignment on 8 bytes for some instructions accessing

memory. When stack memory is allocated, Abassi guarantees the alignment. This said, when

sizing OS_STATIC_STACK or OS_ALLOC_SIZE, make sure to take in account that all allocation

performed through these memory pools are by block size multiple of 8 bytes.

If the hybrid interrupt stack (see Section 2.1) is enabled, then the above description changes: it is only

necessary to reserve room on task stacks for a single interrupt context save (this excludes the interrupt

function handler stack requirements) and not the worst-case nesting. With the hybrid stack enabled, the

second, third, and so on interrupts use the stack dedicated to the interrupts. The hybrid stack is enabled

when the OS_ISR_STACK token in the file Abassi_CORTEXM4_ATOLLIC.s is set to a non-zero value (see

Section 2.1).

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 26

5 Search Set-up

The Abassi RTOS build option OS_SEARCH_FAST offers three different algorithms to quickly determine

the next running task upon task blocking. The following table shows the measurements obtained for the

number of CPU cycles required when a task at priority 0 is blocked, and the next running task is at the

specified priority. The number of cycles includes everything, not just the search cycle count. The number

of cycles was measured using the SysTick peripheral, which decrements the counter once every CPU

cycle. The second column is when OS_SEARCH_FAST is set to zero, meaning a simple array traversing.

The third column, labeled Look-up, is when OS_SEARCH_FAST is set to 1, which uses an 8 bit look-up

table. Finally, the last column is when OS_SEARCH_FAST is set to 5 (Atollic/Cortex-M4 int are 32 bits, so

2^5), meaning a 32 bit look-up table, further searched through successive approximation. The compiler

optimization for this measurement was set to Level High / Speed optimization. The RTOS build options

were set to the minimum feature set, except for option OS_PRIO_CHANGE set to non-zero. The presence of

this extra feature provokes a small mismatch between the result for a difference of priority of 1, with

OS_SEARCH_FAST set to zero, and the latency results in Section 7.2.

When the build option OS_SEARCH_ALGO is set to a negative value, indicating to use a 2-dimensional

linked list search technique instead of the search array, the number of CPU cycles is constant at 275 cycles.

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 27

Table 5-1 Search Algorithm Cycle Count

Priority Linear search Look-up Approximation

1 273 311 325

2 283 316 325

3 289 321 325

4 295 326 325

5 301 331 325

6 307 336 325

7 313 341 325

8 319 317 325

9 325 325 325

10 332 330 325

11 337 335 325

12 343 340 325

13 349 345 325

14 355 350 325

15 361 355 326

16 367 323 326

17 373 331 326

18 379 336 326

19 385 341 326

20 391 346 326

21 397 351 326

22 403 356 326

23 409 361 326

24 415 333 326

When OS_SEARCH_FAST is set to 0, each extra priority level to traverse requires exactly 6 CPU cycles.

When OS_SEARCH_FAST is set to 1, each extra priority level to traverse requires exactly 5 CPU cycles,

except when the priority level is an exact multiple of 8; then there is a sharp reduction of CPU usage.

Overall, setting OS_SEARCH_FAST to 1 adds around 40 cycles of CPU for the search compared to setting

OS_SEARCH_FAST to zero. But when the next ready to run priority is less than 8, 16, 24, … then there is an

extra number of cycles needed, but without the 8 times 8 cycle accumulation. Finally, the third option,

when OS_SEARCH_FAST is set to 5, delivers a quasi-perfectly constant CPU usage, as the algorithm utilizes

a successive approximation search technique (when the delta is 32 or more, the CPU cycle count is

336/337, for 64 or more, it is 343/344).

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 28

The first observation, when looking at this table, is that the second option, when OS_SEARCH_FAST is set to

1, is either less CPU efficient than the first option, the one when OS_SEARCH_FAST is set to 0, or less

efficient than the third option OS_SEARCH_FAST is set to 5. So, the build option OS_SEARCH_FAST should

never be set to 1, as it is the least efficient method. The other observation is that the first option

(OS_SEARCH_FAST set to 0) delivers better CPU performance than the third option (OS_SEARCH_FAST set

to 5) when the search spans less than 8 to 9 priority levels. So, if an application has tasks spanning less

than 8 to 9 priority levels, the build option OS_SEARCH_FAST should be set to 0; for all other cases, the

build option OS_SEARCH_FAST should be set to 5.

Setting the build option OS_SEARCH_ALGO to a non-negative value minimizes the time needed to change

the state of a task from blocked to ready to run, and not the time needed to find the next running task upon

blocking/suspending of the running task. If the application needs are such that the critical real-time

requirement is to get the next running task up and running as fast as possible, then set the build option

OS_SEARCH_ALGO to a negative value.

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 29

6 Chip Support

No chip support is provided with the distribution code because Atollic TrueSTUDIO for ARM supports the

Cortex Microcontroller Software Interface Standard (CMSIS). Therefore, all peripherals on the Cortex-M4

can be accessed through the CMSIS. Also, most device manufacturers provide code to configure the

peripherals on their devices.

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 30

7 Measurements

This section gives an overview of the memory requirements and the CPU latency encountered when the

RTOS is used on the ARM Cortex-M4 and compiled with Atollic TrueSTUDIO for ARM. The CPU

cycles are exactly the CPU clock cycles, as the processor typically executes one instruction at every clock

transition.

7.1 Memory

The memory numbers are supplied for the two limit cases of build options (and some in-between): the

smallest footprint is the RTOS built with only the minimal feature set, and the other with almost all the

features. For both cases, names are not part of the build. This feature was removed from the metrics

because it is highly probable that shipping products utilizing this RTOS will not include the naming of

descriptors, as its usefulness is mainly limited to debugging and making the opening/creation of

components run-time safe.

The code size numbers are expressed with “less than” as they have been rounded up to multiples of 25 for

the “C” code. These numbers were obtained using the beta release of the RTOS and may change. One

should interpret these numbers as the “very likely” numbers for the released version of the RTOS.

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 31

The code memory required by the RTOS includes the “C” code and assembly language code used by the

RTOS. The code optimization settings of the compiler that were used for the memory measurements are:

1. Optimization Level: Optimize for speed (-Ofast)

2. Prepare dead code removal: Enabled

3. Prepare dead data removal: Enabled

All other options are disabled as they do not affect the code generated.

Figure 7-1 Memory Measurement Code Optimization Settings

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 32

Table 7-1 “C” Code Memory Usage

Description Code Size

Minimal Build < 675 bytes

+ Runtime service creation / static memory < 925 bytes

+ Multiple tasks at same priority < 1000 bytes

+ Runtime priority change

+ Mutex priority inheritance

+ FCFS

+ Task suspension

< 1475 bytes

+ Timer & timeout

+ Timer call back

+ Round robin

< 2175 bytes

+ Events

+ Mailbox

< 2975 bytes

Full Feature Build (no names) < 3650 bytes

Full Feature Build (no names / no runtime creation) < 3275 bytes

Full Feature Build (no names / no runtime creation)

+ Timer services module

< 3225 bytes

Table 7-2 “C” library multi-threading protection

Table 7-3 Assembly Code Memory Usage

Description Size

OS_ATOLLIC_REENT < 0 +180 bytes

OS_ATOLLIC_REENT > 0 +304 bytes

Description Size

Assembly code size (FPU OFF) 248 bytes

Assembly code size (FPU ON) 312 bytes

Vector table (per interrupt handler entry) +4 bytes

Hybrid Stack Enabled +32 bytes

Saturation Bit Enabled +44 bytes

FPU runtime ON / OFF +232 bytes

OS_ATOLLIC_REENT < 0 +20 bytes

OS_ATOLLIC_REENT > 0 +8 bytes

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 33

There are two aspects when describing the data memory usage by the RTOS. First, the RTOS needs its

own data memory to operate, and second, most of the services offered by the RTOS require data memory

for each instance of the service. As the build options affect either the kernel memory needs or the service

descriptors (or both), an interactive calculator has been made available on Code Time Technologies

website.

7.2 Latency

Latency of operations has been measured on an Olimex STM32-P407 Evaluation board populated with a

168 MHz STM32F407 device. The clock setting for the measurement used the internal oscillator operating

at 16 MHz, which allows running from the flash with 0 wait states. All measurements have been

performed on the real platform. This means the interrupt latency measurements had to be instrumented to

read the SysTick counter value. This instrumentation can add up to 5 or 6 cycles to the measurements.

The code optimization settings that were used for the latency measurements are:

1. Optimization Level: Optimize for size (-Os)

2. Prepare dead code removal: Enabled

3. Prepare dead data removal: Enabled

All other options are disabled, as they do not affect the efficiency of the code generated.

Figure 7-2 Latency Measurement Code Optimization Settings

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 34

There are 5 types of latencies that are measured, and these 5 measurements are expected to give a very

good overview of the real-time performance of the Abassi RTOS for this port. For all measurements, three

tasks were involved:

1. Adam & Eve set to a priority value of 0;

2. A low priority task set to a priority value of 1;

3. The Idle task set to a priority value of 20.

The sets of 5 measurements are performed on a semaphore, on the event flags of a task, and finally on a

mailbox. The first 2 latency measurements use the component in a manner where there is no task

switching. The third measurements involve a high priority task getting blocked by the component. The

fourth measurements are about the opposite: a low priority task getting pre-empted because the component

unblocks a high priority task. Finally, the reaction to unblocking a task, which becomes the running task,

through an interrupt is provided.

The first set of measurements counts the number of CPU cycles elapsed starting right before the component

is used until it is back from the component. For these measurement there is no task switching. This means:

Table 7-4 Measurement without Task Switch

 Start CPU cycle count

 SEMpost(…); or EVTset(…); or MBXput();

 Stop CPU cycle count

The second set of measurements, as for the first set, counts the number of CPU cycles elapsed starting right

before the component is used until it is back from the component. For these measurement there is no task

switching. This means:

Table 7-5 Measurement without Blocking

 Start CPU cycle count

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 Stop CPU cycle count

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 35

The third set of measurements counts the number of CPU cycles elapsed starting right before the

component triggers the unblocking of a higher priority task until the latter is back from the component used

that blocked the task. This means:

Table 7-6 Measurement with Task Switch

 main()

 {

 …

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 Stop CPU cycle count

 …

 }

 TaskPrio1()

 {

 …

 Start CPU cycle count

 SEMpost(…); or EVTset(…); or MBXput(…);

 …

 }

The forth set of measurements counts the number of CPU cycles elapsed starting right before the

component blocks of a high priority task until the next ready to run task is back from the component it was

blocked on; the blocking was provoked by the unblocking of a higher priority task. This means:

Table 7-7 Measurement with Task unblocking

 main()

 {

 …

 Start CPU cycle count

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 …

 }

 TaskPrio1()

 {

 …

 SEMpost(…); or EVTset(…); or MBXput(…);

 Stop CPU cycle count

 …

 }

The fifth set of measurements counts the number of CPU cycles elapsed from the beginning of an interrupt

using the component, until the task that was blocked becomes the running task and is back from the

component used that blocked the task. The interrupt latency measurement includes everything involved in

the interrupt operation, even the cycles the processor needs to push the interrupt context before entering the

interrupt code. The interrupt function, attached with OSisrInstall(), is simply a two line function that

uses the appropriate RTOS component followed by a return.

Table 7-8 lists the results obtained, where the cycle count is measured using the SysTick peripheral on the

Cortex-M4. This timer decrements its counter by 1 at every CPU cycle. As was the case for the memory

measurements, these numbers were obtained with a beta release of the RTOS. It is possible the released

version of the RTOS may have slightly different numbers.

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 36

The interrupt latency is the number of cycles elapsed when the interrupt trigger occurred and the ISR

function handler is entered. This includes the number of cycles used by the processor to set-up the interrupt

stack and branch to the address specified in the interrupt vector table. But for this measurement, the

STM32F407 Systick Timer is used to trigger the interrupt and measure the elapsed time. The latency

measurement includes the cycles required to acknowledge the interrupt.

The interrupt overhead without entering the kernel is the measurement of the number of CPU cycles used

between the entry point in the interrupt vector and the return from interrupt, with a “do nothing” function in

the OSisrInstall(). The interrupt overhead when entering the kernel is calculated using the results

from the third and fifth tests. Finally, the OS context switch is the measurement of the number of CPU

cycles it takes to perform a task switch, without involving the wrap-around code of the synchronization

component.

The hybrid interrupt stack feature was not enabled, neither was the saturation bit, in any of these tests.

When the FPU is on, the runtime FPU ON / OFF feature of Abassi is not enabled. The library re-entrance

and multi-thread protection are not enable.

In the following two tables, the latency numbers between parentheses are the measurements when the build

option OS_SEARCH_ALGO is set to a negative value. The regular number is the latency measurements when

the build option OS_SEARCH_ALGO is set to 0.

Table 7-8 Latency Measurements FPU OFF

Description Minimal Features Full Features

Semaphore posting no task switch 118 (128) 201 (205)

Semaphore waiting no blocking 122 (131) 210 (216)

Semaphore posting with task switch 182 (209) 317 (341)

Semaphore waiting with blocking 199 (208) 352 (355)

Semaphore posting in ISR with task switch 367 (395) 506 (528)

Event setting no task switch n/a 198 (205)

Event getting no blocking n/a 218 (223)

Event setting with task switch n/a 330 (357)

Event getting with blocking n/a 368 (371)

Event setting in ISR with task switch n/a 521 (546)

Mailbox writing no task switch n/a 249 (256)

Mailbox reading no blocking n/a 257 (265)

Mailbox writing with task switch n/a 363 (388)

Mailbox reading with blocking n/a 411 (416)

Mailbox writing in ISR with task switch n/a 563 (585)

Interrupt Latency 35 35

Interrupt overhead entering the kernel 185 (186) 189 (187)

Interrupt overhead NOT entering the kernel 56 56

Context switch 35 44

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 37

Table 7-9 Latency Measurements FPU ON

Description Minimal Features Full Features

Semaphore posting no task switch 118 (128) 201 (205)

Semaphore waiting no blocking 122 (131) 210 (216)

Semaphore posting with task switch 226 (253) 361 (385)

Semaphore waiting with blocking 243 (252) 396 (399)

Semaphore posting in ISR with task switch 439 (467) 578 (600)

Event setting no task switch n/a 198 (205)

Event getting no blocking n/a 218 (223)

Event setting with task switch n/a 374 (401)

Event getting with blocking n/a 412 (415)

Event setting in ISR with task switch n/a 593 (618)

Mailbox writing no task switch n/a 249 (256)

Mailbox reading no blocking n/a 257 (265)

Mailbox writing with task switch n/a 407 (432)

Mailbox reading with blocking n/a 455 (460)

Mailbox writing in ISR with task switch n/a 635 (657)

Interrupt Latency 47 47

Interrupt overhead entering the kernel 213 (214) 217 (215)

Interrupt overhead NOT entering the kernel 88 88

Context switch 81 90

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 38

8 Appendix A: Build Options for Code Size

8.1 Case 0: Minimum build

Table 8-1: Case 0 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 2 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 2 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 0 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 39

8.2 Case 1: + Runtime service creation / static memory

Table 8-2: Case 1 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 2 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 2 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 0 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 40

8.3 Case 2: + Multiple tasks at same priority

Table 8-3: Case 2 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 41

8.4 Case 3: + Priority change / Priority inheritance / FCFS / Task suspend

Table 8-4: Case 3 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 42

8.5 Case 4: + Timer & timeout / Timer call back / Round robin

Table 8-5: Case 4 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 43

8.6 Case 5: + Events / Mailboxes

Table 8-6: Case 5 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 44

8.7 Case 6: Full feature Build (no names)

Table 8-7: Case 6 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 45

8.8 Case 7: Full feature Build (no names / no runtime creation)

Table 8-8: Case 7 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

Abassi RTOS Port – ARM Cortex-M4 – Atollic 2012.06.02

Rev 1.2 Page 46

8.9 Case 8: Full build adding the optional timer services

Table 8-9: Case 8 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 1 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

