
Copyright Information

This document is copyright Code Time Technologies Inc. ©2011,2012. All rights reserved. No part of this document may be
reproduced or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of

Code Time Technologies Inc.

Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

Abassi RTOS

Porting Document

ATmega128 – IAR

Disclaimer

Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,

but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the

document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in

the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

IAR Embedded Workbench is a trademark owned by IAR Systems AB. Atmel and AVR are registered trademarks of Atmel
Corporation or its subsidiaries. All other trademarks are the property of their respective owners.

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 3

Table of Contents

1 INTRODUCTION .. 6

1.1 DISTRIBUTION CONTENTS ... 6
1.2 LIMITATIONS ... 6

2 TARGET SET-UP .. 7

2.1 INTERRUPT STACK SET-UP .. 9
2.2 INTERRUPT NESTING ..10
2.3 COMPILER OPTIONS ..12

2.3.1 Option -lock_regs ..12
2.3.2 Option –zero_register ..13

3 INTERRUPTS ...14

3.1 INTERRUPT HANDLING ...14
3.1.1 Interrupt Installer ..14

3.2 UNUSED INTERRUPTS ...15
3.3 FAST INTERRUPTS ...16
3.4 NESTED INTERRUPTS ..19

4 STACK USAGE...20

5 SEARCH SET-UP ...21

6 CHIP SUPPORT ...24

7 MEASUREMENTS ...25

7.1 MEMORY ..25
7.2 LATENCY ..27

8 APPENDIX A: BUILD OPTIONS FOR CODE SIZE ...31

8.1 CASE 0: MINIMUM BUILD ...31
8.2 CASE 1: + RUNTIME SERVICE CREATION / STATIC MEMORY ..32
8.3 CASE 2: + MULTIPLE TASKS AT SAME PRIORITY ...33
8.4 CASE 3: + PRIORITY CHANGE / PRIORITY INHERITANCE / FCFS / TASK SUSPEND34
8.5 CASE 4: + TIMER & TIMEOUT / TIMER CALL BACK / ROUND ROBIN ..35
8.6 CASE 5: + EVENTS / MAILBOXES ..36
8.7 CASE 6: FULL FEATURE BUILD (NO NAMES) ...37
8.8 CASE 7: FULL FEATURE BUILD (NO NAMES / NO RUNTIME CREATION) ..38
8.9 CASE 8: FULL BUILD ADDING THE OPTIONAL TIMER SERVICES ...39

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 4

List of Figures
FIGURE 2-1 PROJECT FILE LIST ... 7
FIGURE 2-2 RUN-TIME LIBRARY CONFIGURATION .. 8
FIGURE 2-3 THREAD-SAFE PROJECT FILE LIST .. 8
FIGURE 2-4 GUI SET OF OS_ISR_STACK AND OS_CODE_ISR_STACK ...10
FIGURE 2-5 GUI SET OF OS_NESTED_INTS ..11
FIGURE 2-6 GUI SET OF OS_OPT__LOCK_REGS ..13
FIGURE 7-1 MEMORY MEASUREMENT CODE OPTIMIZATION SETTINGS ...25
FIGURE 7-2 LATENCY MEASUREMENT CODE OPTIMIZATION SETTINGS ...27

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 5

List of Tables
TABLE 1-1 DISTRIBUTION ... 6
TABLE 2-1 INTERRUPT STACK ENABLED ... 9
TABLE 2-2 INTERRUPT STACK DISABLED .. 9
TABLE 2-3 COMMAND LINE SET OF OS_ISR_STACK .. 9
TABLE 2-4 NESTED INTERRUPTS ENABLED ...10
TABLE 2-5 NESTED INTERRUPTS DISABLED ..11
TABLE 2-6 COMMAND LINE SET OF OS_NESTED_INTS ..11
TABLE 2-7 4 REGISTERS SET GLOBAL ..12
TABLE 2-8 NO REGISTERS SET AS A GLOBAL ..12
TABLE 2-9 COMMAND LINE SET OF OS_OPT__LOCK_REGS ...12
TABLE 3-1 ATTACHING A FUNCTION TO AN INTERRUPT ...14
TABLE 3-2 ATTACHING A FUNCTION TO AN INTERRUPT ...14
TABLE 3-3 INVALIDATING AN ISR HANDLER ..15
TABLE 3-4 ENTRY IN THE INTERRUPT VECTOR TABLE ..15
TABLE 3-5 UNUSED INTERRUPT VECTOR TABLE ...15
TABLE 3-6 DO-NOTHING INTERRUPT HANDLER ..16
TABLE 3-7 INTERRUPT DISPATCHER PROLOGUE ...16
TABLE 3-8 INTERRUPT DISPATCHER PROLOGUE REMOVAL ...16
TABLE 3-9 ATMEGA128-16AU TIMER/COUNTER1 REGULAR INTERRUPT ...16
TABLE 3-10 ATMEGA128-16AU TIMER/CONTER1 FAST INTERRUPT ..17
TABLE 3-11 FAST INTERRUPT WITH DEDICATED STACK ..17
TABLE 4-1 CONTEXT SAVE STACK REQUIREMENTS ...20
TABLE 5-1 SEARCH ALGORITHM CYCLE COUNT ..22
TABLE 7-1 “C” CODE MEMORY USAGE ...26
TABLE 7-2 ASSEMBLY CODE MEMORY USAGE ..26
TABLE 7-3 MEASUREMENT WITHOUT TASK SWITCH ..28
TABLE 7-4 MEASUREMENT WITHOUT BLOCKING ...28
TABLE 7-5 MEASUREMENT WITH TASK SWITCH ..28
TABLE 7-6 MEASUREMENT WITH TASK UNBLOCKING ..29
TABLE 7-7 LATENCY MEASUREMENTS ..30
TABLE 8-1: CASE 0 BUILD OPTIONS ..31
TABLE 8-2: CASE 1 BUILD OPTIONS ..32
TABLE 8-3: CASE 2 BUILD OPTIONS ..33
TABLE 8-4: CASE 3 BUILD OPTIONS ..34
TABLE 8-5: CASE 4 BUILD OPTIONS ..35
TABLE 8-6: CASE 5 BUILD OPTIONS ..36
TABLE 8-7: CASE 6 BUILD OPTIONS ..37
TABLE 8-8: CASE 7 BUILD OPTIONS ..38
TABLE 8-9: CASE 8 BUILD OPTIONS ..39

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 6

1 Introduction

This document details the port of the Abassi RTOS to the ATmega128 processor from Atmel. The

software suite used for this specific port is the IAR Embedded Workbench for AVR 6.11; the specific

version used for the port and all tests is Version 6.11.

NOTE: This document does not cover the port for AVR devices other than ATmega128. Different

documents describe the port for non-ATmega128 AVR devices.

1.1 Distribution Contents

The set of files supplied with this distribution are listed in Table 1-1 below:

Table 1-1 Distribution

File Name Description

Abassi.h Include file for the RTOS

Abassi.c RTOS “C” source file

Abassi_ATmega128_IAR.s90 RTOS assembly file for the ATmega128 to use with the

IAR Embedded Workbench

Abassi_IAR_MTX_IF.c Abassi interface functions for multithread-safe operation of

the IAR DLIB for EW AVR Version >= 6.10

Demo_3_AVRMT128_IAR.c Demo code that runs on the Olimex AVR-MT-128

evaluation board using the serial port

Demo_4_AVRMT128_IAR.c Demo code that runs on the Olimex AVR-MT-128

evaluation board using the LCD

Demo_4_AVRMT128_IAR.c Demo code that runs on the Olimex AVR-MT-128

evaluation board using the UART.

AbassiDemo.h Build option settings for the demo code

1.2 Limitations

The tiny memory model is not supported in this port.

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 7

2 Target Set-up

Very little is needed to configure the IAR Embedded Workbench development environment to use the

Abassi RTOS in an application. All there is to do is to add the files Abassi.c and

Abassi_ATMEGA128_IAR.s90 in the source files of the application project, and make sure the

configuration settings (described in the following subsections) in the file Abassi_ATMEGA128_IAR.s90

are set according to the needs of the application. As well, update the include file path in the C/C++

compiler preprocessor options with the location of Abassi.h.

Figure 2-1 Project File List

NOTE: By default, some functions in the IAR Embedded Workbench C/C++ run-time library are not

multithread-safe. As such, library functions like printf(), malloc(), or fopen() should be

made multithread-safe through the use of a mutex. It is also advisable to use a single mutex

(G_OSmutex) for all accesses to the non- multithread-safe modules, as some non- multithread-safe

modules quite likely call other non- multithread-safe ones.

 The IAR Embedded Workbench for the AVR Version 6.10 (and up) supports multithread-safe

libraries as long as the –-guard_calls option is set in the C/C++ Compiler Extra Options box,

as the library supplies the RTOS interface functions for the mutexes. The libraries may need to be

rebuilt to enable this feature; refer to the IAR “C/C++” User’s Guide. These interface functions

are supplied in the file Abassi_IAR_MTX_IF.c. All there is to do is add the file

Abassi_IAR_MTX_IF.c in the application project.

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 8

Figure 2-2 Run-time Library Configuration

Figure 2-3 Thread-safe Project File List

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 9

2.1 Interrupt Stack Set-up

It is possible, and highly recommended to use a hybrid stack when nested interrupts occur in an application.

Using this hybrid stack, specially dedicated to the interrupts, removes the need to allocate extra room to the

stack of every task in the application to handle the interrupt nesting. This feature is controlled by the value

set by the definition OS_ISR_STACK, located around line 30, and by the definition OS_CODE_ISR_STACK,

located around line 35, in the file Abassi_ATMEGA128_IAR.s90. To disable this feature, set the

definition of OS_ISR_STACK to a value of zero. To enable it, and specify the interrupt data stack size, set

the definition of OS_ISR_STACK to the desired size in bytes. To set the code stack size, set the definition

of OS_CODE_ISR_STACK to the desired size in bytes (see Section 4 for information on stack sizing). As

supplied in the distribution, the hybrid stack feature is enabled, a data stack size of 64 bytes is allocated,

and the code stack size is set to the application code stack size; this is shown in the following table:

Table 2-1 Interrupt Stack enabled

#ifndef OS_ISR_STACK

OS_ISR_STACK EQU 64 ; If using a dedicated stack for the ISRs

#endif ; 0 if not used, otherwise size of stack in bytes

#ifndef OS_CODE_ISR_STACK ; Code stack size for ISR. If not defined, re-use

OS_CODE_ISR_STACK EQU OS_CODE_STACK ; the value set for the function code stack size

#endif

Table 2-2 Interrupt Stack disabled

#ifndef OS_ISR_STACK

OS_ISR_STACK EQU 0 ; If using a dedicated stack for the ISRs

#endif ; 0 if not used, otherwise size of stack in bytes

#ifndef OS_CODE_ISR_STACK ; Code stack size for ISR. If not defined, re-use

OS_CODE_ISR_STACK EQU OS_CODE_STACK ; the value set for the function code stack size

#endif

Alternatively, it is possible to overload the OS_STACK_SIZE and OS_CODE_ISR_STACK values set in

Abassi_ATMEGA128_IAR.s90 by using the assembler command line option –D and specifying the desired

hybrid stack sizes. In the following example, the ISR data stack size is set to 128 bytes and the ISR code

stack size is set to 8 bytes:

Table 2-3 Command line set of OS_ISR_STACK

aavr … -DOS_ISR_STACK=128 -DOS_CODE_ISR_STACK=8 …

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 10

The interrupt stack size can also be set through the GUI, in the “Assembler / Preprocessor” menu, as shown

in the following figure:

Figure 2-4 GUI set of OS_ISR_STACK and OS_CODE_ISR_STACK

2.2 Interrupt Nesting

The normal operation of the interrupt controller on the ATmega128 devices is to only allow a single

interrupt to operate at any time. This means when the processor is servicing an interrupt, any new

interrupts, even if their priority is higher than the serviced interrupt level, remain pending until the

processor finishes servicing the current interrupt. The interrupt dispatcher allows the nesting of interrupts;

this means an interrupt of any priority can interrupt the processing of an interrupt currently being handled.

Nested interrupts are enabled by setting both the build option OS_NESTED_INTS in the Abassi.h file and

the token OS_NESTED_INTS in the Abassi_ATMEGA128_IAR.s90 file, around line 40, to a non-zero

value, as shown in the following table:

Table 2-4 Nested Interrupts enabled

#ifndef OS_NESTED_INTS

OS_NESTED_INTS EQU 1 ; To allow interrupt nesting, set to non zero

#endif ; To not allow interrupt nesting, set to zero

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 11

Interrupt nesting is disabled (in other words, the interrupts operate exactly as the ATmega128 interrupt

controller operates) by setting both the build option OS_NESTED_INTS in the Abassi.h file and the token

OS_NESTED_INTS in the Abassi_ATMEGA128_IAR.s90 file to a zero value, as shown in the following

table:

Table 2-5 Nested Interrupts disabled

#ifndef OS_NESTED_INTS

OS_NESTED_INTS EQU 0 ; To allow interrupt nesting, set to non-zero

#endif ; To not allow interrupt nesting, set to zero

Alternatively, it is possible to overload the OS_NESTED_INTS value set in Abassi_ATMEGA128_IAR.s90

by using the assembler command line option –D and specifying the setting for the nesting of the interrupts.

Even though the token name is identical to the Abassi build option, a definition passed to the compiler does

not get propagated to the assembler, so the assembler option –D must also be used. The following example

shows the activation of the nesting for the interrupts:

Table 2-6 Command line set of OS_NESTED_INTS

aavr … -DOS_NESTED_INTS=1 …

The control of the interrupt nesting can also be set through the GUI, in the “Assembler / Preprocessor”

menu, as shown in the following figure:

Figure 2-5 GUI set of OS_NESTED_INTS

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 12

NOTE: The build option OS_NESTED_INTS must be set to a non-zero value when the token

NESTED_INTS in the file Abassi_ATMEGA128_IAR.s90 is set to a non-zero value. If the token

NESTED_INTS in the file Abassi_ATMEGA128_IAR.s90 is set to a zero value, and the build

option OS_NESTED_INTS is non-zero, the application will properly operate, but with a tiny bit less

real-time efficiency when kernel requests are performed during an interrupt.

2.3 Compiler Options

This subsection describes the configuration changes to make in the Abassi_ATMEGA128_IAR.s90 when

the application is built enabling some compiler options.

2.3.1 Option -lock_regs

The “C” compiler can be configured to not use a set of registers, with the option -lock_regs. This affects

the implementation of the assembly-coded functions in the file Abassi_ATMEGA128_IAR.s90. If this

option is set to a non-zero value in the “C/C++ / Code / Number of registers to lock for global variables”

menu in the compiler configuration menu, then the token OS_OPT__lock_regs, defined in the file

Abassi_ATMEGA128_IAR.s90 around line 50, must be set to the same value specified in the “C/C++ /

Code / Number of registers to lock for global variables” menu, as shown in the following table:

Table 2-7 4 registers set global

#ifndef OS_OPT__lock_regs

OS_OPT__lock_regs EQU 4 ; Set to zero if the "C" option --lock_regs is not used

#endif ; Set to N if the "C" option --lock_regs is used

If the compiler is not configured to reserve any registers as global variables, but can use them as any other

registers, leave the token OS_OPT__lock_regs set to a zero value, as originally supplied in the

distribution.

Table 2-8 No registers set as a global

#ifndef OS_OPT__lock_regs

OS_OPT__lock_regs EQU 0 ; Set to zero if the "C" option --lock_regs is not used

#endif ; Set to N if the "C" option --lock_regs is used

Alternatively, it is possible to overload the OS_OPT__lock_regs value set in

Abassi_ATMEGA128_IAR.s90 by using the assembler command line option –D and specifying the

required usage of the r4 register. In the following example, the register is reserved as a global register:

Table 2-9 Command line set of OS_OPT__lock_regs

aavr … -DOS_OPT__lock_regs=4 …

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 13

The usage of reserved registers can also be set through the GUI, in the “Assembler / Preprocessor” menu,

as shown in the following figure:

Figure 2-6 GUI set of OS_OPT__lock_regs

2.3.2 Option –zero_register

The “C” compiler can be configured to force the register r15 to always hold a zero value, with the option

-zero_register. Nothing special needs to be done when this compiler option is set, as the code in the

file Abassi_ATMEGA128_IAR.s90 was designed and implemented to handle this case.

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 14

3 Interrupts

The Abassi RTOS needs to be aware when kernel requests are performed inside or outside an interrupt

context. Normally, when coding with the IAR Embedded Workbench, an interrupt function is specified

with the __interrupt directive. But for all interrupt sources (except for the reset), the Abassi RTOS

provides an interrupt dispatcher, which allows it to be interrupt-aware. This dispatcher achieves two goals.

First, the kernel uses it to know if a request occurs within an interrupt context or not. Second, using this

dispatcher reduces the code size, as all interrupts share the same code for the decision making of entering

the kernel or not at the end of the interrupt.

3.1 Interrupt Handling

3.1.1 Interrupt Installer

Attaching a function to an interrupt is quite straightforward. All there is to do is use the RTOS component

OSisrInstall() to specify the interrupt priority and the function to be attached to that interrupt vector

index (the interrupt vector index is the interrupt vector number minus one). For example, Table 3-1 shows

the code required to attach the TIMER/COUNTER1 overflow interrupt (on a ATMEGA128-16AU) to the

RTOS timer tick handler (TIMtick):

Table 3-1 Attaching a Function to an Interrupt

#include “Abassi.h”

 …

 OSstart();

 …

 OSisrInstall(14, &TIMtick);

 /* Set-up the count reload and enable SysTick interrupt */

 … /* More ISR setup */

 OSeint(1); /* Global enable of all interrupts */

Alternatively, instead of using a hard coded number, the standard definition supplied by the file iom128.h

can be used. These definitions are set to the vector table offset, specified in bytes; since OSisrIntall()

uses the interrupt vector index value, these definitions must be divided by 4, as shown in Table 3-2.

Table 3-2 Attaching a Function to an Interrupt

#include “Abassi.h”

#include <ATmega128.h>

 …

 OSstart();

 …

 OSisrInstall(TIMER0_OVF_vect/4, &TIMtick);

 /* Set-up the count reload and enable SysTick interrupt */

 … /* More ISR setup */

 OSeint(1); /* Global enable of all interrupts */

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 15

NOTE: The function to attach to an interrupt is a regular function, not one declared with the Embedded

Workbench specific __interrupt prefix statement.

NOTE: OSisrInstall() uses the interrupt priority index. As an example, the reset interrupt has the

index of 0.

At start-up, once OSstart() has been called, all OS_N_INTERRUPTS interrupt handler functions are set to

a “do nothing” function, named OSinvalidISR(). If an interrupt function is attached to an interrupt

number using the OSisrInstall() component before calling OSstart(), this attachment will be

removed by OSstart(), so OSisrInstall() should never be used before OSstart() has ran. When an

interrupt handler is removed, it is very important and necessary to first disable the interrupt source, then the

handling function can be set back to OSinvalidISR(). This is shown in Table 3-3:

Table 3-3 Invalidating an ISR handler

#include “Abassi.h”

 …

 /* Disable the interrupt source */

 OSisrInstall(Number, &OSinvalidISR);

 …

When an application needs to disable/enable the interrupts, the RTOS supplied functions OSdint() and

OSeint() should be used.

3.2 Unused Interrupts

The assembly file Abassi_ATMEGA128_IAR.s90, as supplied in the distribution, includes the prologue

code for the interrupt dispatcher for all sources of interrupts. If the code memory space is becoming a bit

short, removing the prologue for unused interrupts will help recover memory from that dead code.

Removing the interrupt dispatcher prologue for an unused interrupt is a three-step process. First, the

unused interrupt vector must be replaced in the interrupt vector table. This table is located at around line

190, at the label VectTbl, and each interrupt entry is defined as shown in the following:

Table 3-4 Entry in the interrupt vector table

 ISR_TBL XX, INTXX_handler

The desired table entry must be attached to a do-nothing interrupt handler; it is preferable to attach a do-

nothing interrupt handler in case of spurious interrupts. To attach the do-nothing interrupt handler, replace

the desired vector table entry by the following:

Table 3-5 Unused interrupt vector table

 ISR_TBL XX, INT_NO_handler

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 16

The second step is to create the do-nothing interrupt handler. This step only needs to be performed once, as

the same do-nothing handler should be re-used for all unused interrupts. The do-noting interrupt handler

code must be located in the ISR_CODE section. Therefore, insert the following code right after the

definition of the ISR_PROLOGUE macro, right before the INT02_handler label; this should be around line

350 in the file:

Table 3-6 Do-nothing interrupt handler

INT_NO_handler: ; Entry point of the do-nothing ISR handler

 reti ; Return from the interrupt

The last step is to remove the unused interrupt dispatcher prologue code. Each interrupt has an interrupt

dispatcher prologue, where the prologue is always defined as follows:

Table 3-7 Interrupt dispatcher prologue

INTXX_handler:

 ISR_PROLOGUE XX

Commenting out the ISR_PROLOGUE line for the unused interrupt will remove the prologue code. It is not

necessary to remove the label.

Table 3-8 Interrupt dispatcher prologue removal

INTXX_handler:

;;; ISR_PROLOGUE XX

3.3 Fast Interrupts

Fast interrupts are supported on this port. A fast interrupt is an interrupt that never uses any component

from Abassi and as the name says, is desired to operate as fast as possible. To set-up a fast interrupt, all

there is to do is to set the address of the interrupt function in the corresponding entry in the interrupt vector

table that is used by the ATmega128 processor. The beginning of the interrupt vector table is located in the

file Abassi_ATMEGA128_IAR.s90 around line 190, at the label VectTbl. For example, on a

ATMEGA128F1611 device, TIMERA is set to the priority 6. This is the entry in the table for TIMERA in the

distribution file:

Table 3-9 ATMEGA128-16AU TIMER/COUNTER1 Regular Interrupt

 ISR_TBL 14, INT14_handler

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 17

To attach a fast interrupt handler to the TIMER/COUNTER1 overflow interrupt, assuming the name of the

interrupt function to attach is TIMER1_handler(), replace the previous line with that shown in Table

3-10:

Table 3-10 ATMEGA128-16AU TIMER/CONTER1 Fast Interrupt

 EXTERN TIMER1_handler

 ISR_TBL 14, TIMER1_handler

It is important to add the EXTERN statement otherwise there will be an error during the assembly of the file.

NOTE: If an Abassi component is used inside a fast interrupt, the application will misbehave.

NOTE: Fast interrupt handlers must use the IAR keyword __interrupt, unless reti is used.

Even if the hybrid interrupt stack feature is enabled (see Section 2.1), fast interrupts will not use that stack.

This translates into the need to reserve room on all task stacks for the possible nesting of fast interrupts. To

make the fast interrupts also use a hybrid interrupt stack, a prologue and epilogue must be used around the

call to the interrupt handler. The prologue and epilogue code to add is almost identical to what is done in

the regular interrupt dispatcher. Reusing the example of the TIMER/COUNTER1 on a ATMEGA128-16AU

device, this would look something like:

Table 3-11 Fast Interrupt with Dedicated Stack

 …

 …

 ISR_TBL 14, TIMER1_preHandler

 …

 …

 RSEG CODE:CODE:ROOT(1)

 EXTERN TIMER1_handler

TIMER1_preHandler:

 st -Y, r31 ; 2 regs needed to set up ISR stack

 st -Y, r30

 sts DataStackISR-1, Y1 ; We need to start using the ISR stack

 sts DataStackISR-2, Y0 ; Memo current Y on the Data ISR stack

 ldi Y0, LOW(T1_DataStackISR-2) ; Set-up Y to use the Data ISR stack

 ldi Y1, (T1_DataStackISR-2) >> 8

 in r31, SPH ; Memo current code stack and set-up to

 st -Y, r31 ; start using the code ISR stack

 in r31, SPL ; Interrupt disable in here, so no issues

 st -Y, r31

 ldi r31, LOW(T1_CodeStackISR)

 out SPL, r31

 ldi r31, (T1_CodeStackISR)>>8

 out SPH, r31

 in r30, SREG ; A little bit more context save

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 18

 st -Y, r30 ; And we need to also preserved SREG

 st -Y, r23

 st -Y, r22

 st -Y, r21

 st -Y, r20

 st -Y, r19

 st -Y, r18

 st -Y, r17

 st -Y, r16

 st -Y, r3

 st -Y, r2

 st -Y, r1

 st -Y, r0

 call TIMER1_handler ; Enter the interrupt handler

 ld r0, Y+ ; Context restore

 ld r1, Y+

 ld r2, Y+

 ld r3, Y+

 ld r16, Y+

 ld r17, Y+

 ld r18, Y+

 ld r19, Y+

 ld r20, Y+

 ld r21, Y+

 ld r22, Y+

 ld r23, Y+

 ld r30, Y+

 out SREG, r30

 ld r30, Y+ ; Read original code stack pointer

 out SPL, r30 ; and put it back in SP

 ld r30, Y+

 out SPH, r18

 ld r30, Y+ ; Read original data stack pointer

 ld r31, Y

 movw Y1:Y0,r30:r31 ; Put it back in

 ld r30, Y+

 ld r31, Y+

 reti ; exit the ISR

 …

 …

 RSEG RSEG NEAR_N:DATA(1)

 DS8 T1_Data_stack_size ; Room for the fast interrupt data stack

T1_ DataStackISR:

 DS8 (T1_Data_stack_size)-1 ; Room for the fast interrupt code stack

T1_ CodeStackISR:

 DS8 1

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 19

The same code, with unique labels, must be repeated for each of the fast interrupts. As the use of the

hybrid stack creates the prologue-epilogue for the interrupt context, the function called must be a regular

“C” function, not one declared with the __interrupt directive. If the GIE (global interrupt enable) bit in

the status register is not set in the interrupt function, and the nesting of interrupts is not allowed (Section

2.2), then the same hybrid stack memory can be re-used, as, by default, the ATmega128 interrupt controller

only allows the servicing of a single interrupt at any time. If nesting is desired on the fast interrupts with

the hybrid stack, extreme care must be taken, as a critical region exists when the code stack is set back to its

pre-interrupt value.

3.4 Nested Interrupts

The interrupt dispatcher allows the nesting of interrupts; nested interrupt means an interrupt of any priority

will interrupt the processing of an interrupt currently being serviced. Refer to Section 2.2 for information

on how to enable or disable interrupt nesting.

The Abassi RTOS kernel never disables interrupts, but there are a few very small regions within the

interrupt dispatcher where interrupts are temporarily disabled when nesting is enabled (a total of between

10 to 20 instructions).

The kernel is never entered as long as interrupt nesting is occurring. In all interrupt functions, when a

RTOS component that needs to access some kernel functionality is used, the request(s) is/are put in a

queue. Only once the interrupt nesting is over (i.e. when only a single interrupt context remains) is the

kernel entered at the end of the interrupt, when the queue contains one or more requests, and when the

kernel is not already active. This means that only the interrupt handler function operates in an interrupt

context, and only the time the interrupt function is using the CPU are other interrupts of equal or lower

level blocked by the interrupt controller.

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 20

4 Stack Usage

The RTOS uses the tasks’ stack for two purposes. When a task is blocked or ready to run but not running,

the stack holds the register context that was preserved when the task got blocked or preempted. Also, when

an interrupt occurs, the register context of the running task must be preserved in order for the operations

performed during the interrupt to not corrupt the contents of the registers used by the task when it got

interrupted. For the ATMEGA128, the context save contents of a blocked or pre-empted task is different

from the one used in an interrupt. The following table lists the number of bytes required by each type of

context save operation:

Table 4-1 Context Save Stack Requirements

The numbers for the interrupt dispatcher context save include the 2 bytes the processor pushes on the stack

when it enters the interrupt servicing.

When sizing the stack to allocate to a task, there are three factors to take in account. The first factor is

simply that every task in the application needs at least the area to preserve the task context when it is

preempted or blocked. Second, one must take into account how many levels of nested interrupts exist in

the application. As a worst case, all levels of interrupts may occur and becoming fully nested. So, if N

levels of interrupts are used in the application, provision should be made to hold N times the size of an ISR

context save on each task stack, plus any added stack used by the interrupt handler functions. Finally, add

to all this the stack required by the code implementing the task operation.

If the hybrid interrupt stack (see Section 2.1) is enabled, then the above description changes: it is only

necessary to reserve room on task stacks for a single interrupt context save and not the worst-case nesting.

With the hybrid stack enabled, the second, third, and so on interrupts use the stack dedicated to the

interrupts. The hybrid stack is enabled when the OS_ISR_STACK token in the file

Abassi_ATMEGA128_IAR.s90 is set to a non-zero value (Section 2.1).

1
 Subtract N bytes when the OS_OPT__lock_regs tokens is set to a non-zero value of N.

Description Context save

Blocked/Preempted task context save 18 bytes
1

Interrupt context save (no Hybrid stack) 17 bytes

Interrupt context save (Hybrid stack) 17 bytes

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 21

5 Search Set-up

The Abassi RTOS build option OS_SEARCH_FAST offers four different algorithms to quickly determine the

next running task upon task blocking. The following table shows the measurements obtained for the

number of CPU cycles required when a task at priority 0 is blocked, and the next running task is at the

specified priority. The number of cycles includes everything, not just the search cycle count. The number

of cycles was measured using the TIMER/COUNTER3 peripheral, which was set to increment the counter

once every CPU cycle. The second column is when OS_SEARCH_FAST is set to zero, meaning a simple

array traversing. The third column, labeled Look-up, is when OS_SEARCH_FAST is set to 1, which uses an

8 bit look-up table. Finally, the last column is when OS_SEARCH_FAST is set to 4 (ATmega128 int are 16

bits, so 2^4), meaning a 16 bit look-up table, further searched through successive approximation. The

compiler optimization for this measurement was set to Level High / Speed optimization. The RTOS build

options were set to the minimum feature set, except for option OS_PRIO_CHANGE set to non-zero. The

presence of this extra feature provokes a small mismatch between the result for a difference of priority of 1,

with OS_SEARCH_FAST set to zero, and the latency results in Section 7.2.

When the build option OS_SEARCH_ALGO is set to a negative value, indicating to use a 2-dimensional

linked list search technique instead of the search array, the number of CPU is constant at 401 cycles.

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 22

Table 5-1 Search Algorithm Cycle Count

Priority Linear search Look-up Approximation

1 431 494 662

2 440 505 668

3 451 516 689

4 462 527 680

5 473 538 808

6 484 549 707

7 495 560 728

8 506 498 704

9 517 507 725

10 528 518 731

11 539 529 752

12 550 540 743

13 561 551 764

14 572 562 770

15 583 573 791

16 594 511 653

17 605 520 674

18 616 531 680

19 627 542 701

20 638 553 692

21 649 564 713

22 660 575 719

23 671 586 740

24 682 524 716

The third option, when OS_SEARCH_FAST is set to 4, never achieves a lower CPU usage than when

OS_SEARCH_FAST is set to zero or 1. This is understandable, as the ATmega128 does not possess a barrel

shifter for variable shift. When OS_SEARCH_FAST is set to zero, each extra priority level to traverse

requires exactly 11 CPU cycles. When OS_SEARCH_FAST is set to 1, each extra priority level to traverse

also requires exactly 11 CPU cycles, except when the priority level is an exact multiple of 8; then there is a

sharp reduction of CPU usage. Overall, setting OS_SEARCH_FAST to 1 adds an extra 65 cycles of CPU for

the search compared to setting OS_SEARCH_FAST to zero. But when the next ready to run priority is less

than 8, 16, 24, … then there is an extra 13 cycles needed, but without the 8 times 11 cycles accumulation.

What does this mean? Using 8 tasks or more on the ATmega128 may be an exception due to the limited

memory space, so one could assume the number of tasks will remain small. If that is the case, then

OS_SEARCH_FAST should be set to 0. If an application is created with more than 8 tasks, then setting

OS_SEARCH_FAST to 1 may be better choice.

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 23

Setting the build option OS_SEARCH_ALGO to a non-negative value minimizes the time needed to change

the state of a task from blocked to ready to run, but not the time needed to find the next running task upon

blocking/suspending of the running task. If the application needs are such that the critical real-time

requirement is to get the next running task up and running as fast as possible, then set the build option

OS_SEARCH_ALGO to a negative value.

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 24

6 Chip Support

No chip support is provided with the distribution.

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 25

7 Measurements

This section gives an overview of the memory requirements and the CPU latency encountered when the

RTOS is used on the ATmega128 and compiled with IAR Embedded Workbench. The CPU cycles are

exactly the CPU clock cycles, not a conversion from a duration measured on an oscilloscope then converted

to a number of cycles.

7.1 Memory

The memory numbers are supplied for the two limit cases of build options (and some in-between): the

smallest footprint is the RTOS built with only the minimal feature set, and the other with almost all the

features. For both cases, names are not part of the build. This feature was removed from the metrics

because it is highly probable that shipping products utilizing this RTOS will not include the naming of

descriptors, as its usefulness is mainly limited to debugging and making the opening/creation of

components run-time safe.

The code size numbers are expressed with “less than” as they have been rounded up to multiples of 25 for

the “C” code. These numbers were obtained using the beta release of the RTOS and may change. One

should interpret these numbers as the “very likely” numbers for the released version of the RTOS.

The code memory required by the RTOS includes the “C” code and assembly language code used by the

RTOS. The code optimization settings used for the memory measurements are:

1. Optimization Level: High

2. Optimize for: Size

3. Always do cross call optimization Disabled

Figure 7-1 Memory Measurement Code Optimization Settings

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 26

Table 7-1 “C” Code Memory Usage

Description Code Size

Minimal Build < 950 bytes

+ Runtime service creation / static memory < 1225 bytes

+ Multiple tasks at same priority < 1350 bytes

+ Runtime priority change

+ Mutex priority inheritance

+ FCFS

+ Task suspension

< 2025 bytes

+ Timer & timeout

+ Timer call back

+ Round robin

< 3625 bytes

+ Events

+ Mailbox

< 4375 bytes

Full Feature Build (no names) < 4050 bytes

Full Feature Build (no names / no runtime creation) < 3775 bytes

Full Feature Build (no names / no runtime creation)

+ Timer services module

< 4550 bytes

Table 7-2 Assembly Code Memory Usage

Description Size

ASM code 294 bytes

Vector Table (per interrupt) + 4 bytes

Interrupt prologue (per interrupt) + 8 bytes

Hybrid Stack Enabled +42 bytes

Nested interrupts Enabled +14 bytes

There are two aspects when describing the data memory usage by the RTOS. First, the RTOS needs its

own data memory to operate, and second, most of the services offered by the RTOS require data memory

for each instance of the service. As the build options affect either the kernel memory needs or the service

descriptors (or both), an interactive calculator has been made available on the Code Time Technologies

website.

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 27

7.2 Latency

Latency of operations has been measured on an Olimex Evaluation board populated with a 16 MHz

ATMEGA128-16AU device. All measurements have been performed on the real platform, using the timer

peripheral TIMERA set-up to be clocked at the same rate as the CPU. This means the interrupt latency

measurements had to be instrumented to read the TIMER/COUNTER3 counter value. This instrumentation

can add up to 5 or 6 cycles to the measurements. The code optimization settings used for the latency

measurements are:

1. Optimization Level: High

2. Optimize for: Speed

3. Always do cross call optimization Disabled

Figure 7-2 Latency Measurement Code Optimization Settings

There are 5 types of latencies that are measured, and these 5 measurements are expected to give a very

good overview of the real-time performance of the Abassi RTOS for this port. For all measurements, three

tasks were involved:

1. Adam & Eve set to a priority value of 0;

2. A low priority task set to a priority value of 1;

3. The Idle task set to a priority value of 20.

The sets of 5 measurements are performed on a semaphore, on the event flags of a task, and finally on a

mailbox. The first 2 latency measurements use the component in a manner where there is no task

switching. The third measurements involve a high priority task getting blocked by the component. The

fourth measurements are about the opposite: a low priority task getting pre-empted because the component

unblocks a high priority task. Finally, the reaction to unblocking a task, which becomes the running task,

through an interrupt is provided.

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 28

The first set of measurements counts the number of CPU cycles elapsed starting right before the component

is used until it is back from the component. For these measurement there is no task switching. This means:

Table 7-3 Measurement without Task Switch

 Start CPU cycle count

 SEMpost(…); or EVTset(…); or MBXput();

 Stop CPU cycle count

The second set of measurements, as for the first set, counts the number of CPU cycles elapsed starting right

before the component is used until it is back from the component. For these measurement there is no task

switching. This means:

Table 7-4 Measurement without Blocking

 Start CPU cycle count

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 Stop CPU cycle count

The third set of measurements counts the number of CPU cycles elapsed starting right before the

component triggers the unblocking of a higher priority task until the latter is back from the component used

that blocked the task. This means:

Table 7-5 Measurement with Task Switch

 main()

 {

 …

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 Stop CPU cycle count

 …

 }

 TaskPrio1()

 {

 …

 Start CPU cycle count

 SEMpost(…); or EVTset(…); or MBXput(…);

 …

 }

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 29

The forth set of measurements counts the number of CPU cycles elapsed starting right before the

component blocks of a high priority task until the next ready to run task is back from the component it was

blocked on; the blocking was provoked by the unblocking of a higher priority task. This means:

Table 7-6 Measurement with Task unblocking

 main()

 {

 …

 Start CPU cycle count

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 …

 }

 TaskPrio1()

 {

 …

 SEMpost(…); or EVTset(…); or MBXput(…);

 Stop CPU cycle count

 …

 }

The fifth set of measurements counts the number of CPU cycles elapsed from the beginning of an interrupt

using the component, until the task that was blocked becomes the running task and is back from the

component used that blocked the task. The interrupt latency measurement includes everything involved in

the interrupt operation, even the cycles the processor needs to push the interrupt context before entering the

interrupt code. The interrupt function, attached with OSisrInstall(), is simply a two line function that

uses the appropriate RTOS component followed by a return.

Table 7-7 lists the results obtained, where the cycle count is measured using the TIMERA peripheral on the

ATMEGA128. This timer increments its counter by 1 at every CPU cycle. As was the case for the

memory measurements, these numbers were obtained with a beta release of the RTOS. It is possible the

released version of the RTOS may have slightly different numbers.

The interrupt latency is the number of cycles elapsed when the interrupt trigger occurred and the ISR

function handler is entered. This includes the number of cycles used by the processor to set-up the interrupt

stack and branch to the address specified in the interrupt vector table. For this measurement, the MSP30

TIMERA is used to trigger the interrupt and measure the elapsed time.

The interrupt overhead without entering the kernel is the measurement of the number of CPU cycles used

between the entry point in the interrupt vector and the return from interrupt, with a “do nothing” function in

the OSisrInstall(). The interrupt overhead when entering the kernel is calculated using the results

from the third and fifth tests. Finally, the OS context switch is the measurement of the number of CPU

cycles it takes to perform a task switch, without involving the wrap-around code of the synchronization

component.

The hybrid interrupt stack feature was not enabled, neither was the oscillator bit preservation, nor the

interrupt nesting, in any of these tests.

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 30

In the following table, the latency numbers between parentheses are the measurements when the build

option OS_SEARCH_ALGO is set to a negative value. The regular number is the latency measurements when

the build option OS_SEARCH_ALGO is set to 0.

Table 7-7 Latency Measurements

Description Minimal Features Full Features

Semaphore posting no task switch 208 (207) 308 (308)

Semaphore waiting no blocking 215 (214) 325 (324)

Semaphore posting with task switch 374 (413) 579 (607)

Semaphore waiting with blocking 395 (378) 607 (587)

Semaphore posting in ISR with task switch 603 (634) 839 (862)

Event setting no task switch n/a 306 (305)

Event getting no blocking n/a 367 (366)

Event setting with task switch n/a 616 (643)

Event getting with blocking n/a 647 (627)

Event setting in ISR with task switch n/a 878 (900)

Mailbox writing no task switch n/a 390 (389)

Mailbox reading no blocking n/a 397 (397)

Mailbox writing with task switch n/a 671 (698)

Mailbox reading with blocking n/a 697 (675)

Mailbox writing in ISR with task switch n/a 937 (958)

Interrupt Latency 60 60

Interrupt overhead entering the kernel 229 (221) 260 (255)

Interrupt overhead NOT entering the kernel 104 104

Context switch 108 108

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 31

8 Appendix A: Build Options for Code Size

8.1 Case 0: Minimum build

Table 8-1: Case 0 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 2 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 2 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 0 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 32

8.2 Case 1: + Runtime service creation / static memory

Table 8-2: Case 1 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 2 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 2 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 0 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 33

8.3 Case 2: + Multiple tasks at same priority

Table 8-3: Case 2 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 34

8.4 Case 3: + Priority change / Priority inheritance / FCFS / Task suspend

Table 8-4: Case 3 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 35

8.5 Case 4: + Timer & timeout / Timer call back / Round robin

Table 8-5: Case 4 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 36

8.6 Case 5: + Events / Mailboxes

Table 8-6: Case 5 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 37

8.7 Case 6: Full feature Build (no names)

Table 8-7: Case 6 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 38

8.8 Case 7: Full feature Build (no names / no runtime creation)

Table 8-8: Case 7 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

Abassi RTOS Port – ATmega128 – IAR 2012.04.21

Rev 1.2 Page 39

8.9 Case 8: Full build adding the optional timer services

Table 8-9: Case 8 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 1 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

