
Copyright Information
This document is copyright Code Time Technologies Inc. ©2011-2017. All rights reserved. No part of this document may be
reproduced or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of
Code Time Technologies Inc.
Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

Abassi RTOS
Porting Document

AVR32A – IAR

Disclaimer
Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the
document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in
the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

IAR Embedded Workbench is a trademark owned by IAR Systems AB. AVR32 is a registered trademark of Atmel Corporation or its
subsidiaries. All other trademarks are the property of their respective owners.

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 3

Table of Contents
1 INTRODUCTION .. 6

1.1 DISTRIBUTION CONTENTS .. 6
1.2 LIMITATIONS .. 6

2 TARGET SET-UP .. 7
2.1 INTC CONTROLLER SET-UP .. 8
2.2 INTERRUPT STACK SET-UP .. 9
2.3 FAST INTERRUPTS SET-UP .. 10
2.4 SATURATION BIT SET-UP .. 11
2.5 MULTITHREADING .. 12

2.5.1 Reentrance Protection .. 13
2.5.2 Full Multithreading Protection ... 13
2.5.3 Partial Multithreading Protection .. 14

2.6 RETE ERRATA ... 14
2.7 INTERRUPT MASKING ERRATA ... 15
2.8 SPURIOUS INTERRUPT ERRATA ... 17

3 INTERRUPTS ... 19
3.1 INTERRUPT HANDLING ... 19

3.1.1 Interrupt Installer .. 19
3.2 INTERRUPT PRIORITY AND ENABLING .. 20
3.3 FAST INTERRUPTS ... 20
3.4 NESTED INTERRUPTS .. 20

4 STACK USAGE .. 22
5 SEARCH SET-UP ... 23
6 CHIP SUPPORT ... 26
7 MEASUREMENTS .. 27

7.1 MEMORY .. 27
7.2 LATENCY .. 30

8 APPENDIX A: BUILD OPTIONS FOR CODE SIZE .. 37
8.1 CASE 0: MINIMUM BUILD ... 37
8.2 CASE 1: + RUNTIME SERVICE CREATION / STATIC MEMORY .. 38
8.3 CASE 2: + MULTIPLE TASKS AT SAME PRIORITY ... 39
8.4 CASE 3: + PRIORITY CHANGE / PRIORITY INHERITANCE / FCFS / TASK SUSPEND 40
8.5 CASE 4: + TIMER & TIMEOUT / TIMER CALL BACK / ROUND ROBIN .. 41
8.6 CASE 5: + EVENTS / MAILBOXES .. 42
8.7 CASE 6: FULL FEATURE BUILD (NO NAMES) ... 43
8.8 CASE 7: FULL FEATURE BUILD (NO NAMES / NO RUNTIME CREATION) .. 44
8.9 CASE 8: FULL BUILD ADDING THE OPTIONAL TIMER SERVICES ... 45

9 APPENDIX B: AVR32A INTERRUPT COMPONENTS .. 47
9.1 OSISRINSTALL .. 47
9.2 OSAVR32AISRMAP .. 48
9.3 OSAVR32AISRPRIO .. 49

10 REVISION HISTORY ... 50

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 4

List of Figures
FIGURE 2-1 PROJECT FILE LIST .. 7
FIGURE 2-2 GUI SET OF OS_AVR32A_INT_LINE (C) ... 8
FIGURE 2-4 GUI SET OF OS_ISR_STACK .. 10
FIGURE 2-5 GUI SET OF OS_FAST_INTS .. 11
FIGURE 2-6 GUI SET OF OS_HANDLE_SR_Q ... 12
FIGURE 2-7 MULTITHREAD-SAFE PROJECT FILE LIST ... 13
FIGURE 2-8 FULL MULTITHREAD PROTECTION GUI CONFIGURATION ... 14
FIGURE 2-9 GUI SET OF OS_FIX_RETE_L .. 15
FIGURE 2-10 GUI SET OF OS_FIX_SR_GIM .. 16
FIGURE 2-11 GUI SET OF OS_SPURIOUS_ISR ... 18
FIGURE 7-1 MEMORY MEASUREMENT CODE OPTIMIZATION SETTINGS ... 27
FIGURE 7-2 LATENCY MEASUREMENT CODE OPTIMIZATION SETTINGS .. 30

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 5

List of Tables
TABLE 1-1 DISTRIBUTION ... 6
TABLE 2-1 ASSEMBLER REQUIRED OPTIONS ... 7
TABLE 2-2 INTC CONFIGURATION FOR “C” (COMMAND LINE) ... 8
TABLE 2-5 INTERRUPT STACK ENABLED .. 9
TABLE 2-6 INTERRUPT STACK DISABLED ... 9
TABLE 2-7 COMMAND LINE SET OF OS_ISR_STACK ... 9
TABLE 2-8 FAST INTERRUPT CONFIGURATION ... 10
TABLE 2-9 COMMAND LINE SET OF OS_FAST_INTS ... 10
TABLE 2-10 FAST INTERRUPTS VS. PRIORITIES .. 11
TABLE 2-11 SATURATION BIT CONFIGURATION ... 12
TABLE 2-12 COMMAND LINE SET OF OS_HANDLE_SR_Q .. 12
TABLE 2-13 FULL MULTITHREAD PROTECTION COMMAND LINE CONFIGURATION 13
TABLE 2-14 SETTING A TASK TO BE MULTITHREAD SAFE ... 14
TABLE 2-15 RETE INSTRUCTION FIX CONFIGURATION ... 14
TABLE 2-16 COMMAND LINE SET OF OS_FIX_RETE_L .. 15
TABLE 2-17 INTERRUPT MASKING FIX CONFIGURATION ... 16
TABLE 2-18 COMMAND LINE SET OF OS_FIX_SR_GIM .. 16
TABLE 2-19 SPURIOUS INTERRUPT FIX CONFIGURATION ... 17
TABLE 2-20 COMMAND LINE SET OF OS_SPURIOUS_ISR .. 17
TABLE 3-1 ATTACHING A FUNCTION TO AN INTERRUPT ... 19
TABLE 3-2 INVALIDATING AN ISR HANDLER ... 20
TABLE 3-3 REMOVING INTERRUPT NESTING ... 21
TABLE 3-4 PROPAGATING INTERRUPT NESTING .. 21
TABLE 4-1 CONTEXT SAVE STACK REQUIREMENTS ... 22
TABLE 5-1 SEARCH ALGORITHM CYCLE COUNT .. 24
TABLE 7-1 “C” CODE MEMORY USAGE (MEDIUM CODE) .. 28
TABLE 7-2 “C” CODE MEMORY USAGE (LARGE CODE) ... 29
TABLE 7-3 ASSEMBLY CODE MEMORY USAGE .. 29
TABLE 7-4 MEASUREMENT WITHOUT TASK SWITCH .. 31
TABLE 7-5 MEASUREMENT WITHOUT BLOCKING ... 31
TABLE 7-6 MEASUREMENT WITH TASK SWITCH .. 31
TABLE 7-7 MEASUREMENT WITH TASK UNBLOCKING .. 32
TABLE 7-8 LATENCY MEASUREMENTS (MEDIUM CODE / SMALL DATA) ... 33
TABLE 7-9 LATENCY MEASUREMENTS (MEDIUM CODE / LARGE DATA) ... 34
TABLE 7-10 LATENCY MEASUREMENTS (LARGE CODE / SMALL DATA) .. 35
TABLE 7-11 LATENCY MEASUREMENTS (LARGE CODE / LARGE DATA) .. 36
TABLE 8-1: CASE 0 BUILD OPTIONS .. 37
TABLE 8-2: CASE 1 BUILD OPTIONS .. 38
TABLE 8-3: CASE 2 BUILD OPTIONS .. 39
TABLE 8-4: CASE 3 BUILD OPTIONS .. 40
TABLE 8-5: CASE 4 BUILD OPTIONS .. 41
TABLE 8-6: CASE 5 BUILD OPTIONS .. 42
TABLE 8-7: CASE 6 BUILD OPTIONS .. 43
TABLE 8-8: CASE 7 BUILD OPTIONS .. 44
TABLE 8-9: CASE 8 BUILD OPTIONS .. 45

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 6

1 Introduction
This document details the port of the Abassi RTOS to the ATMEL AVR32A processor. The software suite
used for this specific port is the IAR Embedded Workbench for the AVR32, more commonly known as
EWAVR; the version used for the port and all tests is Version 4.10.

1.1 Distribution Contents
The set of files supplied with this distribution are listed in Table 1-1 below:

Table 1-1 Distribution

File Name Description

Abassi.h Include file for the RTOS

Abassi.c RTOS “C” source file

Abassi_AVR32A_IAR.s82 RTOS assembly file for the AVR32A to use with the IAR
Embedded Workbench

Abassi_IAR_MTX_IF.c Abassi interface functions for multithread-safe operation of
the IAR DLIB.

Demo_0_EVK1101_IAR.c Demo code for the EVK1101 evaluation board using the
LEDs & serial port

Demo_3_EVK1101_IAR.c Demo code for the EVK1101 evaluation board using the
serial port

Demo_5_EVK1101_IAR.c Demo for on the EVK1101 evaluation board using the
serial port

AbassiDemo.h Build option settings for the demo code

1.2 Limitations
To optimize the reaction time of the Abassi RTOS components, it was decided to require the processor to
always operate in the supervisor mode (which is the start-up default mode for AVR32A microcontrollers)
and not the application mode. The IAR Embedded Workbench regular start-up code fulfills these
constraints and one must be careful to not change the mode of operation.

Applications using the RTOS built with the small code model have not been verified. The reason for this is
due to the family of devices used for the port and testing. The flash memory of all device of the
AT32UC3B family is located at address 0x80000000, which does not fulfill the requirement of the small
code model. The devices in the AT32UC3A and AT32UC3A3 families also have the same flash mapping.

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 7

2 Target Set-up
Very little is needed to configure the Atmel Studio development environment to use the Abassi RTOS in an
application. All there is to do is to add the files Abassi.c and Abassi_AVR32A_IAR.s in the source files
of the application project, and make sure the seven configuration settings in the file
Abassi_AVR32_IAR.s (OS_ISR_STACK described in Section 2.2, OS_FAST_INTS described in Section
2.3, OS_HANDLE_PSR_Q described in Section 2.4, OS_FIX_RETE_L described in Section 2.6,
OS_FIX_SR_GIM described in Section 2.7, and OS_SPURIOUS_ISR described in Section 2.8) are set
according to the needs of the application. As well, update the include file path in the C/C++ compiler
preprocessor options with the location of Abassi.h. There is no need to include a file for the interrupt
table, as the Abassi_AVR32A_IAR.s file contains all the interrupt table and default exception handlers.

Figure 2-1 Project File List

The file Abassi_AVR32A_IAR.s82 contains everything related to the AVR32A events and interrupts, and
it overloads the regular IAR Embedded Workbench interrupt handlers. The RTOS supplies its own API for
the interrupts, as the RTOS needs to be interrupt-aware, therefore any non-Abassi interrupt API cannot be
used. Finally, there are a few configuration settings in the files Abassi_AVR32A_IAR.s82 and Abassi.h
that need to be set according to the target device and the needs of the application. These settings are
described in the following subsections.

If the application is not built though the Embedded Workbench GUI, then it is important to specify the
same options on the command line for both the compiler and the assembler, as the file
Abassi_AVR32A_IAR.s82 relies on command line options to generate the correct code. The options the
file Abassi_AVR32A_IAR.s82 requires are listed in the following table:

Table 2-1 Assembler required options

Option Description

--data_model=XXX Data model, where XXX is either small (s) or large (l)

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 8

2.1 INTC controller Set-up
The AVR32A interrupt controller (INTC) supports up to 64 groups of interrupts, where each individual
group can handle up to 32 lines of interrupts. This means the interrupt controller is capable at handling up
to 2048 individual sources of interrupts. If the group/line mapping is not reduced in one form or another, it
would be necessary to reserve 8192 bytes (2048 * 4 bytes, as function pointers are 4 bytes) for the interrupt
table internally used by the interrupt dispatcher. The way the Abassi RTOS reduces the size of the interrupt
table is to consider the maximum number of groups and maximum number of lines (in any group)
supported on the target device. For example, on the AT32UC3B device family, the highest group number
(not number of groups) is 18, meaning the device spans 19 groups of interrupts. And the group that has the
highest line number (not number of lines) is group number 1, with the largest line number being 9. This
means it is possible to fully support all interrupt triggers on this device family by using an array of 19
groups and 10 lines.

The number of groups and number of lines must be specified either directly in the Abassi.h file where all
the build option definitions are located, or through the GUI, or on the command line.

These values can be set through the command as shown in Table 2-2 below:

Table 2-2 INTC Configuration for “C” (Command line)

iccavr32 … -DOS_AVR32A_INT_GRP=19 -DOS_AVR32A_INT_LINE=10 …

The number of interrupt groups and lines can also be set for the “C” code through the GUI, in the “C/C++
Compiler / Preprocessor” menu, as shown in the following figure:

Figure 2-2 GUI set of OS_AVR32A_INT_LINE (C)

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 9

The values shown in the table above are the values set in the distribution, as the port was performed on an
EVK1101 Evaluation board, which is populated with an AT32UC3B0256 device.

2.2 Interrupt Stack Set-up
It is possible, and is highly recommended, to use a hybrid stack when nested interrupts occur in an
application. Using this hybrid stack, specially dedicated to the interrupts, removes the need to allocate
extra room to the stack of every task in the application to handle the interrupt nesting. This feature is
controlled by the value set by the definition OS_ISR_STACK, located around line 30 in the file
Abassi_AVR32A_IAR.s82. To disable this feature, set the definition of OS_ISR_STACK to a value of
zero. To enable it, and specify the interrupt stack size, set the definition of OS_ISR_STACK to the desired
size in bytes (see Section 4 for information on stack sizing). As supplied in the distribution, the hybrid
stack feature is enabled, and a stack size of 1024 bytes is allocated; this is shown in the following table:

Table 2-3 Interrupt Stack enabled

#ifndef OS_ISR_STACK
OS_ISR_STACK EQU 1024 /* If using a dedicated stack for the nested ISRs */
#endif /* 0 if not used, otherwise size of stack in bytes */

Table 2-4 Interrupt Stack disabled

#ifndef OS_ISR_STACK
OS_ISR_STACK EQU 0 /* If using a dedicated stack for the nested ISRs */
#endif /* 0 if not used, otherwise size of stack in bytes */

Alternatively, it is possible to overload the OS_ISR_STACK value set in Abassi_AVR32A_IAR.s82 by
using the assembler command line option –D and specifying the desired hybrid stack size. In the following
example, the stack size is set to 512:

Table 2-5 Command line set of OS_ISR_STACK

aavr32 … -DOS_ISR_STACK=512 …

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 10

The number of interrupt line can also be set for the assembly code through the GUI, in the “Assembler /
Preprocessor” menu, as shown in the following figure:

Figure 2-3 GUI set of OS_ISR_STACK

2.3 Fast Interrupts Set-up
Fast interrupts are supported on this port. A fast interrupt is an interrupt that never uses any component
from Abassi, and as the name says, is desired to operate as fast as possible. To configure the fast interrupts,
all there is to do is to set the value of the token OS_FAST_INTS, located around line 30 in the file
Absssi_AVR32A_IAR.s82, to the priority threshold at which the interrupts are mapped to fast interrupts:

 Table 2-6 Fast Interrupt Configuration

#ifndef OS_FAST_INTS
OS_FAST_INTS EQU 0 /* Fast interrupts enable? and if so, level threshold */
#endif /* e.g if fast ISRs for prio 2 & 3, then set to 2 */

Alternatively, it is possible to overload the OS_FAST_INTS value set in Abassi_AVR32A_IAR.s82 by
using the assembler command line option –D and specifying the desired fast interrupt threshold. In the
following example, the threshold is set to 2:

Table 2-7 Command line set of OS_FAST_INTS

aavr32 … -DOS_FAST_INTS=2 …

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 11

The fast interrupt priority threshold value can also be set for the assembly code through the GUI, in the
“Assembler / Preprocessor” menu, as shown in the following figure:

Figure 2-4 GUI set of OS_FAST_INTS

The following table indicates the priorities of the interrupts that are re-mapped to operate as fast interrupts,
according to the setting of OS_FAST_INTS:

Table 2-8 Fast Interrupts vs. Priorities

OS_FAST_INTS setting Priority Level

OS_FAST_INTS EQU 0 Disable

OS_FAST_INTS EQU 1 1, 2, 3

OS_FAST_INTS EQU 2 2, 3

OS_FAST_INTS EQU 3 (or larger than 3) 3

If an interrupt priority level is configured to the fast interrupt operations, all interrupts at that level are
treated as fast interrupts; it is not possible to distribute some interrupt handlers to a regular interrupt and
some others to a fast interrupt within the same priority level.

Even if the hybrid interrupt stack feature is enabled (see Section 2.2), fast interrupts will not use that stack.
This translates into the need to reserve room on all task stacks for the possible nesting of fast interrupts.

2.4 Saturation Bit set-up
In the AVR32A status register, there is a sticky bit to indicate if an arithmetic saturation has occurred; this
is the Q flag in the status register (bit 3). By default, this bit is not kept localized at the task level as it
needs extra processing to do so; instead, it is propagated across all tasks. This choice was made because
most applications do not care about the value of this bit.

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 12

If this bit is relevant for an application, even in a single task, then it must be kept locally in each task. To
keep the meaning of the saturation bit localized, the token OS_HANDLE_SR_Q must be set to a non-zero
value; to disable it, it must be set to a zero value. This is located at around line 40 in the file
Abassi_AVR32A_IAR.s82. The distribution code disables the localization of the Q bit, setting the token
OS_HANDLE_SR_Q to zero, as shown in the following table:

Table 2-9 Saturation Bit configuration

#ifndef OS_HANDLE_SR_Q
OS_HANDLE_SR_Q EQU 0 /* If we keep the Q bit (saturation) on per tasks */
#endif

Alternatively, it is possible to overload the OS_HANDLE_SR_Q value set in Abassi_AVR32A_IAR.s82 by
using the assembler command line option –D and specifying the desired handling of the saturation bit. In
the following example, it is configured to be localized at the task level:

Table 2-10 Command line set of OS_HANDLE_SR_Q

aavr32 … -DOS_HANDLE_SR_Q=1 …

The handling of the saturation bit can also be set for the assembly code through the GUI, in the “Assembler
/ Preprocessor” menu, as shown in the following figure:

Figure 2-5 GUI set of OS_HANDLE_SR_Q

2.5 Multithreading
By default, the IAR DLIB runtime library is not multithread safe. There are two aspects to take into
account when protecting the library for multithreading. The first one involves reentrance; some library
functions are not reentrant, therefore two tasks accessing the same non-reentrant function at the same time
can create major issues. The classic example of non-reentrant functions are the family of functions for

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 13

dynamic memory allocation: e.g. malloc() and free(). As they internally use a static buffer, a few
pointers, and some linked lists, if two tasks use functions that access the internals of the dynamic memory
allocation at the same time, corruption could occur. Protecting the non-reentrant functions is
straightforward: all there is to do is to make sure there is only a single task that can access the non-reentrant
functions at any time. This is done with a mutex, as it is the perfect mechanism to guarantee exclusive
access to a resource.

The second type of functions and variables that are not multithread safe are due to internal data used by the
library, data that is truly a global resource. Examples of these are: the errno variable or the locale
information; these are called TLS (Thread Local Storage) by IAR. The only efficient way to protect these
functions and variables against multithreading is to have the library configured to use a unique sets of
variables for each task. There are multiple ways to implement the data access or swapping, but
fundamentally, if the library does not provided such a dedicated mechanism, it becomes cumbersome to
solve the issue, as it would require a manual swap of the each individual internal static variable of the
library at every task switch.

More detailed information on what functions require re-entrance protection and which global variables
require multi-threading protection can be found in the IAR EWAVR32 Compiler Reference Guide, in the
section titled “Multithread Support in the DLIB Library”.

The IAR DLIB library fully support both mechanisms to make the library multithread safe. The following
sub-sections describe how to make each of the two libraries multithread safe.

NOTE: The “out of the box” AVR32A DLIB is not compiled nor archived with the multi-threading
protection hooks. As specified in the IAR EWAVR32 Compiler Reference Guide the DLIB must
be re-compiled and archived. The procedure on how to do so is in described the sections Building
and using a customized library and Multithread Support in the DLIB Library.

2.5.1 Reentrance Protection
Reentrance protection is achieved by giving access to mutexes to the library. The DLIB reentrance
protection requires a specific API and these custom API modules are provided in the file
Abassi_IAR_MTX_IF.c, which is part of the distribution. All there is to do to protect the DLIB against
reentrance is to add the file Abassi_IAR_MTX_IF.c in the project.

Figure 2-6 Multithread-safe Project File List

2.5.2 Full Multithreading Protection
For full multithreading of the library, all there is to do is to define for the compiler the build option
OS_IAR_MTHREAD with a positive value. Setting OS_IAR_MTHREAD to a positive value does two things.
The first change is to insert a custom function that provides the address of the global variables associated to
the running task. Then, any time a TLS variable is accessed, either directly in the task, or internally by the
library, it is the task’s TLS being accessed. The second change occurs during task creation, where there is
an allocation of memory through the component OSalloc() in order to hold one set of TLS for every task.

NOTE: The Adam&Eve task (the one associated with the function main()) uses the default TLS.

Table 2-11 Full Multithread Protection Command Line Configuration

iccarm … -DOS_IAR_MTHREAD=1 …

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 14

The library multithreading protection used by Abassi_CORTEXM3_IAR.s can also be set through the GUI,
in the “Assembler / Preprocessor” menu, as shown in the following figure:

Figure 2-7 Full Multithread Protection GUI Configuration

2.5.3 Partial Multithreading Protection
It may not be necessary to make the library multithread safe for all tasks in an application; e.g. tasks that
don’t access or use the TLS, or call library functions using TLS, do not require the library to be protected.
It may also be desirable to share the TLS amongst a set of tasks. Setting the build option
OS_IAR_MTHREAD to a negative value allows the selection of the tasks where multithreading protection is
required. The build option OS_IAR_MTHREAD is set the same way as described in the previous section.

A task is set to use the library in a multithread safe manner with the following:

Table 2-12 Setting a task to be multithread safe

#include “Abassi.h”

TSK_t *TskReent;
void _DLIB_TLS_MEMORY *Mthread;

…
 /* First the task must be created */
 /* in the suspended state */
TskReent = TSKcreate(“TaskName”, TskPrio, StackSize, TaskFct, 0);
 /* Get memory for the TLS */
Mthread = OSalloc(__IAR_DLIB_PERTHREAD_SIZE);
 /* Initialize the TLS */
__iar_dlib_perthread_initialize((void *) Mthread);

TskReent->XtraData[0] = (intptr_t)Mthread; /* Attach the TLS to the task */

TSKreseum(TskReent); /* The task may now be resumed */

If the same TLS is desired to be shared amongst multiple tasks, simply set the field XtraData[0] of the
tasks descriptors to the same TLS memory block, initialized once only.

2.6 RETE Errata
There is a known and well-documented hardware problem on some revisions of the AVR32A CPU core,
which is related to not clearing of the L bit (lock bit) in the status register when a RETE instruction
executes. As the instruction RETE is used in the file Abassi_AVR32A_IAR.s82, it is possible to include
special code that fixes the problem. This is controlled with the token OS_FIX_RETE_L, which must be set
to a non-zero value to activate the fix; to disable it, it must be set to a zero value. The token is defined at
around line 45 in the file Abassi_AVR32A_IAR.s82. The distribution code enables the fix on the RETE
instruction as a safety measure; this is shown in the following table:

Table 2-13 RETE Instruction Fix Configuration

#ifndef OS_FIX_RETE_L
OS_FIX_RETE_L EQU 1 /* If patching errata on rete not clearing L bit */
#endif

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 15

NOTE: The operation performed by this fix has not been verified as correct due to the lack of access to a
device with the problem. The fix was tested to verify it does not impact in any way the operation
of the RTOS.

Alternatively, it is possible to overload the OS_FIX_RETE_L value set in Abassi_AVR32A_IAR.s82 by
using the assembler command line option –D to enable/disable the fix. In the following example, it is
enabled:

Table 2-14 Command line set of OS_FIX_RETE_L

aavr32 … -DOS_FIX_RETE_L=1 …

The enabling / disabling of the fix can also be set for the assembly code through the GUI, in the “Assembler
/ Preprocessor” menu, as shown in the following figure:

Figure 2-8 GUI set of OS_FIX_RETE_L

2.7 Interrupt Masking Errata
There is a known and well-documented hardware problem on some revisions of the AVR32A CPU core,
which is related to masking the interrupt by setting the global interrupt mask bit in the status register: the
two next instructions after the flag setting may not execute properly. As interrupts are masked in the
Abassi_AVR32A_IAR.s82, it is possible to include special code that fixes the problem. This is controlled
with the token OS_FIX_SR_GIM, which must be set to a non-zero value to activate the fix; to disable it, it
must be set to a zero value. The token is defined at around line 50 in the file Abassi_AVR32A_IAR.s82.
The distribution code enables this fix as a safety measure; this is shown in the following table:

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 16

Table 2-15 Interrupt Masking Fix Configuration

#ifndef OS_FIX_SR_GIM
OS_FIX_SR_GIM EQU 1 /* If patching errata on 2 nop after interrupt masking */
#endif

NOTE: The operation performed by this fix has not been verified as correct due to the lack of access to a
device with the problem. The fix was tested to verify it does not impact in any way the operation
of the RTOS.

Alternatively, it is possible to overload the OS_FIX_SR_GIM value set in Abassi_AVR32A_IAR.s82 by
using the assembler command line option –D to enable/disable the fix. In the following example, it is
enabled:

Table 2-16 Command line set of OS_FIX_SR_GIM

aavr32 … -DOS_FIX_SR_GIM=1 …

The enabling / disabling of the fix can also be set for the assembly code through the GUI, in the “Assembler
/ Preprocessor” menu, as shown in the following figure:

Figure 2-9 GUI set of OS_FIX_SR_GIM

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 17

2.8 Spurious Interrupt Errata
There is a known and well-documented hardware race condition on some revisions of the AVR32A CPU
core when the interrupt request is cleared on the peripheral that has raised the interrupt line. As interrupts
are handled in the Abassi_AVR32A_IAR.s82, it is possible to include special code that detects and rejects
spurious interrupts. This is controlled with the token OS_SPURIOUS_ISR, which must be set to a non-zero
value to activate the fix; to disable it, it must be set to a zero value. The token is defined at around line 55
in the file Abassi_AVR32A_IAR.s82. The distribution code does not enable this fix as spurious interrupts
should not happen in a well-designed application:

Table 2-17 Spurious Interrupt Fix Configuration

#ifndef OS_SPURIOUS_ISR
OS_SPURIOUS_ISR EQU 0 /* If code reject spurious interrupts is added */
#endif

NOTE: The operation performed by this fix has not been verified as correct because spurious interrupts
where never detected during testing; even after test code was written that broke the rules specified
by Atmel to eliminate spurious interrupts. This fix was tested to verify it does not impact in any
way the operation of the RTOS.

Alternatively, it is possible to overload the OS_SPURIOUS_ISR value set in Abassi_AVR32A_IAR.s82 by
using the assembler command line option –D to enable/disable the fix. In the following example, it is
enabled:

Table 2-18 Command line set of OS_SPURIOUS_ISR

aavr32 … -DOS_SPURIOUS_ISR=1 …

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 18

The enabling / disabling of the fix can also be set for the assembly code through the GUI, in the “Assembler
/ Preprocessor” menu, as shown in the following figure:

Figure 2-10 GUI set of OS_SPURIOUS_ISR

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 19

3 Interrupts
The Abassi RTOS needs to be aware when kernel requests are performed inside or outside an interrupt
context. For all interrupt sources the Abassi RTOS provides an interrupt dispatcher, which allows it to be
interrupt-aware. This dispatcher achieves two goals. First, the kernel uses it to know if a request occurs
within an interrupt context or not. Second, using this dispatcher reduces the code size, as all interrupts
share the same code for the decision making of entering the kernel or not at the end of the interrupt. When
Fast Interrupts are used, the same dispatching operation is performed to determine the interrupt function
handler (see Section 2.3).

The number of sources of interrupts is specified by the build options OS_AVR32A_INT_GRP and
OS_AVR32_INT_LINE defined in the file Abassi.h1 (see Section 2).

3.1 Interrupt Handling

3.1.1 Interrupt Installer
Attaching a function to a regular interrupt is quite straightforward. All there is to do is use the RTOS
components OSisrInstall() and OSavr32aISRmap() to specify the function to be attached to that
interrupt number. The OSavr32aISRmap() component must be used to properly re-map the interrupt
group number and interrupt line number for the interrupt dispatcher. Then, the component
OSavr32aISRprio() must be used to set the priority level of an interrupt group. These components are
described further detailed in Section 9.

For example,

Table 3-1 shows the code required to attach the Real Time Clock (RTC) interrupt and set the priority of the
interrupt to level 3. On the AT32UC3B device family, the RTC interrupt line is attached to group number 1
and line number 8. The example attaches the function RTChandler to the RTC interrupt:

Table 3-1 Attaching a Function to an Interrupt

#include “Abassi.h”

 …
 OSstart();
 …
 OSisrInstall(OSavr32aISRmap(1,8), &RTChandler);
 OSavr32aISRprio(1, 3);

 … /* More ISR setup */

 OSeint(1); /* Global enable of all interrupts */

NOTE: OSisrInstall() must be used with the OSavr32aISRmap() component.

1 These build options must be set according to the target device.

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 20

At start-up, once OSstart() has been called, all interrupt handler functions are set to a “do nothing”
function, named OSinvalidISR() and the priority level of all interrupt groups are set to 0. If an interrupt
function is attached to an interrupt number using the OSisrInstall() component before calling
OSstart(), this attachment will be removed by OSstart(); the same will happen to the priority levels.
This implies that OSisrInstall() should never be used before OSstart() has ran. When an interrupt
handler is removed, it is very important and necessary to first disable the interrupt source, then the handling
function can be set back to OSinvalidISR(). This is shown in the Table 3-2:

Table 3-2 Invalidating an ISR handler

#include “Abassi.h”

 …
 /* Disable the interrupt source */
 OSisrInstall(OSavr32aISRmap(x,y), &OSinvalidISR);
 …

When an application needs to disable/enable the interrupts, the RTOS supplied functions OSdint() and
OSeint() should be used.

The Interrupt Controller (INTC) on the AVR32A does not clear the interrupt generated by a peripheral;
neither does the RTOS. This means the peripheral generating the interrupt must be informed to remove the
interrupt request. This operation must be performed in the interrupt handler otherwise the interrupt will be
re-entered over and over.

As clearly explained in the Atmel documentation, to eliminate the risk of encountering spurious interrupts,
a very specific sequence of operations must be performed. Since the RTOS does not generate the interrupt
acknowledge to the peripheral, the onus is on the designer to make sure the code sequence is correct. It is
also possible to enable a fix aimed at trapping spurious interrupts (see Section 2.8), but, as described in the
Atmel documentation, this fix does not eliminate all spurious interrupts.

3.2 Interrupt Priority and Enabling
To properly configure interrupts, the interrupt handler must be set with the component OSisrInstall()
and the interrupt priority level of the interrupt groups must be set with the component
OSavr32aISRprio(). A key step is to also configure the peripheral to generate interrupts. There is no
software provided to configure peripherals, and the IAR Embedded Workbench does not provide any
either. However, the Atmel AVR32 Studio provides everything, in source code form, that is required for
programming the processor peripherals. Also, most chip manufacturers provide code to configure the
specifics on their devices.

3.3 Fast Interrupts
Fast interrupts are supported on this port. A fast interrupt is an interrupt that never uses any component
from Abassi and as the name says, is desired to operate as fast as possible. To set-up a fast interrupt, refer
to Section 2.3.

NOTE: If an Abassi component is used inside a fast interrupt, the application will misbehave.

3.4 Nested Interrupts
The interrupt controller allows nesting of interrupts; this means an interrupt of higher priority will interrupt
the processing of an interrupt of lower priority. Individual interrupt sources can be set to one of 4 levels,
where level 0 is the lowest and 3 is the highest.

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 21

This implies that the RTOS build option OS_NESTED_INTS must be set to a non-zero value. The exception
to this is if all enabled interrupts in an application are all set, without exception, to the same priority; then
interrupt nesting will not occur. In that case, and only that case, can the build option OS_NESTED_INTS be
set to zero. As this latter case is quite unlikely, the build option OS_NESTED_INTS is always overloaded
when compiling the RTOS for the AVR32A. If the latter condition is guaranteed, the overloading located
after the pre-processor directive can be modified. The code affected in Abassi.h is shown in Table 3-3
below and the line to modify is the one with #define OX_NESTED_INTS 1:

Table 3-3 Removing interrupt nesting

#elif defined(__ICCARV32__)
 #if (__CORE__ == __AVR32A__)
 …
 #define OX_NESTED_INTS 0 /* The AVR32 has 4 nested interrupt levels */

Or if the build option OS_NESTED_INTS is desired to be propagated:

Table 3-4 Propagating interrupt nesting

#elif defined(__ICCARV32__)
 #if (__CORE__ == __AVR32A__)
 …
 #define OX_NESTED_INTS OS_NESTED_INTS

The Abassi RTOS kernel never disables interrupts, but there are a few very small regions within the
interrupt dispatcher where interrupts are temporarily disabled due to the nesting (a total of between 10 to 20
instructions).

The kernel is never entered as long as interrupt nesting exists. In all interrupt functions, when a RTOS
component that needs to access some kernel functionality is used, the request(s) is/are put in a queue. Only
once the interrupt nesting is over (i.e. when only a single interrupt context remains) is the kernel entered at
the end of the interrupt, when the queue contains one or more requests, and when the kernel is not already
active. This means that only the interrupt handler function operates in an interrupt context, and only the
time the interrupt function is using the CPU are other interrupts of equal or lower level blocked by the
interrupt controller.

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 22

4 Stack Usage
The RTOS uses the tasks’ stack for two purposes. When a task is blocked or ready to run but not running,
the stack holds the register context that was preserved when the task got blocked or preempted. Also, when
an interrupt occurs, the register context of the running task must be preserved in order for the operations
performed during the interrupt to not corrupt the contents of the registers used by the task when it got
interrupted. For the AVR32A, the context save contents of a blocked or pre-empted task is different from
the one used in an interrupt. The following table lists the number of bytes required by each type of context
save operation:

Table 4-1 Context Save Stack Requirements

Description Context save

Blocked/Preempted task context save 36 bytes

Blocked/Preempted task context save (Saturation bit kept) 40 bytes

Interrupt dispatcher context save (no hybrid stack) 32 bytes

Interrupt dispatcher context save (with hybrid stack) 36 bytes

The numbers for the interrupt dispatcher context save include the 32 bytes the processor pushes on the
stack when it enters the interrupt servicing.

When sizing the stack to allocate to a task, there are three factors to take in account. The first factor is
simply that every task in the application needs at least the area to preserve the task context when it is
preempted or blocked. Second, one must take into account how many levels of nested interrupts exist in
the application. As a worst case, all levels of interrupts may occur and becoming fully nested. So, if N
levels of interrupts are used in the application, provision should be made to hold N times the size of an ISR
context save on each task stack, plus any added stack used by the interrupt handler functions. Finally, add
to all this the stack required by the code implementing the task operation.

NOTE: The AVR32A processor needs alignment on 4 bytes for the instructions accessing word or double
word memory. When stack memory is allocated, Abassi guarantees 8 bytes alignment. This said,
when sizing OS_STATIC_STACK or OS_ALLOC_SIZE, make sure to take in account that all
allocation performed through these memory pools are by block size multiple of 8 bytes.

If the hybrid interrupt stack (see Section 2.2) is enabled, then the above description changes: it is only
necessary to reserve room on task stacks for a single interrupt context save and not the worst-case nesting.
With the hybrid stack enabled, the second, third, and so on interrupts use the stack dedicated to the
interrupts. The hybrid stack is enabled when the OS_ISR_STACK token in file Abassi_AVR32A_IAR.s82
is set to a non-zero value (see Section 2.2).

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 23

5 Search Set-up
The Abassi RTOS build option OS_SEARCH_FAST offers three different algorithms to quickly determine
the next running task upon task blocking. The following table shows the measurements obtained for the
number of CPU cycles required when a task at priority 0 is blocked, and the next running task is at the
specified priority. The number of cycles includes everything, not just the search cycle count. The number
of cycles was measured using the cycle count register, which increments the counter once every CPU cycle.
The second column is when OS_SEARCH_FAST is set to zero, meaning a simple array traversing. The third
column, labeled Look-up, is when OS_SEARCH_FAST is set to 1, which uses an 8 bit look-up table. Finally,
the last column is when OS_SEARCH_FAST is set to 5 (IAR/AVR32A int are 32 bits, so 2^5), meaning a
32 bit look-up table, further searched through successive approximation. The compiler optimization for
this measurement was set to Level High / Speed optimization for the medium code and small data model.
The RTOS build options were set to the minimum feature set, except for option OS_PRIO_CHANGE set to
non-zero. The presence of this extra feature provokes a small mismatch between the result for a difference
of priority of 1, with OS_SEARCH_FAST set to zero, and the latency results in Section 7.2.

When the build option OS_SEARCH_ALGO is set to a negative value, indicating to use a 2-dimensional
linked list search technique instead of the search array, the number of CPU is constant at 201 cycles.

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 24

Table 5-1 Search Algorithm Cycle Count

Priority Linear search Look-up Approximation

1 203 224 271

2 205 231 271

3 212 238 271

4 219 245 271

5 226 252 271

6 233 259 271

7 240 266 271

8 247 232 271

9 254 233 271

10 261 240 271

11 268 247 271

12 275 254 271

13 282 261 271

14 289 268 271

15 296 275 271

16 303 241 271

17 310 242 271

18 317 249 271

19 324 256 271

20 331 263 271

21 338 270 271

22 345 277 271

23 352 284 271

24 359 250 271

When OS_SEARCH_FAST is set to 0, each extra priority level to traverse requires exactly 7 CPU cycles.
When OS_SEARCH_FAST is set to 1, each extra priority level to traverse requires exactly 7 CPU cycles,
except when the priority level is an exact multiple of 8; then there is a sharp reduction of CPU usage.
Overall, setting OS_SEARCH_FAST to 1 adds 34 cycles of CPU for the search compared to setting
OS_SEARCH_FAST to zero. But when the next ready to run priority is less than 8, 16, 24, … then there is
around an extra 9 cycles needed but without the 8 times 7 cycle accumulation. Finally, the third option,
when OS_SEARCH_FAST is set to 5, delivers an almost perfectly constant CPU usage as the algorithm
utilizes a successive approximation search technique (when the delta is 32 or more, the CPU cycle count is
280, for 64 or more it is 290).

When the priority span is less than 13, the build option OS_SEARCH_FAST should be set to 0, as it is the
most efficient algorithm. For a priority span greater than 12, then the build option should be set to 1 as it
delivers overall a better performance than when set to 5.

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 25

Setting the build option OS_SEARCH_ALGO to a non-negative value minimizes the time needed to change
the state of a task from blocked to ready to run, and not the time needed to find the next running task upon
blocking/suspending of the running task. If the application needs are such that the critical real-time
requirement is to get the next running task up and running as fast as possible, then set the build option
OS_SEARCH_ALGO to a negative value.

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 26

6 Chip Support
No custom chip support is provided with the distribution code. Also, most device manufacturers provide
code to configure the peripherals on their devices. The distribution code contains some of the
manufacturer’s open source libraries, e.g. Atmel Software Framework.

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 27

7 Measurements
This section gives an overview of the memory requirements and the CPU latency encountered when the
RTOS is used on the AVR32A and compiled with IAR. The CPU cycles are exactly the CPU clock cycles,
as the processor executes one instruction at every clock transition.

7.1 Memory
The memory numbers are supplied for the two limit cases of build options (and some in-between): the
smallest footprint is the RTOS built with only the minimal feature set, and the other with almost all the
features. For both cases, names are not part of the build. This feature was removed from the metrics
because it is highly probable that shipping products utilizing this RTOS will not include the naming of
descriptors, as its usefulness is mainly limited to debugging and making the opening/creation of
components run-time safe.

The code size numbers are expressed with “less than” as they have been rounded up to multiples of 25 for
the “C” code. These numbers were obtained using the release version 1.122.205 of the RTOS and may
change in other versions. One should interpret these numbers as the “very likely” numbers for other
released versions of the RTOS.

The code memory required by the RTOS includes the “C” code and assembly language code used by the
RTOS. The code optimization settings of the compiler that were used for the memory measurements are:

1. Optimization level: High

2. Optimize for: Size

3. All transformations are enabled

Figure 7-1 Memory Measurement Code Optimization Settings

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 28

Table 7-1 “C” Code Memory Usage (Medium Code)

Description (Small Data)Size (Large Data) Size

Minimal Build < 625 bytes < 650 bytes

+ Runtime service creation / static memory < 850 bytes < 875 bytes

+ Multiple tasks at same priority < 950 bytes < 1000 bytes

+ Runtime priority change

+ Mutex priority inheritance

+ FCFS

+ Task suspension

< 1375 bytes < 1475 bytes

+ Timer & timeout

+ Timer call back

+ Round robin

< 1825 bytes < 2000 bytes

+ Events

+ Mailbox

< 2475 bytes < 2675 bytes

Full Feature Build (no names) < 3000 bytes < 3225 bytes

Full Feature Build (no names / no runtime creation) < 2675 bytes < 2875 bytes

Full Feature Build (no names / no runtime creation)

+ Timer services module

< 3025 bytes < 3250 bytes

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 29

Table 7-2 “C” Code Memory Usage (Large Code)

Description (Small Data)Size (Large Data) Size

Minimal Build < 650 bytes < 675 bytes

+ Runtime service creation / static memory < 850 bytes < 875 bytes

+ Multiple tasks at same priority < 975 bytes < 1025 bytes

+ Runtime priority change

+ Mutex priority inheritance

+ FCFS

+ Task suspension

< 1400 bytes < 1500 bytes

+ Timer & timeout

+ Timer call back

+ Round robin

< 1850 bytes < 2025 bytes

+ Events

+ Mailbox

< 2500 bytes < 2700 bytes

Full Feature Build (no names) < 3025 bytes < 3225 bytes

Full Feature Build (no names / no runtime creation) < 2700 bytes < 2900 bytes

Full Feature Build (no names / no runtime creation)

+ Timer services module

< 3050 bytes < 3275 bytes

Table 7-3 Assembly Code Memory Usage

Description ISR stack

Assembly code size 270 bytes

Interrupt vector table 258 bytes

ISR stack + 22 bytes

Fast Interrupts (independent of OS_FAST_INTS value) + 40 bytes

Handle Saturation bit + 30 bytes

Fix for RETE + 10 bytes

Fix for interrupt masking + 8 bytes

Fix for spurious interrupts + 54 bytes

The assembly code sizes are the values for each feature individually enabled; all other features been
disabled. There are interdependencies; for example, the fast interrupt code has optional code to deal with
the spurious interrupts. The measurements shown for the spurious interrupt does not take in account the
extra code added in the fast interrupt code when the spurious interrupt feature is enabled.

There are two aspects when describing the data memory usage by the RTOS. First, the RTOS needs its
own data memory to operate, and second, most of the services offered by the RTOS require data memory
for each instance of the service. As the build options affect either the kernel memory needs or the service
descriptors (or both), an interactive calculator has been made available on the Code Time Technologies
website.

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 30

7.2 Latency
Latency of operations has been measured on an Atmel EVK1101 evaluation board. This evaluation board
is populated with a 66 MHz AT32UC3B0256 device, but for the measurements, the CPU was clocked at the
same frequency as the external 12 MHz crystal. All measurements have been performed on the real
platform, using the cycle count register as the measuring element. Other models will have slightly different
code and data requirements. The code optimization settings that were used for the latency measurements
are:

1. Optimization level: High

2. Optimize for: Speed

3. All transformations are enabled

Figure 7-2 Latency Measurement Code Optimization Settings

There are 5 types of latencies that are measured, and these 5 measurements are expected to give a very
good overview of the real-time performance of the Abassi RTOS for this port. For all measurements, three
tasks were involved:

1. Adam & Eve set to a priority value of 0;

2. A low priority task set to a priority value of 1;

3. The Idle task set to a priority value of 20.

The sets of 5 measurements are performed on a semaphore, on the event flags of a task and finally on a
mailbox. The first 2 latency measurements use the component in a manner where there is no task
switching. The third measurements involve a high priority task getting blocked by the component. The
fourth measurements are about the opposite: a low priority task getting pre-empted because the component
unblocks a high priority task. Finally, the reaction to unblocking a task, which becomes the running task,
through an interrupt is provided.

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 31

The first set of measurements counts the number of CPU cycles elapsed starting right before the component
is used until it is back from the component. For these measurement there is no task switching. This means:

Table 7-4 Measurement without Task Switch

 Start CPU cycle count
 SEMpost(…); or EVTset(…); or MBXput();
 Stop CPU cycle count

The second set of measurements, as for the first set, counts the number of CPU cycles elapsed starting right
before the component is used until it is back from the component. For these measurement there is no task
switching. This means:

Table 7-5 Measurement without Blocking

 Start CPU cycle count
 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);
 Stop CPU cycle count

The third set of measurements counts the number of CPU cycles elapsed starting right before the
component triggers the unblocking of a higher priority task until the latter is back from the component used
that blocked the task. This means:

Table 7-6 Measurement with Task Switch

 main()
 {
 …
 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);
 Stop CPU cycle count
 …
 }

 TaskPrio1()
 {
 …
 Start CPU cycle count
 SEMpost(…); or EVTset(…); or MBXput(…);
 …
 }

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 32

The forth set of measurements counts the number of CPU cycles elapsed starting right before the
component blocks of a high priority task until the next ready to run task is back from the component it was
blocked on; the blocking was provoked by the unblocking of a higher priority task. This means:

Table 7-7 Measurement with Task unblocking

 main()
 {
 …
 Start CPU cycle count
 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);
 …
 }

 TaskPrio1()
 {
 …
 SEMpost(…); or EVTset(…); or MBXput(…);
 Stop CPU cycle count
 …
 }

The fifth set of measurements counts the number of CPU cycles elapsed from the beginning of an interrupt
using the component, until the task that was blocked becomes the running task and is back from the
component used that blocked the task. It is the same as the third set of measurement except the count
register paired with the compare register are used as the source of interrupt. The interrupt latency
measurement includes everything involved in the interrupt operation, even the cycles the processor needs to
push the interrupt context before entering the interrupt code. The interrupt function, attached with
OSisrInstall(), is simply a three line function that, first clears the interrupt request by writing to the
compare register, which is then followed by the use of the appropriate RTOS component, and then finally a
return.

The following table lists the results obtained, where the cycle count is measured using the count register on
the AVR32A. This counter increments its count by 1 at every CPU cycle. As was the case for the memory
measurements, these numbers were obtained with a beta release of the RTOS. It is possible the released
version of the RTOS may have slightly different numbers.

The interrupt latency is the number of cycles elapsed when the interrupt trigger occurred and the ISR
function handler is entered. This includes the number of cycles used by the processor to set-up the interrupt
stack and to branch to the address specified in the interrupt vector table.

The interrupt overhead without entering the kernel is the measurement of the number of CPU cycles used
between the entry point in the interrupt vector and the return from interrupt, with a “do nothing” function in
the OSisrInstall(). The interrupt trigger was the cycle counter itself. The interrupt overhead when
entering the kernel is calculated using the results from the third and fifth tests. Finally, the OS context
switch is the measurement of the number of CPU cycles it takes to perform a task switch, without involving
the wrap-around code of the synchronization component.

None of the features that can be enabled in the file Abassi_AVR32A_IAR.s82 are enabled. This means:

- No hybrid stack

- Fast interrupt are disabled

- The saturation bit is not propagated

- The RETE errata fix in not enabled

- The interrupt masking fix is not enabled

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 33

In the following table, the latency numbers between parentheses are the measurements when the build
option OS_SEARCH_ALGO is set to a negative value. The regular number is the latency measurements when
the build option OS_SEARCH_ALGO is set to 0.

Table 7-8 Latency Measurements (Medium Code / Small Data)

Description Minimal Features Full Features

Semaphore posting no task switch 111 (109) 159 (161)

Semaphore waiting no blocking 116 (112) 170 (172)

Semaphore posting with task switch 171 (194) 271 (301)

Semaphore waiting with blocking 187 (181) 303 (308)

Semaphore posting in ISR with task switch 392 (410) 492 (520)

Event setting no task switch n/a 155 (157)

Event getting no blocking n/a 176 (178)

Event setting with task switch n/a 286 (316)

Event getting with blocking n/a 315 (320)

Event setting in ISR with task switch n/a 510 (535)

Mailbox writing no task switch n/a 200 (202)

Mailbox reading no blocking n/a 227 (229)

Mailbox writing with task switch n/a 329 (359)

Mailbox reading with blocking n/a 359 (364)

Mailbox writing in ISR with task switch n/a 560 (585)

Interrupt Latency 52 52

Interrupt overhead entering the kernel 221 (216) 221 (219)

Interrupt overhead NOT entering the kernel 73 73

Context switch 35 36

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 34

Table 7-9 Latency Measurements (Medium Code / Large Data)

Description Minimal Features Full Features

Semaphore posting no task switch 112 (110) 159 (161)

Semaphore waiting no blocking 117 (113) 172 (174)

Semaphore posting with task switch 172 (195) 273 (303)

Semaphore waiting with blocking 188 (182) 303 (308)

Semaphore posting in ISR with task switch 396 (414) 496 (521)

Event setting no task switch n/a 157 (159)

Event getting no blocking n/a 177 (179)

Event setting with task switch n/a 288 (318)

Event getting with blocking n/a 316 (321)

Event setting in ISR with task switch n/a 513 (541)

Mailbox writing no task switch n/a 202 (204)

Mailbox reading no blocking n/a 228 (230)

Mailbox writing with task switch n/a 330 (360)

Mailbox reading with blocking n/a 361 (366)

Mailbox writing in ISR with task switch n/a 564 (589)

Interrupt Latency 52 52

Interrupt overhead entering the kernel 224 (219) 223 (218)

Interrupt overhead NOT entering the kernel 73 73

Context switch 35 35

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 35

Table 7-10 Latency Measurements (Large Code / Small Data)

Description Minimal Features Full Features

Semaphore posting no task switch 111 (109) 159 (161)

Semaphore waiting no blocking 116 (112) 170 (172)

Semaphore posting with task switch 171 (194) 271 (301)

Semaphore waiting with blocking 187 (181) 303 (308)

Semaphore posting in ISR with task switch 392 (410) 492 (520)

Event setting no task switch n/a 155 (157)

Event getting no blocking n/a 176 (178)

Event setting with task switch n/a 286 (316)

Event getting with blocking n/a 315 (320)

Event setting in ISR with task switch n/a 510 (535)

Mailbox writing no task switch n/a 200 (202)

Mailbox reading no blocking n/a 227 (229)

Mailbox writing with task switch n/a 329 (359)

Mailbox reading with blocking n/a 359 (364)

Mailbox writing in ISR with task switch n/a 560 (585)

Interrupt Latency 52 52

Interrupt overhead entering the kernel 221 (216) 221 (219)

Interrupt overhead NOT entering the kernel 73 73

Context switch 35 36

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 36

Table 7-11 Latency Measurements (Large Code / Large Data)

Description Minimal Features Full Features

Semaphore posting no task switch 112 (110) 159 (161)

Semaphore waiting no blocking 117 (113) 172 (174)

Semaphore posting with task switch 172 (195) 273 (303)

Semaphore waiting with blocking 188 (182) 303 (308)

Semaphore posting in ISR with task switch 396 (414) 496 (521)

Event setting no task switch n/a 157 (159)

Event getting no blocking n/a 177 (179)

Event setting with task switch n/a 288 (318)

Event getting with blocking n/a 316 (321)

Event setting in ISR with task switch n/a 513 (541)

Mailbox writing no task switch n/a 202 (204)

Mailbox reading no blocking n/a 228 (230)

Mailbox writing with task switch n/a 330 (360)

Mailbox reading with blocking n/a 361 (366)

Mailbox writing in ISR with task switch n/a 564 (589)

Interrupt Latency 52 52

Interrupt overhead entering the kernel 224 (219) 223 (218)

Interrupt overhead NOT entering the kernel 73 73

Context switch 35 35

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 37

8 Appendix A: Build Options for Code Size

8.1 Case 0: Minimum build
Table 8-1: Case 0 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS_COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */
#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING_TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX_PEND_RQST 2U /* Maximum number of requests posted in ISRs */
#define OS_MIN_STACK_USE 0 /* If the kernel minimizes its stack usage */
#define OS_MTX_DEADLOCK 0 /* To enable the mutex deadlock detection */
#define OS_MTX_INVERSION 0 /* To enable & type of protection against prio inv */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#ifndef OS_NESTED_INTS
 #define OS_NESTED_INTS 0 /* If operating with nested interrupts */
#endif
#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */
#define OS_PRIO_MIN 2 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */
#define OS_PRIO_SAME 0 /* Does not Support multiple same priority tasks */
#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */
#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */
#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */
#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_STATIC_TIM_SRV 0 /* If !=0 how many timer services */
#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */
#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */
#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */
#define OS_TIMER_SRV 0 /* !=0 includes the timer services */
#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */
#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 38

8.2 Case 1: + Runtime service creation / static memory
Table 8-2: Case 1 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS_COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */
#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING_TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX_PEND_RQST 2U /* Maximum number of requests posted in ISRs */
#define OS_MIN_STACK_USE 0 /* If the kernel minimizes its stack usage */
#define OS_MTX_DEADLOCK 0 /* To enable the mutex deadlock detection */
#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#ifndef OS_NESTED_INTS
 #define OS_NESTED_INTS 0 /* If operating with nested interrupts */
#endif
#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */
#define OS_PRIO_MIN 2 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */
#define OS_PRIO_SAME 0 /* Support multiple tasks with the same priority */
#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */
#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */
#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_STATIC_TIM_SRV 0 /* If !=0 how many timer services */
#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */
#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */
#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */
#define OS_TIMER_SRV 0 /* !=0 includes the timer services */
#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */
#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 39

8.3 Case 2: + Multiple tasks at same priority
Table 8-3: Case 2 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS_COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */
#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING_TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX_PEND_RQST 32U /* Maximum number of requests posted in ISRs */
#define OS_MIN_STACK_USE 0 /* If the kernel minimizes its stack usage */
#define OS_MTX_DEADLOCK 0 /* To enable the mutex deadlock detection */
#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#ifndef OS_NESTED_INTS
 #define OS_NESTED_INTS 0 /* If operating with nested interrupts */
#endif
#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */
#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */
#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */
#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */
#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */
#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_STATIC_TIM_SRV 0 /* If !=0 how many timer services */
#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */
#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */
#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */
#define OS_TIMER_SRV 0 /* !=0 includes the timer services */
#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */
#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 40

8.4 Case 3: + Priority change / Priority inheritance / FCFS / Task suspend
Table 8-4: Case 3 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS_COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */
#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING_TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX_PEND_RQST 32U /* Maximum number of requests posted in ISRs */
#define OS_MIN_STACK_USE 0 /* If the kernel minimizes its stack usage */
#define OS_MTX_DEADLOCK 0 /* To enable the mutex deadlock detection */
#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#ifndef OS_NESTED_INTS
 #define OS_NESTED_INTS 0 /* If operating with nested interrupts */
#endif
#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */
#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */
#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */
#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */
#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */
#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_STATIC_TIM_SRV 0 /* If !=0 how many timer services */
#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */
#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */
#define OS_TIMER_SRV 0 /* !=0 includes the timer services */
#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */
#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 41

8.5 Case 4: + Timer & timeout / Timer call back / Round robin
Table 8-5: Case 4 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS_COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */
#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING_TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX_PEND_RQST 32U /* Maximum number of requests posted in ISRs */
#define OS_MIN_STACK_USE 0 /* If the kernel minimizes its stack usage */
#define OS_MTX_DEADLOCK 0 /* To enable the mutex deadlock detection */
#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#ifndef OS_NESTED_INTS
 #define OS_NESTED_INTS 0 /* If operating with nested interrupts *
#endif
#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */
#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */
#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */
#define OS_ROUND_ROBIN 100000 /* Use round-robin, value specifies period in uS */
#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */
#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_STATIC_TIM_SRV 0 /* If !=0 how many timer services */
#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER_SRV 0 /* !=0 includes the timer services */
#define OS_TIMER_US 50000/* !=0 enables timer & specifies the period in uS */
#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 42

8.6 Case 5: + Events / Mailboxes
Table 8-6: Case 5 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS_COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */
#define OS_EVENTS 1 /* If event flags are supported */
#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */
#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING_TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 1 /* If mailboxes are used */
#define OS_MAX_PEND_RQST 32U /* Maximum number of requests posted in ISRs */
#define OS_MIN_STACK_USE 0 /* If the kernel minimizes its stack usage */
#define OS_MTX_DEADLOCK 0 /* To enable the mutex deadlock detection */
#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#ifndef OS_NESTED_INTS
 #define OS_NESTED_INTS 0 /* If operating with nested interrupts */
#endif
#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */
#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */
#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */
#define OS_ROUND_ROBIN 100000 /* Use round-robin, value specifies period in uS */
#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF_MBX 10 /* when OS_STATIC_MBOX != 0, # of buffer element */
#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_STATIC_TIM_SRV 0 /* If !=0 how many timer services */
#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER_SRV 0 /* !=0 includes the timer services */
#define OS_TIMER_US 50000/* !=0 enables timer & specifies the period in uS */
#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 43

8.7 Case 6: Full feature Build (no names)
Table 8-7: Case 6 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS_COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */
#define OS_EVENTS 1 /* If event flags are supported */
#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */
#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING_TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 1 /* If mailboxes are used */
#define OS_MAX_PEND_RQST 32U /* Maximum number of requests posted in ISRs */
#define OS_MIN_STACK_USE 0 /* If the kernel minimizes its stack usage */
#define OS_MTX_DEADLOCK 0 /* To enable the mutex deadlock detection */
#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#ifndef OS_NESTED_INTS
 #define OS_NESTED_INTS 0 /* If operating with nested interrupts */
#endif
#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */
#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */
#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */
#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */
#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */
#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF_MBX 10 /* when OS_STATIC_MBOX != 0, # of buffer element */
#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_STATIC_TIM_SRV 0 /* If !=0 how many timer services */
#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER_SRV 0 /* !=0 includes the timer services */
#define OS_TIMER_US 50000/* !=0 enables timer & specifies the period in uS */
#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 44

8.8 Case 7: Full feature Build (no names / no runtime creation)
Table 8-8: Case 7 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS_COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */
#define OS_EVENTS 1 /* If event flags are supported */
#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */
#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING_TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 1 /* If mailboxes are used */
#define OS_MAX_PEND_RQST 32U /* Maximum number of requests posted in ISRs */
#define OS_MIN_STACK_USE 0 /* If the kernel minimizes its stack usage */
#define OS_MTX_DEADLOCK 0 /* To enable the mutex deadlock detection */
#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#ifndef OS_NESTED_INTS
 #define OS_NESTED_INTS 0 /* If operating with nested interrupts */
#endif
#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */
#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */
#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */
#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */
#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */
#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */
#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */
#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_STATIC_TIM_SRV 0 /* If !=0 how many timer services */
#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER_SRV 0 /* !=0 includes the timer services */
#define OS_TIMER_US 50000/* !=0 enables timer & specifies the period in uS */
#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 45

8.9 Case 8: Full build adding the optional timer services
Table 8-9: Case 8 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS_COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */
#define OS_EVENTS 1 /* If event flags are supported */
#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */
#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING_TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 1 /* If mailboxes are used */
#define OS_MAX_PEND_RQST 32U /* Maximum number of requests posted in ISRs */
#define OS_MIN_STACK_USE 0 /* If the kernel minimizes its stack usage */
#define OS_MTX_DEADLOCK 0 /* To enable the mutex deadlock detection */
#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#ifndef OS_NESTED_INTS
 #define OS_NESTED_INTS 0 /* If operating with nested interrupts */
#endif
#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */
#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */
#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */
#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */
#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */
#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */
#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */
#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_STATIC_TIM_SRV 0 /* If !=0 how many timer services */
#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER_SRV 1 /* !=0 includes the timer services */
#define OS_TIMER_US 50000/* !=0 enables timer & specifies the period in uS */
#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 46

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 47

9 Appendix B: AVR32A Interrupt Components

9.1 OSisrInstall

Synopsis
#include “Abassi.h”

void OSisrInstall(int IntrptID, void (* Fct)(void));

Description

The component OSisrInstall() attaches the interrupt function handler, specified by the
argument Fct, to an interrupt source. The interrupt source, which is defined by the group it
is part of and which line it is attached to, is specified by the argument IntrptID; this
argument must always be provided through the component OSavr32aISRmap.

Availability

AVR32A port only.

Arguments

IntrptID Interrupt identifier, as computed by the component OSavr32aISRmap(), that
specifies the group and line of the interrupt to attach the function Fct to.

Fct Function to attach to the interrupt source indicated by the argument IntrpID.

Returns

void

Component type

Macro (safe)

Options

None.

Notes

See also

OSavr32aISRmap (Section 9.2)
OSavr32ISRprio (Section 9.3)

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 48

9.2 OSavr32aISRmap

Synopsis
#include “Abassi.h”

int OSavr32aISRmap(int Group, int Line);

Description

The component OSavr32aISRmap() computes a unique identifier for an interrupt source the
RTOS interrupt dispatcher uses.

Availability

AVR32A port only.

Arguments

Group Group number the interrupt source belongs to
Line Line number the interrupt source is attached to in the group.

Returns

int Unique ID

Component type

Macro (safe)

Options

None.

Notes

See also

OSisrIinstall (Section 9.1)

Abassi RTOS Port – AVR32A – IAR 2017.04.20

Rev 1.11 Page 49

9.3 OSavr32aISRprio

Synopsis
#include “Abassi.h”

void OSavr32aISRprio(int Group, int Prio);

Description

The component OSavr32aISRprio() sets the interrupt priority level of an interrupt group.

Availability

AVR32A port only.

Arguments

Group Group number to set the interrupt priority
Prio Priority level to set (0 lowest, 3 highest)

Returns

void

Component type

Macro (safe)

Options

None.

Notes

See also

OSisrInstall (Section 9.1)

