
Copyright Information

This document is copyright Code Time Technologies Inc. ©2012-2013. All rights reserved. No part of this document may be
reproduced or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of

Code Time Technologies Inc.

Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

Abassi RTOS

Porting Document

C28X – CCS

Disclaimer

Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,

but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the

document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in

the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

C28X, controlSUITE and Code Composer Studio are registered trademarks of Texas Instruments. All other trademarks are the
property of their respective owners.

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 3

Table of Contents

1 INTRODUCTION .. 6

1.1 DISTRIBUTION CONTENTS ... 6
1.2 LIMITATIONS ... 6

2 TARGET SET-UP .. 7

2.1 FPU ... 7
2.2 INTERRUPT STACK SET-UP .. 9
2.3 STATUS BITS PROPAGATION ..10
2.4 NUMBER OF INTERRUPTS ..12
2.5 INTERRUPT NESTING ..13

3 INTERRUPTS ...16

3.1 INTERRUPT HANDLING TECHNIQUES ...16
3.1.1 PIE without pre-handlers ..16
3.1.2 PIE with pre-handlers..16
3.1.3 PIE not used...17
3.1.4 Interrupt Installer ..17

3.2 INTERRUPT ENABLING AND ACKNOWLEDGMENT ...18
3.2.1 RTOS Timer Tick interrupt re-enabling ...18

3.3 FAST INTERRUPTS ...19
3.3.1 Nested Fast Interrupts ...20

4 STACK USAGE...21

5 SEARCH SET-UP ...22

6 CHIP SUPPORT ...25

6.1 OSMAPISR ...25
6.1.1 OSmapISR() ...26

7 MEASUREMENTS ...28

7.1 MEMORY ..28
7.2 LATENCY ..31

8 APPENDIX A: BUILD OPTIONS FOR CODE SIZE ...36

8.1 CASE 0: MINIMUM BUILD ...36
8.2 CASE 1: + RUNTIME SERVICE CREATION / STATIC MEMORY ..37
8.3 CASE 2: + MULTIPLE TASKS AT SAME PRIORITY ...38
8.4 CASE 3: + PRIORITY CHANGE / PRIORITY INHERITANCE / FCFS / TASK SUSPEND39
8.5 CASE 4: + TIMER & TIMEOUT / TIMER CALL BACK / ROUND ROBIN ..40
8.6 CASE 5: + EVENTS / MAILBOXES ..41
8.7 CASE 6: FULL FEATURE BUILD (NO NAMES) ...42
8.8 CASE 7: FULL FEATURE BUILD (NO NAMES / NO RUNTIME CREATION) ..43
8.9 CASE 8: FULL BUILD ADDING THE OPTIONAL TIMER SERVICES ...44

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 4

List of Figures
FIGURE 2-1 PROJECT FILE LIST ... 7
FIGURE 2-2 GUI ENABLING OF THE FPU ... 8
FIGURE 2-3 GUI SET OF OS_ISR_STACK ..10
FIGURE 2-4 GUI SET OF OS_KEEP_STATUS ..11
FIGURE 2-5 GUI SET OF OS_N_INTERRUPTS ...13
FIGURE 2-6 GUI SET OF OS_NESTED_INTS ..14
FIGURE 7-1 MEMORY MEASUREMENT CODE OPTIMIZATION SETTINGS ...29
FIGURE 7-2 LATENCY MEASUREMENT CODE OPTIMIZATION SETTINGS ...31

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 5

List of Tables
TABLE 1-1 DISTRIBUTION ... 6
TABLE 2-1 ASSEMBLER REQUIRED OPTIONS .. 7
TABLE 2-2 COMMAND LINE ENABLING OF THE FPU .. 8
TABLE 2-3 INTERRUPT STACK ENABLED ... 9
TABLE 2-4 INTERRUPT STACK DISABLED .. 9
TABLE 2-5 COMMAND LINE SET OF OS_ISR_STACK .. 9
TABLE 2-6 OVERFLOW BITS NON-LOCAL ..10
TABLE 2-7 OVERFLOW BITS LOCAL ..11
TABLE 2-8 COMMAND LINE SET OF OS_KEEP_STATUS ..11
TABLE 2-9 OS_N_INTERRUPTS (PIE WITH PRE-HANDLERS) ..12
TABLE 2-10 OS_N_INTERRUPTS (PIE WITHOUT PRE-HANDLERS) ..12
TABLE 2-11 OS_N_INTERRUPTS (NO PIE) ...12
TABLE 2-12 COMMAND LINE SET OF OS_N_INTERRUPTS ..12
TABLE 2-13 NESTED INTERRUPTS ENABLED (C) ..13
TABLE 2-14 NESTED INTERRUPTS ENABLED (ASM) ..14
TABLE 2-15 COMMAND LINE SET OF OS_NESTED_INTS ..14
TABLE 3-1 ATTACHING A FUNCTION TO A REGULAR INTERRUPT ...17
TABLE 3-2 INVALIDATING AN ISR HANDLER ..18
TABLE 3-3 DEFAULT RTOS TIMER INTERRUPT RE-ENABLING ..18
TABLE 3-4 RTOS TIMER TICK USING CPU-TIMER #1 ..18
TABLE 3-5 RTOS TIMER TICK USING CPU-TIMER #0 ..19
TABLE 3-6 ATTACHING A FUNCTION TO A FAST INTERRUPT ..19
TABLE 3-7 FAST INTERRUPT NESTING ..20
TABLE 4-1 CONTEXT SAVE STACK REQUIREMENTS ...21
TABLE 5-1 SEARCH ALGORITHM CYCLE COUNT ..23
TABLE 7-1 “C” CODE MEMORY USAGE ...30
TABLE 7-2 ADDED FEATURES ...30
TABLE 7-3 ASSEMBLY CODE MEMORY USAGE ..30
TABLE 7-4 MEASUREMENT WITHOUT TASK SWITCH ..32
TABLE 7-5 MEASUREMENT WITHOUT BLOCKING ...32
TABLE 7-6 MEASUREMENT WITH TASK SWITCH ..33
TABLE 7-7 MEASUREMENT WITH TASK UNBLOCKING ..33
TABLE 7-8 LATENCY MEASUREMENTS ..35
TABLE 8-1: CASE 0 BUILD OPTIONS ..36
TABLE 8-2: CASE 1 BUILD OPTIONS ..37
TABLE 8-3: CASE 2 BUILD OPTIONS ..38
TABLE 8-4: CASE 3 BUILD OPTIONS ..39
TABLE 8-5: CASE 4 BUILD OPTIONS ..40
TABLE 8-6: CASE 5 BUILD OPTIONS ..41
TABLE 8-7: CASE 6 BUILD OPTIONS ..42
TABLE 8-8: CASE 7 BUILD OPTIONS ..43
TABLE 8-9: CASE 8 BUILD OPTIONS ..44

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 6

1 Introduction

This document details the port of the Abassi RTOS to the C28X processor. The software suite used for this

specific port is the Texas Instruments Code Composer Studio for the C28X; the version used for the port

and all tests is Version 5.2.0.00069.

1.1 Distribution Contents

The set of files supplied with this distribution are listed in Table 1-1 below:

Table 1-1 Distribution

File Name Description

Abassi.h Include file for the RTOS

Abassi.c RTOS “C” source file

Abassi_C28X_CCS.s RTOS assembly file for the C28X to use with Code

Composer Studio

Demo_1_TMX320_28027_CCS.c Demo code for the Olimex TMX320-28027 evaluation

board

Demo_3_TMX320_28027_CCS.c Demo code for the Olimex TMX320-28027 evaluation

board

Demo_7_TMX320_28027_CCS.c Demo code for the Olimex TMX320-28027 evaluation

board

AbassiDemo.h Build option settings for the demo code

1.2 Limitations

Only the large memory model is supported.

Abassi’s standard component OSisrInstall(), which simplifies the attachment of interrupts handlers to

sources of interrupt, is not available for this port; it is replaced by the component OSmapISR(). The reason

is the C28X processor family interrupts may be handled through the Peripheral Interrupt Expansion (PIE)

module, which uses its own look-up table in addition to the Abassi interrupt dispatcher look-up table.

NOTE: The CCS compiler defines the C28X data type char as 2 bytes, or 1 processor word. This has an

impact on the definitions of Abassi’s build options. In the Abassi User’s Guide, every time

“byte” or “char” are used when mentioning memory reserved by the build options, it truly

means 2 bytes in the case of C28X. For example, specifying a value of 256 for the build option

OS_ALLOC_SIZE reserves 256 words of memory; that is, 512 bytes of memory.

 In this document, when “byte” is used, it really means a byte (half a C28X word). The use of byte

instead of word was retained in order to keep this document consistent with all other ports

documents.

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 7

2 Target Set-up

Very little is needed to configure the Code Composer Studio development environment to use the Abassi

RTOS in an application. All there is to do is to add the files Abassi.c and Abassi_C28X_CCS.s in the

source files of the application project, and make sure the four configuration settings (described in the

following subsections) in the file Abassi_C28X_CCS.s are set according to the needs of the application

and target device. As well, update the include file path in the C/C++ compiler preprocessor options with

the location of Abassi.h.

Figure 2-1 Project File List

If the application is not built though the Code Composer Studio GUI, then it is important to specify the

same options on the command line for both the compiler and the assembler, as the file

Abassi_C28X_CCS.s relies on command line options to generate the correct code. The assembler options

the file Abassi_C28X_CCS.s requires are listed in the following table:

Table 2-1 Assembler required options

NOTE: By default, the Code Composer Studio runtime libraries are not multithread-safe, but Code

Composer Studio has a special hook to make the libraries multithread-safe. The required hooks

are automatically applied by attaching the Abassi internal mutex (G_OSmutex) during runtime in

OSstart().

2.1 FPU

The Abassi port for the C28X seamlessly supports the use of the floating point unit (FPU), when available

on a device. If the Code Composer Studio GUI is used, then the FPU is properly handled by Abassi as long

as it is enabled through in “Build / C2000 Compiler / Processor Options / Specify floating point support

(--float_support)” menu, selecting either fpu32 or fpu64.

Option Description

-v28 To generate C28X code

--large_memory_model Code memory model

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 8

Figure 2-2 GUI enabling of the FPU

If command line assembly is used instead of the GUI, and the FPU is needed in the application, the

assembler file Abassi_C28X_CCS.s must be informed by specifying the command line option

--float_support=fpu32 or --float_support=fpu64. Then the file Abasss_C28X_CCS.s will

contain all the extra code required to deal with the FPU:

Table 2-2 Command line enabling of the FPU

cl2000 … --float_support=fpu32 …

Or

cl2000 … --float_support=fpu64 …

If the FPU is not used, i.e. when the command line option --float_support=fpu32 or

--float_support=fpu64 is not used or not selected in the GUI, then the code in Abassi_C28X_CCS.s

reverts to the non-FPU code.

NOTE: Abassi does not use the FPU bank of shadow registers. In other works, neither the context switch

nor the interrupt dispatcher makes use of the save / restore pair of instructions. The bank of

shadow registers is thus available and should ideally be used in non-nested fast interrupts when

needed.

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 9

2.2 Interrupt Stack Set-up

It is possible, and is highly recommended to use a hybrid stack even when nested interrupts (Section 2.5)

are not enabled in an application. Using this hybrid stack, specially dedicated to the interrupts, removes the

need to allocate extra room to the stack of every task in the application to handle part of the comulative

contexts of nested interrupts. This feature is controlled by the value set by the definition OS_ISR_STACK,

located around line 25 in the file Abassi_C28X_CCS.s. To disable this feature, set the definition of

OS_ISR_STACK to a value of zero. To enable it, and specify the interrupt stack size, set the definition of

OS_ISR_STACK to the desired size in words (see Section 4 for information on stack sizing).

As supplied in the distribution, the hybrid stack feature is enabled with a size of 128 words; this is shown in

the following table:

Table 2-3 Interrupt Stack Enabled

 .if !($defined(OS_ISR_STACK))

OS_ISR_STACK .equ 128 ; If using a dedicated stack for the ISRs

 .endif ; 0 if not used, otherwise size of stack in wordss

Table 2-4 Interrupt Stack Disabled

 .if !($defined(OS_ISR_STACK))

OS_ISR_STACK .equ 0 ; If using a dedicated stack for the ISRs

 .endif ; 0 if not used, otherwise size of stack in words

There are always 8 extra words added to the value of OS_ISR_STACK as 8 words are always needed for a

local frame. This local frame is used when debugging and as it does not contain real data, the stack trace

back feature of the debugger is invalid for the first interrupt in a nesting.

Alternatively, it is possible to overload the OS_ISR_STACK value set in Abassi_C28X_CCS.s by using the

assembler command line option –-asm_define (or –ad) and specifying the desired hybrid stack size. In

the following example, the hybrid stack size is set to 256 words:

Table 2-5 Command line set of OS_ISR_STACK

cl2000 … --asm_define=OS_ISR_STACK=256 …

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 10

The hybrid stack size can also be set through the GUI, in the “Build / C2000 Compiler / Advanced Options /

Assembler Options / Pre-define assembly symbol NAME” menu, as shown in the following figure:

Figure 2-3 GUI set of OS_ISR_STACK

2.3 Status bits propagation

In the C28X status register #0, there is the OVC/OVCU field and the V flags, which are both related to

arithmetic overflows. In some applications, it may be desirable to keep the overflow information local to

each task. This feature is controlled by the value set by the definition OS_KEEP_STATUS, located around

line 30 in the file Abassi_C28X_CCS.s. To disable this feature, meaning to propagate the overflow

information across all tasks, set the definition of OS_KEEP_STATUS to a value of zero. To enable it,

meaning to keep the overflow local to the tasks, set the definition of OS_KEEP_STATUS to a non-zero value.

As supplied in the distribution, the overflow is propagated across all tasks; this is shown in the following

table:

Table 2-6 Overflow bits non-local

 .if !($defined(OS_KEEP_STATUS))

OS_KEEP_STATUS .equ 0 ; Set to non-zero to keep status local to a task

 .endif ; 0 if not keeping local

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 11

Table 2-7 Overflow bits local

 .if !($defined(OS_KEEP_STATUS))

OS_KEEP_STATUS .equ 1 ; Set to non-zero to keep status local to a task

 .endif ; 0 if not keeping local

Alternatively, it is possible to overload the OS_KEEP_STATUS value set in Abassi_C28X_CCS.s by using

the assembler command line option –-asm_define (or –ad) and specifying the desired propagation mode.

In the following example, the overflow bits are kept localized:

Table 2-8 Command line set of OS_KEEP_STATUS

cl2000 … --asm_define=OS_KEEP_STATUS=1 …

The propagation of the status bits can also be controlled through the GUI, in the “Build / C2000 Compiler /

Advanced Options / Assembler Options / Pre-define assembly symbol NAME” menu, as shown in the

following figure:

Figure 2-4 GUI set of OS_KEEP_STATUS

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 12

2.4 Number of interrupts

Abassi supports three different ways on how it handles the interrupts, and this is configured by the value set

for the definition of the token OS_N_INTERRUPTS, located around line 35 in the file

Abassi_C28X_CCS.s. More details on these three configurations are provided in Section 3. When

OS_N_INTERRUPTS is set to a value of zero, the Peripheral Interrupt Expansion (PIE) is not used; instead

the basic 32 entries interrupt table located at address 0x000000 is used. When the value of

OS_N_INTERRUPTS is between 1 and 127 inclusive, the Peripheral Interrupt Expansion (PIE) is used with

interrupt dispatcher pre-handlers. When OS_N_INTERRUPTS is set to a value of 128 or larger, the

Peripheral Interrupt Expansion (PIE) is used but without the interrupt dispatcher pre-handlers.

As supplied in the distribution, the value assigned to OS_N_INTERRUPTS is 16, meaning the Peripheral

Interrupt Expansion (PIE) is used with 16 interrupt dispatcher pre-handlers; this is shown in the following

table:

Table 2-9 OS_N_INTERRUPTS (PIE with pre-handlers)

 .if !($defined(OS_N_INTERRUPTS)) ; Minimum number of interrupts to handle

OS_N_INTERRUPTS .equ 16 ; == 0: not using the PIE

 .endif ; >= 128: PIE without pre-handlers

 ; else : PIE with pre-handlers

To operate the interrupt with the Peripheral Interrupt Expansion (PIE) without the interrupt dispatcher

pre-handlers, assign a value of 128 or greater to OS_N_INTERUPTS as shown below:

Table 2-10 OS_N_INTERRUPTS (PIE without pre-handlers)

 .if !($defined(OS_N_INTERRUPTS)) ; Minimum number of interrupts to handle

OS_N_INTERRUPTS .equ 128 ; == 0: not using the PIE

 .endif ; >= 128: PIE without pre-handlers

 ; else : PIE with pre-handlers

To operate the interrupt without the Peripheral Interrupt Expansion (PIE), assign a value of 0 to

OS_N_INTERUPTS as shown below:

Table 2-11 OS_N_INTERRUPTS (no PIE)

 .if !($defined(OS_N_INTERRUPTS)) ; Minimum number of interrupts to handle

OS_N_INTERRUPTS .equ 0 ; == 0: not using the PIE

 .endif ; >= 128: PIE without pre-handlers

 ; else : PIE with pre-handlers

Alternatively, it is possible to overload the OS_N_INTERRUPTS value set in Abassi_C28X_CCS.s by

using the assembler command line option –-asm_define (or –ad) and specifying the desired value. In the

following example, the PIE is used without pre-handlers:

Table 2-12 Command line set of OS_N_INTERRUPTS

cl2000 … --asm_define=OS_N_INTERRUPTS=128 …

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 13

The setting of OS_N_INTERRUPTS can also be controlled through the GUI, in the “Build / C2000 Compiler

/ Advanced Options / Assembler Options / Pre-define assembly symbol NAME” menu, as shown in the

following figure:

Figure 2-5 GUI set of OS_N_INTERRUPTS

2.5 Interrupt Nesting

The normal operation of the interrupt controller on the C28X devices is to only allow a single interrupt to

operate at any time. This means when the processor is servicing an interrupt, any new interrupts, even if

their priority is higher than the currently serviced interrupt level, remain pending until the processor

complete the servicing of the current interrupt. The interrupt dispatcher allows the nesting of interrupts;

this means an interrupt of any priority can interrupt the processing of an interrupt currently being handled,

even if it is of lower priority. Nested interrupts are disabled by default. To enable nested interrupts both

the build option OS_NESTED_INTS used by Abassi.c and the token OS_NESTED_INTS in the

Abassi_C28X_CCS.s file, around line 40, must be set to a non-zero value, as shown in the two following

tables:

Table 2-13 Nested Interrupts Enabled (C)

cl2000 … --define=OS_NESTED_INTS=1 …

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 14

Table 2-14 Nested Interrupts Enabled (ASM)

 .if !($defined(OS_NESTED_INTS))

OS_NESTED_INTS .equ 1 ; == 0: Interrupt dispatcher does not nest interrupts

 .endif ; != 0: Interrupt dispatcher nests interrupts

Alternatively, it is possible to overload the OS_NESTED_INTS value set in Abassi_C28X_CCS.s by using

the assembler command line option –-asm_define (or –ad) and specifying the setting for the nesting of

the interrupts. Even though the token name is identical to the Abassi build option, a definition passed to the

compiler does not get propagated to the assembler, so the assembler option –-asm_define (or –ad) must

also be used. The following example shows the activation of the nesting for the interrupts in the assembly

file:

Table 2-15 Command line set of OS_NESTED_INTS

cl2000 … --asm_define=OS_NESTED_INTS=1 …

The control of the interrupt nesting can also be also be controlled through the GUI, in the “Build / C2000

Compiler / Advanced Options / Assembler Options / Pre-define assembly symbol NAME” menu, as shown

in the following figure:

Figure 2-6 GUI set of OS_NESTED_INTS

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 15

The kernel is never entered as long as interrupt nesting is occurring. In all interrupt functions, when a

RTOS component that needs to access some kernel functionality is used, the request(s) is/are put in a

queue. Only once the interrupt nesting is over (i.e. when only a single interrupt context remains) is the

kernel entered at the end of the interrupt when the queue contains one or more requests and when the kernel

is not already active. This means that only the interrupt handler function operates in an interrupt context,

and only during the time the interrupt function is using the CPU are other interrupts (if nesting is not

enabled) blocked by the interrupt controller.

NOTE: The build option OS_NESTED_INTS must be set to a non-zero value when the token

OS_NESTED_INTS in the file Abassi_C28X_CCS.s is set to a non-zero value. If the token

OS_NESTED_INTS in the file Abassi_C28X_CCS.s is set to a zero value, and the build option

OS_NESTED_INTS is non-zero, the application will properly operate, but with a tiny bit less

real-time efficiency when kernel requests are performed during an interrupt.

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 16

3 Interrupts

The Abassi RTOS needs to be aware when kernel requests are performed inside or outside an interrupt

context. The port for the C28X processor family offers the designer 3 different techniques to handle the

interrupts to make the kernel interrupt aware. Depending on the application memory constrains, one

method is more appropriate than another. For all three interrupt handling techniques, Abassi’s ISR

dispatcher relies on a look-up table to know what is the function attached to the interrupt being handled.

Also, for all 3 methods, it is possible to bypass the Abassi interrupt dispatcher and attach a “fast interrupt”

(interrupts function using the keyword interrupt in “C”, see Section 3.3 for more details on fast

interrupts).

3.1 Interrupt handling techniques

The most likely used technique to handle the interrupt is based on the Peripheral Interrupt Expansion (PIE).

The PIE possesses its own interrupt vector table with 128 distinct entries. There are two options on how

Abassi handles the interrupts when the PIE is involved. The first one does not use interrupt dispatcher

pre-handlers, the second uses interrupt dispatcher pre-handlers.

3.1.1 PIE without pre-handlers

When the definition of OS_N_INTERRUPTS in the file Abassi_C28X_CCS.s is set to a value of 128 or

greater, the interrupts are dispatched using the PIE without pre-handlers. What happens for a regular

interrupt is the corresponding entry of the PIE vector table is set to the address of Abassi interrupt

dispatcher, redirecting the interrupt to the dispatcher. When a fast interrupt is attached, the address of the

fast interrupt function handler is set in the corresponding PIE vector table. When an interrupt occurs, the

PIE uses the vector table entry to determine the address to call. For a fast interrupt, the address is the fast

interrupt function handler itself. For a regular interrupt, the called address is always the interrupt

dispatcher address. When called, the interrupt dispatcher uses the PIEVECT entry in the PIECTRL register

of the PIE to determine which PIE vector is the source of the interrupt, and from that information the

interrupt dispatcher reads its own look-up table to call the regular “C” function that was attached to the PIE

vector ID through OSmapISR() (see Section 6.1).

All entries of PIE table vector are set to an invalid handler during the RTOS initialization upon calling

OSstart().

On data memory constrained applications selecting the PIE without pre-handlers is not optimal, as the

interrupt dispatcher requires a 512 bytes (256 words) look-up table. The table is always dimensioned to

512 bytes, even if the application only uses a few interrupts. The PIE with pre-handler technique offers a

better approach to minimize the data requirement of the interrupt dispatcher look-up table.

3.1.2 PIE with pre-handlers

When the definition of OS_N_INTERRUPTS in the file Abassi_C28X_CCS.s is set to a value greater than 0

and less than 128, the interrupts are dispatched using the PIE with pre-handlers. What happens for regular

interrupt is the corresponding entry of the PIE vector table is set to the address of a pre-handler for the

Abassi interrupt dispatcher, redirecting the interrupt to the pre-handler. When a fast interrupt is attached,

the address of the fast interrupt function handler is set in the corresponding PIE vector table. When an

interrupt occurs, the PIE uses the vector table entry to determine the address to call. For a fast interrupt, the

address is the interrupt handler function itself. For a regular interrupt, the called address is the interrupt

dispatcher pre-handler address. When called, the interrupt dispatcher pre-handler informs the interrupt

dispatcher about the index to use to read its own look-up table to call the regular “C” function. This means

there has to be unique interrupt dispatcher pre-handlers for each possible interrupt source to handle in the

application. For example, if the application supports 5 sources of interrupts then the definition of

OS_N_INTERRUPTS in the file Abassi_C28X_CCS.s must be set to a value of 5 or greater.

All entries of PIE table vector are set to an invalid handler during the RTOS initialization upon calling

OSstart().

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 17

Compared to the previous technique, the PIE without pre-handlers, it is possible to greatly reduce the data

memory requirements of the interrupt dispatcher look-up table, as it can be optimally dimensioned for the

application.

On program memory constrained applications selecting the PIE with pre-handlers is not optimal as the

interrupt dispatcher pre-handlers add a bit of code compared to the PIE without pre-handlers technique; the

more interrupts to handle, the more code is required. The PIE without pre-handler technique offers a better

approach to minimize the program memory requirement.

3.1.3 PIE not used

When the definition of OS_N_INTERRUPTS in the file Abassi_C28X_CCS.s is set to a value of 0, the

interrupts are not processed using the PIE. Not involving the PIE uses the very basic interrupt handling

capabilities on the C28X devices, with all its limitations. The interrupt table located at program address

0x000000 is used. To map the interrupt to the table, the ENPIE bit in the PIECTRL register of the PIE is set

to zero, disabling the PIE, and the VMAP bit in the processor status register #1 is set to 0, to use the table

located at address 0x000000. The alternate table, located at address 0x003FFC0, cannot be used as it is

part of the ROM, therefore not writable. The disabling of the PIE and the setting of the VMAP bit in status

register #1 is performed during the RTOS initialization upon calling OSstart().

What happens for regular interrupts is the corresponding entry interrupt table is set to the address of a

pre-handler for the Abassi interrupt dispatcher, redirecting the interrupt to the pre-handler. When a fast

interrupt is attached, the address of the fast interrupt function handler is set in the corresponding interrupt

table. When an interrupt occurs, the CPU uses the interrupt table entry to determine the call address. For a

fast interrupt, the address is the function itself. For a regular interrupt, the called address is the interrupt

dispatcher pre-handler address. When called, the interrupt dispatcher pre-handler informs the interrupt

dispatcher about the index to use to read its own look-up table to call the regular “C” function. There must

be unique interrupt dispatcher pre-handlers for each interrupt source to handle in the application. As the

C28X basic interrupt table has 32 entries, 32 pre-handlers are available.

All entries of interrupt table are set to invalid handler during the RTOS initialization upon calling

OSstart().

3.1.4 Interrupt Installer

Attaching a function to a regular interrupt is quite straightforward. All there is to do is use the RTOS

component OSmapISR()1 to specify the interrupt vector number, the interrupt dispatcher look-up table

index, and the function to be attached to that interrupt vector number. For example, Table 3-1 shows the

code required to attach the CPU-Timer #2 interrupt to the RTOS timer tick handler (TIMtick). The

vector number of the CPU-Timer #2 is 14 and the following example uses the second entry of the ISR

dispatcher table (index #1) to hold the address of the RTOS timer function.

Table 3-1 Attaching a Function to a Regular Interrupt

#include “Abassi.h”

 …

 OSstart();

 …

 OSmapISR(14, 1, &TIMtick);

 /* Set-up the count reload and enable the timer interrupt */

 … /* More ISR setup */

 OSeint(1); /* Global enable of all interrupts */

1
 The component OSisrInstall() is not supported for the C28X port

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 18

At start-up, once OSstart() has been called, all interrupt handler functions and vector table entries are set

to an ESTOP0 instruction in a function named OSinvalidISR(). If an interrupt function is attached to an

interrupt number using the OSmapISR() component before calling OSstart(), this attachment will be

removed during the execution of OSstart(), so OSmapISR() should never be used before OSstart()

has ran. When an interrupt handler is removed, it is very important and necessary to first disable the

interrupt source, then to ease debugging, the handling function can be set back to OSinvalidISR(). This

is shown in Table 3-2:

Table 3-2 Invalidating an ISR handler

#include “Abassi.h”

 …

 /* Disable the interrupt source */

 OSmapISR(VectID, TblNmb, &OSinvalidISR);

 …

When an application needs to disable/enable the interrupts, the RTOS supplied functions OSdint() and

OSeint() should be used.

3.2 Interrupt Enabling and Acknowledgment

The ISR dispatcher does not deal with the re-enabling of the interrupt line nor does it acknowledge the

response to the interrupt if the peripheral requires such a feedback. Each interrupt function handler must

perform these operations. At minimum, the bit in the IER register corresponding to the interrupt line must

be set to 1, otherwise all interrupts associated to that line will remain disabled.

3.2.1 RTOS Timer Tick interrupt re-enabling

As explained in the previous section, all interrupt handlers must re-enable the interrupt line they are

associated with. In the case of the RTOS timer tick, this is always set-up for a specific CPU-TIMER. The

selected timer is CPU-TIMER #2, which is already reserved for TI/RTOS use. If a different CPU-TIMER or

external device is used as the tick source for the RTOS timer tick, the re-enabling of the interrupt line must

be modified. The change affects the file Abassi.h. In Abassi.h, there is an area where all the C28X

dedicated set-up is grouped; the code affected in Abassi.h is shown in Table 3-3 below and the line to

modify is the one with “ #define OX_TIM_TICK_ACK()…”:

Table 3-3 Default RTOS timer Interrupt re-enabling

#elif defined(__TI_COMPILER_VERSION__) && defined(__TMS320C28XX__)

 …

 #define OX_TIM_TICK_ACK() do{asm(“ or IER, #0x2000;”);}while(0)

For example, if CPU-TIMER #1 is used instead of CPU-TIMER #2, the definition of OX_TIM_TICK_ACK()

would be replaced by:

Table 3-4 RTOS timer Tick using CPU-Timer #1

#elif defined(__TI_COMPILER_VERSION__) && defined(__TMS320C28XX__)

 …

 #define OX_TIM_TICK_ACK() do{asm(“ or IER, #0x1000;”);}while(0)

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 19

When it becomes necessary to perform more than a simple re-enabling of the interrupt line, then a

re-enabling/acknowledging function should be created, as in-line assembly in “C” becomes cumbersome

when trying not to corrupt the registers used by the compiler generated code. For example, if

CPU-TIMER #0 is used instead of CPU-TIMER #1, the definition of OX_TIM_TICK_ACK() would be

replaced by:

 Table 3-5 RTOS timer Tick using CPU-Timer #0

#elif defined(__TI_COMPILER_VERSION__) && defined(__TMS320C28XX__)

 …

 #define OX_TIM_TICK_ACK() do{AckTimer0();}while(0)

 #ifdef __ABASSI_C__

 static void AckTimer0(void);

 static void AckTimer0(void) {

 volatile int *PieCtrlAck1 = (volatile int *)0x0CE1;

 asm(“ or ier, #0x1;”); /* Re-enable INT1 line */

 PieCtrlAck1 |= 0x1; /* Re-enable the PIE interrupt */

 return;

 }

 #endif

Here is some explanation on the modifications in Table 3-5. First, the function to re-enable the interrupts

for CPU-TIMER #0 is named AckTimer0() and the definition of OX_TIM_TICK_ACK() is set to calling

the AckTimer0() function. The statement #ifdef __ABASSI_C__ is only valid at the top of the file

Abassi.c, therefore this code is only included in Abassi.c where the timer tick interrupt function

handler is located. The statements inside the #ifdef / #endif pair simply declare the function prototype

and insert the code of the function itself in Abassi.c. The use of the static hints to the optimizer it should

in-line the function, reducing the stack usage and the CPU.

3.3 Fast Interrupts

Fast interrupts are supported on this port. A fast interrupt is an interrupt that never uses any component

from Abassi, and as the name says, is desired to operate as fast as possible. To set-up a fast interrupt, all

there is to do is to use the OSmapISR() component (see Section 6.1), making sure the second argument of

OSmapISR() is negative. For example, attaching the ADC1 end of conversion to INT1 (priority 5) is done

by assigning the ADC interrupt function handler ADCread() to its matching vector ID (number 32) in the

PIE vector table, as shown below:

Table 3-6 Attaching a Function to a Fast Interrupt

#include “Abassi.h”

 …

 OSstart();

 …

 OSmapISR(32, -1, &ADCread);

 … /* More ISR setup */

 OSeint(1); /* Global enable of all interrupts */

This example uses the PIE, therefore the token OS_N_INTERRUPTS (see Section 2.4) required by

Abassi_C28X_CCS.s must be set to a value greater than 0.

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 20

3.3.1 Nested Fast Interrupts

It is possible to allow interrupt nesting for fast interrupts too; all there is to do is to re-enable the interrupts

with the EINT instruction in the fast interrupt function handler. If only fast interrupt are nested, there is no

need set the build option OS_NESTED_INTS to a non-zero value, nor the Abassi_C28X_CCS.s token

OS_N_INTERRUPTS, as fast interrupts do not use RTOS components.

As the interrupt dispatcher is not involved with fast interrupts, the global re-enabling of the interrupts must

be manually done in a fast interrupt handler if nesting is desired. Either the RTOS OSeint() component or

the CCS compiler statement asm(“ eint”) can be used for this purpose. This is shown below for the

same example as used in the previous section:

Table 3-7 Fast Interrupt Nesting

Interrupt void FastHandler(void)

{

 IER |= 0x1; /* ADCINT1 #0 in PIE group 1, re-enable INT1 */

 PieCtrlRegs.PIEACK.bit.ACK1 = 0x1; /* Re-enable it in the PIE line */

 asm(“ eint”);

 …

 return

}

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 21

4 Stack Usage

The RTOS uses the tasks’ stack for two purposes. When a task is blocked or ready to run but not running,

the stack holds the register context that was preserved when the task got blocked or preempted. Also, when

an interrupt occurs, the register context of the running task must be preserved in order for the operations

performed during the interrupt to not corrupt the contents of the registers used by the task when it got

interrupted. For the C28X, the context save contents of a blocked or pre-empted task is different from the

one used in an interrupt. The following table lists the number of bytes required by each type of context

save operation. The stack usage for the interrupt context includes the 30 bytes the processor automatically

save when entering the interrupt mode.

Table 4-1 Context Save Stack Requirements

Description Context save

Blocked/Preempted task context save 32 bytes

Blocked/Preempted task context save (OS_KEEP_STATUS != 0) +2 bytes

Blocked/Preempted task context save (FPU in use) +16 bytes

Interrupt context save 58 bytes

Interrupt context save (FPU in use) +24 bytes

Interrupt context save (OS_ISR_STACK != 0) +4 bytes

When sizing the stack to allocate to a task, there are three factors to take in account. The first factor is

simply that every task in the application needs at least the area to preserve the task context when it is

preempted or blocked. Second, one must take into account how many levels of nested interrupts exist in

the application. As a worst case, all levels of interrupts may occur and becoming fully nested. So, if N

levels of interrupts are used in the application, provision should be made to hold N times the size of an ISR

context save on each task stack, plus any added stack used by the interrupt handler functions. Finally, add

to all this the stack required by the code implementing the task operation.

NOTE: The C28X processor needs alignment on 2 words for many instructions accessing memory. When

stack memory is allocated, Abassi guarantees the alignment. This said, when sizing

OS_STATIC_STACK or OS_ALLOC_SIZE, make sure to take in account that all allocation

performed through these memory pools are by block size multiple of 2 words.

If the hybrid interrupt stack (see Section 2.2) is enabled, then the above description changes: it is only

necessary to reserve room on task stacks for a single interrupt context save and not the worst-case nesting.

With the hybrid stack enabled, the second, third, and so on interrupts use the stack dedicated to the

interrupts. The hybrid stack is enabled when the OS_ISR_STACK token in the file Abassi_C28X_CCS.s is

set to a non-zero value (see Section 2.5).

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 22

5 Search Set-up

The Abassi RTOS build option OS_SEARCH_FAST offers four different algorithms to quickly determine the

next running task upon task blocking. The following table shows the measurements obtained for the

number of CPU cycles required when a task at priority 0 is blocked, and the next running task is at the

specified priority. The number of cycles includes everything, not just the search cycle count. The number

of cycles was measured using the CPU-TIMER2 peripheral, which was set to increment the counter once

every CPU cycle. The second column is when OS_SEARCH_FAST is set to zero, meaning a simple array

traversing. The third column, labeled Look-up, is when OS_SEARCH_FAST is set to 1, which uses an 8 bit

look-up table. Finally, the last column is when OS_SEARCH_FAST is set to 4 (C28X int are 16 bits, so

2^4), meaning a 16 bit look-up table, further searched through successive approximation. The compiler

optimization for this measurement was set to High optimization (-O4) / Optimize for speed. The RTOS

build options were set to the minimum feature set, except for option OS_PRIO_CHANGE set to non-zero.

The presence of this extra feature provokes a small mismatch between the result for a difference of priority

of 1, with OS_SEARCH_FAST set to zero, and the latency results in Section 7.2.

When the build option OS_SEARCH_ALGO is set to a negative value, indicating to use a 2-dimensional

linked list search technique instead of the search array, the number of CPU is constant at 314 cycles.

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 23

Table 5-1 Search Algorithm Cycle Count

Priority Linear search Look-up Approximation

1 341 397 470

2 350 406 469

3 359 415 472

4 368 424 469

5 377 433 472

6 386 442 471

7 395 451 474

8 404 401 469

9 413 410 472

10 422 419 471

11 431 428 474

12 440 437 471

13 449 446 474

14 458 455 473

15 467 464 476

16 476 414 481

17 485 423 484

18 494 432 483

19 503 441 486

20 512 450 483

21 521 459 486

22 530 468 485

23 539 477 488

24 548 427 483

The third option, when OS_SEARCH_FAST is set to 4, never achieves a lower CPU usage than when

OS_SEARCH_FAST is set to 0 or 1 for about 17 priority levels. When OS_SEARCH_FAST is set to zero, each

extra priority level to traverse requires exactly 9 CPU cycles. When OS_SEARCH_FAST is set to 1, each

extra priority level to traverse also requires exactly 9 CPU cycles, except when the priority level is an exact

multiple of 8; then there is a sharp reduction of CPU usage. When the next ready to run priority is less than

8, 16, 24, … then there is an extra 13 cycles needed, but without the 8 times 9 cycles accumulation.

The key observation, when looking at this table, is that the first option (OS_SEARCH_FAST set to 0) delivers

better CPU performance than the second option (OS_SEARCH_FAST set to 1) when the search spans less

than 8 priority levels. So, if an application has tasks spanning less than 8 priority levels, the build option

OS_SEARCH_FAST should be set to 0. If an application has tasks spanning much more than 8 priority

levels, the build option OS_SEARCH_FAST should be set to 1.

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 24

Setting the build option OS_SEARCH_ALGO to a non-negative value minimizes the time needed to change

the state of a task from blocked to ready to run, but not the time needed to find the next running task upon

blocking/suspending of the running task. If the application needs are such that the critical real-time

requirement is to get the next running task up and running as fast as possible, then set the build option

OS_SEARCH_ALGO to a negative value.

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 25

6 Chip Support

No chip support is provided with the distribution code because the controlSUITE software library is made

available for free by Texas Instruments, and this library includes a high level API for all the peripherals on

the C28X devices.

6.1 OSmapISR

The standard component OSisrInstall() is not available for the C28X port. Instead the OSmapISR()

C28X specific component must be used. The following section describes the usage of OSmapISR().

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 26

6.1.1 OSmapISR()

Synopsis

#include “Abassi.h”

void OSmapISR(int VectID, int TblNmb, void (*FctPtr)(void));

Description

OSmapISR() is the component used on the C28X in replacement for the standard component

OSisrInstall(). OSmapISR() attaches the interrupt handler function FctPtr to an interrupt.

The interrupt is indicated by the argument VectID, which is the vector ID in the PIE when the PIE

is used, or the index in the interrupt vector table when the PIE is not used. When the argument

TblNmb is negative, the interrupt function handler is attached as a fast interrupt. When the

argument TblNmb is non-negative and the PIE is used with the pre-handlers, TblNmb specifies the

ISR dispatcher table look-up index to use for the interrupt. For all other cases the argument

TblNmb is ignored.

Availability

C28X port only

Arguments

VectID PIE used: vector ID of the interrupt to attach the function (FctPtr) to.

PIE not used: index in the interrupt vector table to attach the function to.

TblNmb When negative (TblNmb<0) the function to attach (FctPtr) is attached as a fast

interrupt handler.

When non-negative (TblNmb>=0):

 PIE not used: ignored:

 PIE without pre-handlers; ignored

 PIE with pre-handlers: index in ISR dispatcher look-up table to use

FctPtr Pointer to the function to attach to the interrupt specified by the argument

VectID.

Returns

void

Component type

Function

Options

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 27

Notes

Fast interrupt function handlers must be specified with the interrupt “C” keyword. If the fast

interrupt handler is written in assembly language, the exit of the function must be done through the

iret instruction. When the interrupt function handler is for a regular interrupt, the “C” keyword

interrupt must not be used.

See also

Interrupt description (Section 3)

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 28

7 Measurements

This section gives an overview of the memory requirements and the CPU latency encountered when the

RTOS is used on the C28X and compiled with Code Composer Studio. The CPU cycles are exactly the

CPU clock cycles, not a conversion from a duration measured on an oscilloscope then converted to a

number of cycles.

7.1 Memory

The memory numbers are supplied for the two limit cases of build options (and some in-between): the

smallest footprint is the RTOS built with only the minimal feature set, and the other with almost all the

features. For both cases, names are not part of the build. This feature was removed from the metrics

because it is highly probable that shipping products utilizing this RTOS will not include the naming of

descriptors, as its usefulness is mainly limited to debugging and making the opening/creation of

components run-time safe.

The code size numbers are expressed with “less than” as they have been rounded up to multiples of 25 for

the “C” code. These numbers were obtained using the release version 1.122.205 of the RTOS and may

change in other versions. One should interpret these numbers as the “very likely” numbers for other

released versions of the RTOS.

NOTE: The memory sizes are specified in bytes, not words (2 bytes), even though the C28X is a

word-based processor.

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 29

The code memory required by the RTOS includes the “C” code and assembly language code used by the

RTOS. The code optimization settings used for the memory measurements are:

1. Optimization level: 3
2

2. Optimize for code size: Enabled

Figure 7-1 Memory Measurement Code Optimization Settings

2
 The highest optimization level on Code Composer is 4, but level 4 adds linker optimization over what

optimization level 3 does. The linker optimization is not used for the memory measurements as it converts

small function into in-line operations, removing these functions from the memory map, skewing the

memory sizing measurements.

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 30

Table 7-1 “C” Code Memory Usage

Description Code Size

Minimal Build < 800 bytes

+ Runtime service creation / static memory < 1050 bytes

+ Multiple tasks at same priority < 1175 bytes

+ Runtime priority change

+ Mutex priority inheritance

+ FCFS

+ Task suspension

< 1700 bytes

+ Timer & timeout

+ Timer call back

+ Round robin

< 2325 bytes

+ Events

+ Mailbox

< 3050 bytes

Full Feature Build (no names) < 3650 bytes

Full Feature Build (no name / no runtime creation) < 3275 bytes

Full Feature Build (no names / no runtime creation)

+ Timer services

< 3900 bytes

Table 7-2 Added features

Description Size

Library mutex protection 74 bytes

Table 7-3 Assembly Code Memory Usage

Description Size

Assembly code size (OS_N_INTERRUPTS==0)

Interrupt pre-handlers (32 of them)

 292 bytes

+256 bytes

Assembly code size (OS_N_INTERRUPTS>=128) 306 bytes

Assembly code size (0<OS_N_INTERRUPTS<128)

Interrupt pre-handlers (per interrupt)

 302 bytes

 +8 bytes

Hybrid Stack Enabled +20 bytes

Interrupt nesting enable +4 bytes

Status Register Preservation +8 bytes

FPU in use +76 bytes

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 31

There are two aspects when describing the data memory usage by the RTOS. First, the RTOS needs its

own data memory to operate, and second, most of the services offered by the RTOS require data memory

for each instance of the service. As the build options affect either the kernel memory needs or the service

descriptors (or both), an interactive calculator has been made available on the Code Time Technologies

website.

7.2 Latency

Latency of operations has been measured on an Olimex TMX320-P28027 Evaluation board populated with

a 60 MHz TMS320F28027 device. All measurements have been performed on the real platform, using the

timer peripheral CPU-TIMER2 set-up to be clocked at the same rate as the CPU. This means the interrupt

latency measurements had to be instrumented to read the CPU-TIMER2 counter value. This instrumentation

can add many cycles to the measurements. The code optimization settings used for the latency

measurements are:

1. Optimization level: 4

2. Optimize for code size: Disabled

Figure 7-2 Latency Measurement Code Optimization Settings

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 32

There are 5 types of latencies that are measured, and these 5 measurements are expected to give a very

good overview of the real-time performance of the Abassi RTOS for this port. For all measurements, three

tasks were involved:

1. Adam & Eve set to a priority value of 0;

2. A low priority task set to a priority value of 1;

3. The Idle task set to a priority value of 20.

The sets of 5 measurements are performed on a semaphore, on the event flags of a task, and finally on a

mailbox. The first 2 latency measurements use the component in a manner where there is no task

switching. The third measurements involve a high priority task getting blocked by the component. The

fourth measurements are about the opposite: a low priority task getting pre-empted because the component

unblocks a high priority task. Finally, the reaction to unblocking a task, which becomes the running task,

through an interrupt is provided.

The first set of measurements counts the number of CPU cycles elapsed starting right before the component

is used until it is back from the component. For these measurement there is no task switching. This means:

Table 7-4 Measurement without Task Switch

 Start CPU cycle count

 SEMpost(…); or EVTset(…); or MBXput();

 Stop CPU cycle count

The second set of measurements, as for the first set, counts the number of CPU cycles elapsed starting right

before the component is used until it is back from the component. For these measurement there is no task

switching. This means:

Table 7-5 Measurement without Blocking

 Start CPU cycle count

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 Stop CPU cycle count

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 33

The third set of measurements counts the number of CPU cycles elapsed starting right before the

component triggers the unblocking of a higher priority task until the latter is back from the component used

that blocked the task. This means:

Table 7-6 Measurement with Task Switch

 main()

 {

 …

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 Stop CPU cycle count

 …

 }

 TaskPrio1()

 {

 …

 Start CPU cycle count

 SEMpost(…); or EVTset(…); or MBXput(…);

 …

 }

The fourth set of measurements counts the number of CPU cycles elapsed starting right before the

component blocks of a high priority task until the next ready to run task is back from the component it was

blocked on; the blocking was provoked by the unblocking of a higher priority task. This means:

Table 7-7 Measurement with Task unblocking

 main()

 {

 …

 Start CPU cycle count

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 …

 }

 TaskPrio1()

 {

 …

 SEMpost(…); or EVTset(…); or MBXput(…);

 Stop CPU cycle count

 …

 }

The fifth set of measurements counts the number of CPU cycles elapsed from the beginning of an interrupt

using the component, until the task that was blocked becomes the running task and is back from the

component used that blocked the task. The interrupt latency measurement includes everything involved in

the interrupt operation, even the cycles the processor needs to push the interrupt context before entering the

interrupt code. The interrupt function, attached with OSmapISR(), is simply a two line function that uses

the appropriate RTOS component followed by a return.

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 34

The following tables list the results obtained, where the cycle count is measured using the CPU-TIMER2

peripheral on the C28X. This timer is configured to increment its counter by 1 at every CPU cycle. As was

the case for the memory measurements, these numbers were obtained with release version 1.122.205 of the

RTOS. It is possible another released version of the RTOS may have slightly different numbers.

The OS context switch is the measurement of the number of CPU cycles it takes to perform a task switch,

without involving the wrap-around code of the synchronization component. This measurement includes the

call to and the return from the context switch function.

The interrupt latency is the number of cycles elapsed when the interrupt trigger occurred and the ISR

function handler is entered. This includes the number of cycles used by the processor to set-up the interrupt

stack and branch to the address specified in the interrupt vector table. But for this measurement, the CPU-

TIMER1 is used to trigger the interrupt and measure the elapsed time. The latency measurement includes

the cycles required to acknowledge the interrupt.

The interrupt overhead without entering the kernel is the measurement of the number of CPU cycles used

between the entry point in the interrupt vector and the return from interrupt, with a “do nothing” function in

the OSmapISR(). The interrupt overhead when entering the kernel is calculated using the results from the

third and fifth tests. Finally, the OS context switch is the measurement of the number of CPU cycles it

takes to perform a task switch, without involving the wrap-around code of the synchronization component.

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 35

The hybrid interrupt stack feature was not enabled, neither was the ST1 status register preserved, nor the

interrupt nesting, in any of these tests; OS_N_INTERRUPTS was set to 128, meaning the ISR dispatcher

pre-handlers are not used.

In the following table, the latency numbers between parentheses are the measurements when the build

option OS_SEARCH_ALGO is set to a negative value. The regular number is the latency measurements when

the build option OS_SEARCH_ALGO is set to 0.

Table 7-8 Latency Measurements

Description Minimal Features Full Features

Semaphore posting no task switch 156 (161) 251 (257)

Semaphore waiting no blocking 174 (179) 276 (278)

Semaphore posting with task switch 247 (297) 447 (482)

Semaphore waiting with blocking 278 (262) 521 (509)

Semaphore posting in ISR with task switch 418 (462) 623 (656)

Event setting no task switch n/a 240 (236)

Event getting no blocking n/a 300 (300)

Event setting with task switch n/a 459 (492)

Event getting with blocking n/a 549 (533)

Event setting in ISR with task switch n/a 637 (666)

Mailbox writing no task switch n/a 330 (327)

Mailbox reading no blocking n/a 345 (351)

Mailbox writing with task switch n/a 536 (583)

Mailbox reading with blocking n/a 589 (580)

Mailbox writing in ISR with task switch n/a 730 (762)

Interrupt Latency 32 32

Interrupt overhead entering the kernel 171 (165) 176 ()

Interrupt overhead NOT entering the kernel 75 75

Context switch 42 42

NOTE: The CPU numbers involving a task switch triggered by an interrupt are dependent on which

interrupt is used for the test, as the sequence of operations to acknowledge an interrupt is different

depending on the source of the interrupt. Therefore these numbers should be not considered as

valid for all cases.

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 36

8 Appendix A: Build Options for Code Size

8.1 Case 0: Minimum build

Table 8-1: Case 0 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 2U /* Maximum number of requests posted in ISRs */

#define OS_MIN_STACK_USE 0 /* If the kernel minimizes its stack usage */

#define OS_MTX_DEADLOCK 0 /* To enable the mutex deadlock detection */

#define OS_MTX_INVERSION 0 /* To enable & type of protection against prio inv */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#ifndef OS_NESTED_INTS

 #define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#endif

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 2 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 0 /* Does not Support multiple same priority tasks */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_STATIC_TIM_SRV 0 /* If !=0 how many timer services */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 37

8.2 Case 1: + Runtime service creation / static memory

Table 8-2: Case 1 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 2U /* Maximum number of requests posted in ISRs */

#define OS_MIN_STACK_USE 0 /* If the kernel minimizes its stack usage */

#define OS_MTX_DEADLOCK 0 /* To enable the mutex deadlock detection */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#ifndef OS_NESTED_INTS

 #define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#endif

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 2 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 0 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_STATIC_TIM_SRV 0 /* If !=0 how many timer services */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 38

8.3 Case 2: + Multiple tasks at same priority

Table 8-3: Case 2 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32U /* Maximum number of requests posted in ISRs */

#define OS_MIN_STACK_USE 0 /* If the kernel minimizes its stack usage */

#define OS_MTX_DEADLOCK 0 /* To enable the mutex deadlock detection */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#ifndef OS_NESTED_INTS

 #define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#endif

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_STATIC_TIM_SRV 0 /* If !=0 how many timer services */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 39

8.4 Case 3: + Priority change / Priority inheritance / FCFS / Task suspend

Table 8-4: Case 3 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32U /* Maximum number of requests posted in ISRs */

#define OS_MIN_STACK_USE 0 /* If the kernel minimizes its stack usage */

#define OS_MTX_DEADLOCK 0 /* To enable the mutex deadlock detection */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#ifndef OS_NESTED_INTS

 #define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#endif

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_STATIC_TIM_SRV 0 /* If !=0 how many timer services */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 40

8.5 Case 4: + Timer & timeout / Timer call back / Round robin

Table 8-5: Case 4 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32U /* Maximum number of requests posted in ISRs */

#define OS_MIN_STACK_USE 0 /* If the kernel minimizes its stack usage */

#define OS_MTX_DEADLOCK 0 /* To enable the mutex deadlock detection */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#ifndef OS_NESTED_INTS

 #define OS_NESTED_INTS 0 /* If operating with nested interrupts *

#endif

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_STATIC_TIM_SRV 0 /* If !=0 how many timer services */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services */

#define OS_TIMER_US 50000/* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 41

8.6 Case 5: + Events / Mailboxes

Table 8-6: Case 5 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32U /* Maximum number of requests posted in ISRs */

#define OS_MIN_STACK_USE 0 /* If the kernel minimizes its stack usage */

#define OS_MTX_DEADLOCK 0 /* To enable the mutex deadlock detection */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#ifndef OS_NESTED_INTS

 #define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#endif

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 10 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_STATIC_TIM_SRV 0 /* If !=0 how many timer services */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services */

#define OS_TIMER_US 50000/* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 42

8.7 Case 6: Full feature Build (no names)

Table 8-7: Case 6 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32U /* Maximum number of requests posted in ISRs */

#define OS_MIN_STACK_USE 0 /* If the kernel minimizes its stack usage */

#define OS_MTX_DEADLOCK 0 /* To enable the mutex deadlock detection */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#ifndef OS_NESTED_INTS

 #define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#endif

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 10 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_STATIC_TIM_SRV 0 /* If !=0 how many timer services */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services */

#define OS_TIMER_US 50000/* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 43

8.8 Case 7: Full feature Build (no names / no runtime creation)

Table 8-8: Case 7 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32U /* Maximum number of requests posted in ISRs */

#define OS_MIN_STACK_USE 0 /* If the kernel minimizes its stack usage */

#define OS_MTX_DEADLOCK 0 /* To enable the mutex deadlock detection */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#ifndef OS_NESTED_INTS

 #define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#endif

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_STATIC_TIM_SRV 0 /* If !=0 how many timer services */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services */

#define OS_TIMER_US 50000/* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

Abassi RTOS Port – C28X – CCS 2013.05.26

Rev 1.5 Page 44

8.9 Case 8: Full build adding the optional timer services

Table 8-9: Case 8 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32U /* Maximum number of requests posted in ISRs */

#define OS_MIN_STACK_USE 0 /* If the kernel minimizes its stack usage */

#define OS_MTX_DEADLOCK 0 /* To enable the mutex deadlock detection */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#ifndef OS_NESTED_INTS

 #define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#endif

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_STATIC_TIM_SRV 0 /* If !=0 how many timer services */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 1 /* !=0 includes the timer services */

#define OS_TIMER_US 50000/* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

