
Copyright Information

This document is copyright Code Time Technologies Inc. ©2012. All rights reserved. No part of this document may be reproduced
or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of Code Time

Technologies Inc.

Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

Abassi RTOS

Porting Document

ColdFire – IAR

Disclaimer

Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,

but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the

document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in

the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

IAR Embedded Workbench is a trademark owned by IAR Systems AB. ColdFire and CodeWarrior are registered trademarks of
Freescale Semiconductor, Inc. All other trademarks are the property of their respective owners.

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 3

Table of Contents

1 INTRODUCTION .. 6

1.1 DISTRIBUTION CONTENTS ... 6
1.2 LIMITATIONS ... 6

2 TARGET SET-UP .. 7

2.1 INTERRUPT STACK SET-UP .. 7
2.2 ASSEMBLY INCLUDE FILE .. 8
2.3 MAC / EMAC UNIT... 9

3 INTERRUPTS ...12

3.1 INTERRUPT HANDLING ...12
3.1.1 First 64 Table Entries ..12
3.1.2 Interrupt Table Size ...12
3.1.3 OSeint() and OSdint() ..14
3.1.4 Interrupt Installer ..15

3.2 FAST INTERRUPTS ...17
3.3 NESTED INTERRUPTS ..19

4 STACK USAGE...20

5 SEARCH SET-UP ...21

6 CHIP SUPPORT ...24

7 MEASUREMENTS ...25

7.1 MEMORY ..25
7.2 LATENCY ..27

8 APPENDIX A: BUILD OPTIONS FOR CODE SIZE ...33

8.1 CASE 0: MINIMUM BUILD ...33
8.2 CASE 1: + RUNTIME SERVICE CREATION / STATIC MEMORY ..34
8.3 CASE 2: + MULTIPLE TASKS AT SAME PRIORITY ...35
8.4 CASE 3: + PRIORITY CHANGE / PRIORITY INHERITANCE / FCFS / TASK SUSPEND36
8.5 CASE 4: + TIMER & TIMEOUT / TIMER CALL BACK / ROUND ROBIN ..37
8.6 CASE 5: + EVENTS / MAILBOXES ..38
8.7 CASE 6: FULL FEATURE BUILD (NO NAMES) ...39
8.8 CASE 7: FULL FEATURE BUILD (NO NAMES / NO RUNTIME CREATION) ..40
8.9 CASE 8: FULL BUILD ADDING THE OPTIONAL TIMER SERVICES ...41

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 4

List of Figures
FIGURE 2-1 PROJECT FILE LIST ... 7
FIGURE 2-2 GUI SET OF OS_ISR_STACK ... 8
FIGURE 2-3 GUI SET OF NO MAC/EMAC SUPPORT ... 9
FIGURE 2-4 GUI SET OF MAC SUPPORT ...10
FIGURE 2-5 GUI SET OF EMAC SUPPORT ..11
FIGURE 3-1 GUI SET OF INTERRUPT TABLE SIZING ...13
FIGURE 3-2 GUI SET OF INTERRUPT TABLE SIZING ...14
FIGURE 3-3 GUI SET OF OX_TIM_TICK_ACK ...16
FIGURE 7-1 MEMORY MEASUREMENT CODE OPTIMIZATION SETTINGS ...25
FIGURE 7-2 LATENCY MEASUREMENT CODE OPTIMIZATION SETTINGS ...27

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 5

List of Tables
TABLE 1-1 DISTRIBUTION ... 6
TABLE 2-1 OS_ISR_STACK .. 7
TABLE 2-2 COMMAND LINE SET OF OS_ISR_STACK .. 8
TABLE 2-3 ASSEMBLY INCLUDE FILE .. 8
TABLE 2-4 ENABLING MAC REGISTER PROTECTION ... 9
TABLE 2-5 ENABLING EMAC REGISTER PROTECTION ..10
TABLE 3-1 ABASSI_CF_IAR.S INTERRUPT TABLE SIZING ..12
TABLE 3-2 COMMAND LINE SET THE INTERRUPT TABLE SIZE 64 ...13
TABLE 3-3 OVERLOADING THE INTERRUPT TABLE SIZING FOR ABASSI.C ..13
TABLE 3-4 OSDINT() RETURN VALUE ...14
TABLE 3-5 ATTACHING A FUNCTION TO AN INTERRUPT ...15
TABLE 3-6 INVALIDATING AN ISR HANDLER ..15
TABLE 3-7 DISTRIBUTION INTERRUPT TABLE CODE ..17
TABLE 3-8 MCF52233 PIT 0 / 1 FAST INTERRUPTS ...17
TABLE 3-9 FAST INTERRUPT WITH DEDICATED STACK ..18
TABLE 3-10 REMOVING INTERRUPT NESTING ...19
TABLE 3-11 PROPAGATING INTERRUPT NESTING ..19
TABLE 4-1 CONTEXT SAVE STACK REQUIREMENTS ...20
TABLE 5-1 SEARCH ALGORITHM CYCLE COUNT ..22
TABLE 7-1 “C” CODE MEMORY USAGE ...26
TABLE 7-2 ASSEMBLY CODE MEMORY USAGE ..26
TABLE 7-3 MEASUREMENT WITHOUT TASK SWITCH ..28
TABLE 7-4 MEASUREMENT WITHOUT BLOCKING ...28
TABLE 7-5 MEASUREMENT WITH TASK SWITCH ..28
TABLE 7-6 MEASUREMENT WITH TASK UNBLOCKING ..29
TABLE 7-7 LATENCY MEASUREMENTS (NO MAC) ...30
TABLE 7-8 LATENCY MEASUREMENTS (MAC) ..31
TABLE 7-9 LATENCY MEASUREMENTS (EMAC / EMAC_B) ...32
TABLE 8-1: CASE 0 BUILD OPTIONS ..33
TABLE 8-2: CASE 1 BUILD OPTIONS ..34
TABLE 8-3: CASE 2 BUILD OPTIONS ..35
TABLE 8-4: CASE 3 BUILD OPTIONS ..36
TABLE 8-5: CASE 4 BUILD OPTIONS ..37
TABLE 8-6: CASE 5 BUILD OPTIONS ..38
TABLE 8-7: CASE 6 BUILD OPTIONS ..39
TABLE 8-8: CASE 7 BUILD OPTIONS ..40
TABLE 8-9: CASE 8 BUILD OPTIONS ..41

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 6

1 Introduction

This document details the port of the Abassi RTOS to the ColdFire processor line. The port is for the V1,

V2 and V3 versions of the ColdFire core. The software suite used for this specific port is the IAR

Embedded Workbench for ColdFire; the version used for the port and all tests is Version 1.23.4, packaged

as Version 5.4.

1.1 Distribution Contents

The set of files supplied with this distribution are listed in Table 1-1 below:

Table 1-1 Distribution

File Name Description

Abassi.h Include file for the RTOS

Abassi.c RTOS “C” source file

Abassi_CF_IAR.s RTOS assembly file for the ColdFire to use with the IAR

Embedded Workbench

Demo_0_M52233DEMO_IAR.c Demo code that runs on the Freescale M52233DEMO

evaluation board

Demo_3_M52233DEMO_IAR.c Demo code that runs on the Freescale M52233DEMO

evaluation board

Demo_7_M52233DEMO_IAR.c Demo code that runs on the Freescale M52233DEMO

evaluation board

AbassiDemo.h Build option settings for the demo code

1.2 Limitations

To optimize reaction time of the Abassi RTOS components, it was decided to require the processor to

always operate in supervisor mode (which is the start-up mode for ColdFire microcontrollers) and to

always use the supervisor stack pointer (SSP). The start-up code supplied in the distribution fulfills these

constraints and one must be careful to not change these settings in the application.

Only the ISA A and ISA A+ instruction sets have been tested. The assembly file is correctly processed

when the instruction set is either ISA B or ISA C, but the operation was not verified.

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 7

2 Target Set-up

Very little is needed to configure the IAR Embedded Workbench development environment to use the

Abassi RTOS in an application. All there is to do is to add the files Abassi.c and Abassi_CF_IAR.s in

the source files of the application project, and make sure the two configuration settings in the file

Abassi_CF_IAR.s (OS_ISR_STACK as described in Section 2.1, and OS_N_INTERRUPTS as described in

Section 3.1.2) are set according to the needs of the application. Also, an include file in Abassi_CF_IAR.s

must be set to the target device (Section 2.2). As well, update the include file path in the C/C++ compiler

preprocessor options with the location of Abassi.h. There is no need to include a start-up file, as the

Abassi_CF_IAR.s file contains all the start-up operations.

Figure 2-1 Project File List

NOTE: By default, some functions in the ColdFire IAR Embedded Workbench C/C++ run-time libraries

are not multithread-safe. If these functions are only used in one task, then there is no problem.

But if they are used by more than one task, they need to be protected by an Abassi mutex. The

preferred way is to re-use the G_OSmutex mutex for all non-multithread-safe function, as this will

avoid deadlocks. The list of non-reentrant functions is given in IAR C/C++ compiler

documentation.

2.1 Interrupt Stack Set-up

It is possible, and is highly recommended, to use a hybrid stack when nested interrupts occur in an

application. Using this hybrid stack, specially dedicated to the interrupts, removes the need to allocate

extra room to the stack of every task in the application to handle the interrupt nesting. This feature is

controlled by the value set by the definition OS_ISR_STACK, located around line 30 in the file

Abassi_CF_IAR.s. To disable this feature, set the definition of OS_ISR_STACK to a value of zero. To

enable it, and specify the interrupt stack size, set the definition of OS_ISR_STACK to the desired size in

bytes (see Section 4 for information on stack sizing). As supplied in the distribution, the hybrid stack

feature is enabled and a size of 1024 bytes is allocated; this is shown in the following table:

Table 2-1 OS_ISR_STACK

#ifndef OS_ISR_STACK

 #define OS_ISR_STACK 1024 /* If using a dedicated stack for the nested ISRs */

#endif /* 0 if not used, otherwise size of stack in bytes */

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 8

Alternatively, it is possible to overload the OS_ISR_STACK value set in Abassi_CF_IAR.s by using the

assembler command line option –D and specifying the desired hybrid stack size as shown in the following

example, where the hybrid stack size is set to 512 bytes:

Table 2-2 Command line set of OS_ISR_STACK

acf … -DOS_ISR_STACK=512 …

The hybrid stack size can also be set through the GUI, in the “Assembler / Preprocessor” menu, as shown

in the following figure:

Figure 2-2 GUI set of OS_ISR_STACK

2.2 Assembly include file

The assembly file sets-up the 4 processor base address registers upon start-up. As the addresses of these

registers are not always the same across different families of ColdFire devices, the assembly file obtains the

register addresses by including a device definition file. The file inclusion is located around line 25 in

Abassi_CF_ISR.s, as shown in the following:

Table 2-3 Assembly Include File

#include “io52233.h” /* Replace with the target device defintion file */

Replace the file name (io52233.h here) with the one matching the target device.

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 9

2.3 MAC / EMAC unit

Some ColdFire devices have either the MAC (Multiply-Accumulate) unit, or the EMAC (Enhanced

Multiply-Accumulate) unit, or none. The Abassi RTOS has provision to preserve the registers of the MAC

or EMAC as part of a task context; the ISR dispatcher is also able to protect these registers. In the IAR

compiler documentation it is stated that the command line option –-mac does not have any effect. One

would assume this means the MAC or EMAC is not used in the code generated by the compiler. Therefore,

if the MAC or EMAC are not used through assembly language in an application, there is no need to protect

the MAC / EMAC registers.

The file Abassi_CF_IAR.s obtains the information on the presence and type of MAC through the

command line option --mac. When the GUI is used, the command line option is set through the menu

“General Options / Target / Instruction support”. So, if the MAC / EMAC is not used through assembly

language, you should specify that no MAC / EMAC is used, as this will reduce the context save size, the

context switch time, the interrupt stack needs, and the interrupt response time. The following figure shows

how to remove the protection of the MAC / EMAC registers:

Figure 2-3 GUI set of No MAC/EMAC Support

When the assembler is used on the command line, do not specify the –-mac option, and this will inform

Abassi_CF_IAR.s to not protect the MAC / EMAC registers.

If the application accesses the MAC / EMAC through assembly code, it may not be necessary to inform

Abassi_CF_IAR.s to protect the MAC / EMAC registers. If the MAC / EMAC are accessed in a single

task only, or if they are accessed in a single interrupt handler, there is no need to protect the registers.

Under any other conditions, the registers must be protected.

If the application uses a MAC unit, and its registers need to be multi-thread protected, inform

Abassi_CF_IAR.s through the assembler command line as shown below:

Table 2-4 Enabling MAC register protection

acf … --mac=mac … Abassi_CF_IAR.s

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 10

Alternatively, this can be set through the GUI in the “General Options / Target / Instruction support”

menu:

Figure 2-4 GUI set of MAC Support

If the application uses an EMAC unit, and its registers need to be multi-thread protected, inform

Abassi_CF_IAR.s through the assembler command line as shown below:

Table 2-5 Enabling EMAC register protection

acf … --mac=emac … Abassi_CF_IAR.s

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 11

Alternatively, this can be set through the GUI in the “General Options / Target / Instruction support”

menu:

Figure 2-5 GUI set of EMAC Support

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 12

3 Interrupts

The Abassi RTOS needs to be aware when kernel requests are performed inside or outside an interrupt

context. For all interrupt sources (except for interrupt numbers less than 64) the Abassi RTOS provides an

interrupt dispatcher, which allows it to be interrupt-aware. This dispatcher achieves two goals. First, the

kernel uses it to know if a request occurs within an interrupt context or not. Second, using this dispatcher

reduces the code size, as all interrupts share the same code for the decision making of entering the kernel or

not at the end of the interrupt.

The distribution makes provision for 192 sources of interrupts handled through the interrupt dispatcher, as

specified by the token OS_N_INTERRUPTS in the file Abassi_CF_IAR.s, and the internal default value

used by Abassi.c. Even though the ColdFire interrupt table holds 256 interrupts, the first 64 entries of

the interrupt vector table are hard mapped to dedicated handlers and not handled by the dispatcher.

3.1 Interrupt Handling

3.1.1 First 64 Table Entries

The first 64 entries of the interrupt table are not handled through the dispatcher. Instead, they are mapped

to dedicated handlers: simple infinite loops. These handlers are declared weak, allowing an application to

overload the handlers defined in Abassi_CF_IAR.s and use its own. The sixteen TRAP handlers are

named from TRAP_0_hndl() to TRAP_15_hndl(), the seven auto vectors are named from

AUTO_1_hndl() to AUTO_7_hndl(), and all other entries in the lower 64 (excluding the 1
st
 and 2

nd
) are

mapped to FAULThnld().

3.1.2 Interrupt Table Size

Most application do not require all 256 interrupts to be handled, as they either typically do not use all the

entries of the table, and/or the peripherals mapped to the higher entries are not using interrupts. The

interrupt table can be easily reduced to recover code space, and at the same time recover the same amount

of data memory. There are two files affected: in Abassi_CF_IAR.s, the ColdFire interrupt table itself

must be shrunk, and the value used in the file Abassi.c, to reduce the ISR dispatcher table look-up. The

interrupt table size is defined by the token OS_N_INTERRUPTS in the file Abassi_CF_IAR.s around line

35. For the value used by Abassi.c, the default value can be overloaded by defining the token

OS_N_INTERRUPTS when compiling Abassi.c. The distribution table size is set to 192; that is the

maximum of 256, minus the lower 64.

For example, on a MCF52233 device, none of the last 128 entries of the interrupt table are attached to

peripherals (index 127 is the last peripheral, which is the Real Time Clock). The 256 entry table can

therefore be reduced to only 128 entries. The value to set in Abassi_CF_IAR.s files is 64, which is

the total of 128 entries minus 64 (the lower 64 entries). The changes are shown in the following table:

Table 3-1 Abassi_CF_IAR.s interrupt table sizing

 …

#ifndef OS_N_INTERRUPTS ; # of entries in the interupt table mapped to

OS_N_INTERUPTS EQU 64 ; ISRdispatch()

#endif

 …

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 13

Alternatively, it is possible to overload the OS_N_INTERRUPTS value set in Abassi_CF_IAR.s by using

the assembler command line option –D and specifying the desired setting with the following:

Table 3-2 Command line set the interrupt table size 64

acf … -DOS_N_INTERRUPTS=64 …

The overloading of the default interrupt vector look-up table used by Abassi.c is done by using the

compiler command line option –D and specifying the desired setting with the following:

Table 3-3 Overloading the interrupt table sizing for Abassi.c

icccf … -DOS_N_INTERRUPTS=64 …

The interrupt table size used by Abassi_CF_IAR.s can also be set through the GUI, in the “Assembler /

Preprocessor” menu, as shown in the following figure:

Figure 3-1 GUI set of interrupt table sizing

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 14

The interrupt table look-up size used by Abassi.c can also be overloaded through the GUI, in the “C/C++

Compiler / Preprocessor” menu, as shown in the following figure:

Figure 3-2 GUI set of interrupt table sizing

3.1.3 OSeint() and OSdint()

The ColdFire implementation of OSeint() and OSdint() is a bit different than for all other Abassi ports.

The reason for this idiosyncrasy is due to the fact the ColdFire processor does not possess a way to control

a global interrupt disable/enable; instead the interrupts are “enable/disable” by setting the priority level

value of the 3 IPL bits in the processor status register. As the philosophy behind OSdint() and OSeint()

is to perform a global interrupt disabling, with restoring of the interrupt state before the disabling, it

becomes necessary to keep track of the interrupt level (IPL bits), as disabling the interrupt is done by

setting the IPL bits to 111b. So, the OSdint() return value is 0x00002700 for previously disabled

interrupts, and between 0x00002000 to 0x00002600 for previously enabled interrupts; see Table 3-4.

Table 3-4 OSdint() return value

Value Description

0x00002000 The 3 IPL bits were 000 before disabling the interrupt

0x00002100 The 3 IPL bits were 001 before disabling the interrupt

0x00002200 The 3 IPL bits were 010 before disabling the interrupt

0x00002300 The 3 IPL bits were 011 before disabling the interrupt

0x00002400 The 3 IPL bits were 100 before disabling the interrupt

0x00002500 The 3 IPL bits were 101 before disabling the interrupt

0x00002600 The 3 IPL bits were 110 before disabling the interrupt

0x00002700 The 3 IPL bits were 111 before disabling the interrupt

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 15

When using OSeint(), the interrupt level can be set by using any of the values indicated in the above

table. If a value of 0 is used with OSeint(), then the interrupts are disabled by setting the 3 IPL bits to

111. Any value other than 0, or the ones in the above table, enables the interrupts by setting the 3 IPL bits

to 000.

3.1.4 Interrupt Installer

Attaching a function to a regular interrupt is quite straightforward. All there is to do is use the RTOS

component OSisrInstall() to specify the interrupt number and the function to be attached to that

interrupt number. For example, Table 3-5 shows the code required to attach on a MCF52233 the PIT0

(Programmable Interrupt Timer #0) interrupt to the RTOS timer tick handler (TIMtick). The PIT0

interrupt is mapped to the index #119 in the interrupt vector

Table 3-5 Attaching a Function to an Interrupt

#include “Abassi.h”

 …

 OSstart();

 …

 OSisrInstall(119, &TIMtick);

 /* Set-up the count reload and enable SysTick interrupt */

 … /* More ISR setup */

 OSeint(1); /* Global enable of all interrupts */

At start-up, once OSstart() has been called, all OS_N_INTERRUPTS interrupt handler functions are set to

a “do nothing” function, named OSinvalidISR(). If an interrupt function is attached to an interrupt

number using the OSisrInstall() component before calling OSstart(), this attachment will be

removed by OSstart(), so OSisrInstall() should never be used before OSstart() has ran. When an

interrupt handler is removed, it is very important and necessary to first disable the interrupt source, then the

handling function can be set back to OSinvalidISR(). This is shown in Table 3-6:

Table 3-6 Invalidating an ISR handler

#include “Abassi.h”

 …

 /* Disable the interrupt source */

 OSisrInstall(Number, &OSinvalidISR);

 …

When an application needs to disable/enable the interrupts, the RTOS supplied functions OSdint() and

OSeint() should be used (See Section 3.1.3 for more details about using OSdint() and OSeint() on a

ColdFire).

The interrupt controller on the ColdFire does not clear the interrupt generated by a peripheral; neither does

the RTOS. This means the peripheral generating the interrupt must be informed to remove the interrupt

request. This operation must be performed in every interrupt handler otherwise the interrupt will be re-

entered over and over. In the case of the RTOS timer tick interrupt handler, define the token

OX_TIM_TICK_ACK, or do it in the timer call back function, if used, and called at every timer tick.

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 16

For example, re-using the PIT0 on the MCF52233 as the RTOS timer tick source of interrupt, the interrupt

can be cleared inside the RTOS timer tick interrupt handler through:

icccf … -DOX_TIM_TICK_ACK=”MCF_PIT0_PCR|=MCF_PIT_PCSR_PIF” …

Alternatively, this can be set through the GUI:

Figure 3-3 GUI set of OX_TIM_TICK_ACK

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 17

3.2 Fast Interrupts

Fast interrupts are supported on this port. A fast interrupt is an interrupt that never uses any component

from Abassi, and as the name says, is desired to operate as fast as possible. To set-up a fast interrupt, all

there is to do is to set the address of the interrupt function in the corresponding entry in the interrupt vector

table used by the ColdFire processor. The area of the interrupt vector table to modify is located in the file

Abassi_CF_IAR.s around line 275. For example, on a MCF52233 device, PIT0 is mapped to interrupt

number 119 and PIT1 is mapped to the interrupt number 120. The code to modify is located in the macro

loop that initializes the interrupt table that sets the ISR dispatcher as the default interrupt handler. All there

is to do is add checks on the token holding the interrupt number, such that, when the interrupt number value

matches the desired interrupt number, the appropriate address gets inserted in the table instead of the

address of ISRdispatch(). The original macro loop code and modified one are shown in the following

two tables:

Table 3-7 Distribution interrupt table code

INT_NMB SET 64 ; INT_NMB is used to track the interrupt number

 REPT OS_N_INTERRUPTS ; Map all the external interrupts to ISRdispatch()

 DC32 ISRdispatch

INT_NMB SET INT_NMB+1

 ENDR

Attaching a fast interrupt handler to the PIT0, and another one to PIT1, assuming the names of the

interrupt functions to attach are respectively PIT0_IRQhandler() and PIT1_IRQhandler(), is shown

in the following table:

Table 3-8 MCF52233 PIT 0 / 1 Fast Interrupts

 EXTERN PIT0_IRQhandler

 EXTERN PIT1_IRQhandler

 …

INT_NMB SET 64 ; INT_NMB is used to track the interrupt number

 REPT OS_N_ INTERRUPTS ; Map all the external interrupts to ISRdispatch()

 IF INT_NMB == 119 ; When is interrupt #119, set the PIT #0 handler

 DC32 PIT0_IRQhandler

 ELSEIF INT_NMB == 120 ; When is interrupt #120, set the PIT #1 handler

 DC32 PIT1_IRQhandler

 ELSE ; All others interrupt # mapped to ISRdispatch()

 DC32 ISRdispatch

 ENDIF

INT_MB SET INT_NMB+1

 ENDR

 …

It is important to add the EXTERN statement, otherwise there will be an error during the assembly of the file.

NOTE: If an Abassi component is used inside a fast interrupt, the application will misbehave.

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 18

Even if the hybrid interrupt stack feature is enabled (see Section 2.1), fast interrupts will not use that stack.

This translates into the need to reserve room on all task stacks for the possible nesting of fast interrupts. To

make the fast interrupts also use a hybrid interrupt stack, a prologue and epilogue must be used around the

call to the interrupt handler. The prologue and epilogue code to add is almost identical to what is done in

the regular interrupt dispatcher. Reusing the example of the PIT0 on the MCF52233 device, this would

look something like:

Table 3-9 Fast Interrupt with Dedicated Stack

 …

 ELSEIF INT_NMB == 119

 DC32 PIT0preHandler ; Set the addres of the pre handler

 …

 …

 RSEG RCODE:CODE(1)

 EXTERN UART0handler

PIT0preHandler:

 … … … ; ISR context save

 movea.l SP, A0 ; Save a copy of current stack pointer

 movea.l #PIT0_stack, SP ; Set-up ISR stack for PIT 0 interrupt

 pea (A0) ; Save original stack pointer on the stack

 bl PIT0handler ; Enter the interrupt handler

 movea.l (SP), SP ; Recover original sp

 …

 …

 RSEG FAR_Z:DATA:SORT:NOROOT(2)

 ALIGN 4

 DS8 PIT0_stack_size ; Room for the fast interrupt stack

PIT0_stack:

 …

The same code, with unique labels, must be repeated for each of the fast interrupts.

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 19

3.3 Nested Interrupts

The ColdFire interrupt controller allows nesting of interrupts; this means an interrupt of higher priority will

interrupt the processing of an interrupt of lower priority. Individual interrupt sources can be set to one of 8

levels, where level 7 is the highest (interrupts are disable but not the exceptions faults) and 0 is the lowest.

This implies that the RTOS build option OS_NESTED_INTS must be set to a non-zero value. The exception

to this is an application where all enabled interrupts handled by the RTOS ISR dispatcher are set, without

exception, to the same priority; then interrupt nesting will not occur. In that case, and only that case, can

the build option OS_NESTED_INTS be set to zero. As this latter case is quite unlikely, the build option

OS_NESTED_INTS is always overloaded when compiling the RTOS for the Freescale ColdFire. If the latter

condition is guaranteed, the overloading located after the pre-processor directive can be modified. The code

affected in Abassi.h is shown in Table 3-10 below and the line to modify is the one with #define

OX_NESTED_INTS 1:

Table 3-10 Removing interrupt nesting

#elif defined(__ICCCF__)

 #define OX_NESTED_INTS 0 /* CF has 8 nested interrupt levels */

Or if the build option OS_NESTED_INTS is desired to be propagated:

Table 3-11 Propagating interrupt nesting

#elif defined(__ICCCF__)

 #define OX_NESTED_INTS OS_NESTED_INTS

The Abassi RTOS kernel never disables interrupts, but there is a few very small regions within the interrupt

dispatcher where interrupts are temporarily disabled due to the nesting (a total of between 10 to 20

instructions).

The kernel is never entered as long as interrupt nesting exists. In all interrupt functions, when a RTOS

component that needs to access some kernel functionality is used, the request(s) is/are put in a queue. Only

once the interrupt nesting is over (i.e. when only a single interrupt context remains) is the kernel entered at

the end of the interrupt, when the queue contains one or more requests, and when the kernel is not already

active. This means that only the interrupt handler function operates in an interrupt context, and only the

time the interrupt function is using the CPU are other interrupts of equal or lower level blocked by the

interrupt controller.

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 20

4 Stack Usage

The RTOS uses the tasks’ stack for two purposes. When a task is blocked or ready to run but not running,

the stack holds the register context that was preserved when the task got blocked or preempted. Also, when

an interrupt occurs, the register context of the running task must be preserved in order for the operations

performed during the interrupt to not corrupt the contents of the registers used by the task when it got

interrupted. For the ColdFire, the context save contents of a blocked or pre-empted task is different from

the one used in an interrupt. The following table lists the number of bytes required by each type of context

save operation:

Table 4-1 Context Save Stack Requirements

Description No MAC MAC EMAC

Blocked/Preempted task context save 40 bytes 52 bytes 72 bytes

ISR dispatcher context save (OS_ISR_STACK == 0) 28 bytes 40 bytes 80 bytes

ISR dispatcher context save (OS_ISR_STACK != 0) 32 bytes 44 bytes 84 bytes

The numbers for the interrupt dispatcher context save include the 8 bytes the processor pushes on the stack

when it enters the interrupt servicing.

When sizing the stack to allocate to a task, there are three factors to take in account. The first factor is

simply that every task in the application needs at least the area to preserve the task context when it is

preempted or blocked. Second, one must take into account how many levels of nested interrupts exist in

the application. As a worst case, all levels of interrupts may occur and becoming fully nested. So if N

levels of interrupts are used in the application, provision should be made to hold N times the size of an ISR

context save on each task stack, plus any added stack used by all the interrupt handler functions. Finally,

add to all this the stack required by the code implementing the task operation.

NOTE: The ColdFire processor needs alignment on 4 bytes for some instructions accessing memory.

When stack memory is allocated, Abassi guarantees the alignment. This said, when sizing

OS_STATIC_STACK or OS_ALLOC_SIZE, make sure to take in account that all allocation

performed through these memory pools are by block size multiple of 4 bytes.

If the hybrid interrupt stack (see Section 2.1) is enabled, then the above description changes: it is only

necessary to reserve room on task stacks for a single interrupt context save (this excludes the interrupt

function handler stack requirements) and not the worst-case nesting. With the hybrid stack enabled, the

second, third, and so on interrupts use the stack dedicated to the interrupts. The hybrid stack is enabled

when the OS_ISR_STACK token in the file Abassi_CF_IAR.s is set to a non-zero value (see Section 2.1).

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 21

5 Search Set-up

The Abassi RTOS build option OS_SEARCH_FAST offers three different algorithms to quickly determine

the next running task upon task blocking. The following table shows the measurements obtained for the

number of CPU cycles required when a task at priority 0 is blocked, and the next running task is at the

specified priority. The number of cycles includes everything, not just the search cycle count. The number

of cycles was measured using the PIT0 peripheral on a MCF52233 device, which decrements its counter

once every 2 CPU cycle; the number listed in the following table are the cycles, not the PIT0 counter

value.. The second column is when OS_SEARCH_FAST is set to zero, meaning a simple array traversing.

The third column, labeled Look-up, is when OS_SEARCH_FAST is set to 1, which uses an 8-bit look-up

table. Finally, the last column is when OS_SEARCH_FAST is set to 5 (IAR/ColdFire int are 32 bits, so

2^5), meaning a 32-bit look-up table, further searched through successive approximation. The compiler

optimization for this measurement was set to Level High / Speed optimization, the code and data models

are the far ones, and the instruction support was set to ISA A+ and with the EMAC. The RTOS build

options were set to the minimum feature set, except for option OS_PRIO_CHANGE set to non-zero. The

presence of this extra feature provokes a small mismatch between the result for a difference of priority of 1,

with OS_SEARCH_FAST set to zero, and the latency results in Section 7.2.

When the build option OS_SEARCH_ALGO is set to a negative value, indicating to use a 2-dimensional

linked list search technique instead of the search array, the number of CPU cycles is constant at 340 cycles.

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 22

Table 5-1 Search Algorithm Cycle Count

Priority Linear search Look-up Approximation

1 342 384 474

2 350 392 474

3 358 400 474

4 366 408 474

5 374 416 474

6 382 424 474

7 390 432 474

8 398 388 474

9 406 386 474

10 414 404 474

11 422 412 474

12 430 420 474

13 438 428 474

14 446 436 474

15 454 444 474

16 462 402 474

17 470 410 474

18 478 418 474

19 486 426 474

20 494 434 474

21 502 442 474

22 510 450 474

23 518 458 474

24 526 414 474

When OS_SEARCH_FAST is set to 0, each extra priority level to traverse requires exactly 8 CPU cycles.

When OS_SEARCH_FAST is set to 1, each extra priority level to traverse requires exactly 8 CPU cycles,

except when the priority level is an exact multiple of 8; then there is a sharp reduction of CPU usage.

Overall, setting OS_SEARCH_FAST to 1 adds 42 cycles of CPU for the search compared to setting

OS_SEARCH_FAST to zero. But when the next ready to run priority is less than 8, 16, 24, … then there is an

extra 12 cycles needed, but without the 8 times 8 cycle accumulation. Finally, the third option, when

OS_SEARCH_FAST is set to 5, delivers a perfectly constant CPU usage, as the algorithm utilizes a

successive approximation search technique (when the delta is 32 or more, the CPU cycle count is 484, for

64 or more, it is 494).

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 23

The first observation, when looking at this table, is that the first option, when OS_SEARCH_FAST is set to 0,

is the most CPU efficient when the priority span is less than 8. For more than 8 priority spans, the second

option (when OS_SEARCH_FAST is set to 1) is overall more CPU efficient than the third option (when

OS_SEARCH_FAST is set to 5) for all spans shown in the table. When the span reaches around 40, then the

third option is more efficient than the second. So, the build option OS_SEARCH_FAST should never be set

to 5, as it is not the most efficient method, unless the application has way more than 40 priority levels.

Setting the build option OS_SEARCH_ALGO to a non-negative value minimizes the time needed to change

the state of a task from blocked to ready to run, and not the time needed to find the next running task upon

blocking/suspending of the running task. If the application needs are such that the critical real-time

requirement is to get the next running task up and running as fast as possible, then set the build option

OS_SEARCH_ALGO to a negative value.

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 24

6 Chip Support

No chip support is provided with the distribution code. The IAR Embedded Workbench for the ColdFire

supplies all the peripheral register definitions, exactly the same ones as in the Freescale’s CodeWarrior

development environment.

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 25

7 Measurements

This section gives an overview of the memory requirements and the CPU latency encountered when the

RTOS is used on the Freescale ColdFire and compiled with IAR Embedded Workbench. The CPU cycles

are exactly the CPU clock cycles.

7.1 Memory

The memory numbers are supplied for the two limit cases of build options (and some in-between): the

smallest footprint is the RTOS built with only the minimal feature set, and the other with almost all the

features. For both cases, names are not part of the build. This feature was removed from the metrics

because it is highly probable that shipping products utilizing this RTOS will not include the naming of

descriptors, as its usefulness is mainly limited to debugging and making the opening/creation of

components run-time safe.

The code size numbers are expressed with “less than” as they have been rounded up to multiples of 25 for

the “C” code. These numbers were obtained using the beta release of the RTOS and may change. One

should interpret these numbers as the “very likely” numbers for the released version of the RTOS.

The code memory required by the RTOS includes the “C” code and assembly language code used by the

RTOS. Only the far data and code model have been measured. One would assume using near code

model should provide smaller code. The code optimization settings of the compiler that were used for the

memory measurements are:

1. Optimization level: High

2. Optimize for: Size

3. All transformations are enabled

Figure 7-1 Memory Measurement Code Optimization Settings

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 26

Table 7-1 “C” Code Memory Usage

Description ISA A / ISA A+ ISA B / ISA C

Minimal Build < 875 bytes < 875 bytes

+ Runtime service creation / static memory < 1100 bytes < 1100 bytes

+ Multiple tasks at same priority < 1200 bytes < 1200 bytes

+ Runtime priority change

+ Mutex priority inheritance

+ FCFS

+ Task suspension

< 1750 bytes < 1725 bytes

+ Timer & timeout

+ Timer call back

+ Round robin

< 2250 bytes < 2250 bytes

+ Events

+ Mailbox

< 3075 bytes < 3050 bytes

Full Feature Build (no names) < 3525 bytes < 3475 bytes

Full Feature Build (no names / no runtime creation) < 3250 bytes < 3200 bytes

Full Feature Build (no names / no runtime creation)

+ Timer services module

< 3600 bytes < 3550 bytes

Table 7-2 Assembly Code Memory Usage

Description ISA A / ISA A+ ISA B / ISA C

Assembly code size 290 bytes 310 bytes

Vector table (per interrupt handler entry) +4 bytes +4 bytes

Hybrid Stack Enabled +26 bytes +28 bytes

MAC unit protected +40 bytes +40 bytes

EMAC unit protected +136 bytes +136 bytes

There are two aspects when describing the data memory usage by the RTOS. First, the RTOS needs its

own data memory to operate, and second, most of the services offered by the RTOS require data memory

for each instance of the service. As the build options affect either the kernel memory needs or the service

descriptors (or both), an interactive calculator has been made available on Code Time Technologies

website.

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 27

7.2 Latency

Latency of operations has been measured on a Freescale M52233DEMO evaluation board populated with a

60 MHz MCF52233 device. All measurements have been performed on the real platform using the PIT0

timer to count the cycles. This means the interrupt latency measurements had to be instrumented to read

the PIT0 counter value. This instrumentation can add up to 5 or 6 cycles to the measurements. Also, the

PIT timers are decrementing their counter by one every 2 CPU cycles, meaning the measured values were

all doubled to represent CPU cycles. Both data and code model were set to far and the instruction set was

set to ISA A+ as this is the native instruction set of the MCF52233 device. The code optimization settings

that were used for the latency measurements are:

1. Optimization level: High

2. Optimize for: Speed

3. All transformations are enabled

Figure 7-2 Latency Measurement Code Optimization Settings

There are 5 types of latencies that are measured, and these 5 measurements are expected to give a very

good overview of the real-time performance of the Abassi RTOS for this port. For all measurements, three

tasks were involved:

1. Adam & Eve set to a priority value of 0;

2. A low priority task set to a priority value of 1;

3. The Idle task set to a priority value of 20.

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 28

The sets of 5 measurements are performed on a semaphore, on the event flags of a task, and finally on a

mailbox. The first 2 latency measurements use the component in a manner where there is no task

switching. The third measurements involve a high priority task getting blocked by the component. The

fourth measurements are about the opposite: a low priority task getting pre-empted because the component

unblocks a high priority task. Finally, the reaction to unblocking a task, which becomes the running task,

through an interrupt is provided.

The first set of measurements counts the number of CPU cycles elapsed starting right before the component

is used until it is back from the component. For these measurement there is no task switching. This means:

Table 7-3 Measurement without Task Switch

 Start CPU cycle count

 SEMpost(…); or EVTset(…); or MBXput();

 Stop CPU cycle count

The second set of measurements, as for the first set, counts the number of CPU cycles elapsed starting right

before the component is used until it is back from the component. For these measurement there is no task

switching. This means:

Table 7-4 Measurement without Blocking

 Start CPU cycle count

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 Stop CPU cycle count

The third set of measurements counts the number of CPU cycles elapsed starting right before the

component triggers the unblocking of a higher priority task until the latter is back from the component used

that blocked the task. This means:

Table 7-5 Measurement with Task Switch

 main()

 {

 …

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 Stop CPU cycle count

 …

 }

 TaskPrio1()

 {

 …

 Start CPU cycle count

 SEMpost(…); or EVTset(…); or MBXput(…);

 …

 }

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 29

The fourth set of measurements counts the number of CPU cycles elapsed starting right before the

component blocks of a high priority task until the next ready to run task is back from the component it was

blocked on; the blocking was provoked by the unblocking of a higher priority task. This means:

Table 7-6 Measurement with Task unblocking

 main()

 {

 …

 Start CPU cycle count

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 …

 }

 TaskPrio1()

 {

 …

 SEMpost(…); or EVTset(…); or MBXput(…);

 Stop CPU cycle count

 …

 }

The fifth set of measurements counts the number of CPU cycles elapsed from the beginning of an interrupt

using the component, until the task that was blocked becomes the running task and is back from the

component used that blocked the task. The interrupt latency measurement includes everything involved in

the interrupt operation, even the cycles the processor needs to push the interrupt context before entering the

interrupt code. The interrupt function, attached with OSisrInstall(), is simply a two line function that

uses the appropriate RTOS component followed by a return.

Table 7-7, Table 7-8 and Table 7-9 list the results obtained using a Freescale M52233DEMO evaluation

board, where the cycle count is measured using the Programmable Interrupt Timer #0 (PIT0) peripheral on

the MCF52233. This timer is set-up to decrements its counter by 1 at every 2 CPU cycle (there is a hard-

wired pre-scaler of 2 on the PIT0). As was the case for the memory measurements, these numbers were

obtained with a beta release of the RTOS. It is possible the released version of the RTOS may have slightly

different numbers.

The interrupt latency is the number of cycles elapsed when the interrupt trigger occurred and the ISR

function handler is entered. This includes the number of cycles used by the processor to set-up the interrupt

stack and branch to the address specified in the interrupt vector table. For this measurement, the

MCF52233 Programmable Interrupt Timer #0 (PIT0) is again used to trigger the interrupt and measure the

elapsed time. The latency measurement includes the cycles required to acknowledge the interrupt.

The interrupt overhead without entering the kernel is the measurement of the number of CPU cycles used

between the entry point in the interrupt vector and the return from interrupt, with a “do nothing” function in

the OSisrInstall(). The interrupt overhead when entering the kernel is calculated using the results

from the third and fifth tests. Finally, the OS context switch is the measurement of the number of CPU

cycles it takes to perform a task switch, without involving the wrap-around code of the synchronization

component.

The hybrid interrupt stack feature was not enabled in any of these tests.

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 30

In the following three tables, the latency numbers between parentheses are the measurements when the

build option OS_SEARCH_ALGO is set to a negative value, indicating to use a linked list instead of a look-up

table. The regular number is the latency measurements when the build option OS_SEARCH_ALGO is set to

0.

Table 7-7 Latency Measurements (NO MAC)

Description Minimal Features Full Features

Semaphore posting no task switch 166 (164) 230 (258)

Semaphore waiting no blocking 172 (170) 244 (276)

Semaphore posting with task switch 242 (270) 382 (442)

Semaphore waiting with blocking 260 (258) 434 (452)

Semaphore posting in ISR with task switch 566 (588) 712 (758)

Event setting no task switch n/a 226 (256)

Event getting no blocking n/a 278 (304)

Event setting with task switch n/a 412 (476)

Event getting with blocking n/a 470 (482)

Event setting in ISR with task switch n/a 748 (798)

Mailbox writing no task switch n/a 284 (312)

Mailbox reading no blocking n/a 304 (328)

Mailbox writing with task switch n/a 442 (496)

Mailbox reading with blocking n/a 506 (528)

Mailbox writing in ISR with task switch n/a 784 (834)

Interrupt Latency 64 64

Interrupt overhead entering the kernel 324 (318) 330 (316)

Interrupt overhead NOT entering the kernel 124 124

Context switch 48 46

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 31

Table 7-8 Latency Measurements (MAC)

Description Minimal Features Full Features

Semaphore posting no task switch 166 (164) 230 (258)

Semaphore waiting no blocking 172 (170) 244 (376)

Semaphore posting with task switch 262 (290) 402 (462)

Semaphore waiting with blocking 280 (278) 454 (472)

Semaphore posting in ISR with task switch 596 (618) 742 (788)

Event setting no task switch n/a 226 (256)

Event getting no blocking n/a 278 (304)

Event setting with task switch n/a 432 (496)

Event getting with blocking n/a 490 (502)

Event setting in ISR with task switch n/a 778 (828)

Mailbox writing no task switch n/a 284 (312)

Mailbox reading no blocking n/a 304 (328)

Mailbox writing with task switch n/a 462 (516)

Mailbox reading with blocking n/a 526 (550)

Mailbox writing in ISR with task switch n/a 814 (864)

Interrupt Latency 74 74

Interrupt overhead entering the kernel 334 (328) 340 (326)

Interrupt overhead NOT entering the kernel 168 168

Context switch 68 66

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 32

Table 7-9 Latency Measurements (EMAC / EMAC_B)

Description Minimal Features Full Features

Semaphore posting no task switch 162 (160) 230 (256)

Semaphore waiting no blocking 168 (166) 246 (274)

Semaphore posting with task switch 300 (328) 442 (500)

Semaphore waiting with blocking 312 (310) 490 (508)

Semaphore posting in ISR with task switch 652 (670) 798 (844)

Event setting no task switch n/a 224 (256)

Event getting no blocking n/a 276 (306)

Event setting with task switch n/a 472 (536)

Event getting with blocking n/a 526 (538)

Event setting in ISR with task switch n/a 832 (884)

Mailbox writing no task switch n/a 284 (310)

Mailbox reading no blocking n/a 304 (328)

Mailbox writing with task switch n/a 500 (556)

Mailbox reading with blocking n/a 564 (588)

Mailbox writing in ISR with task switch n/a 872 (914)

Interrupt Latency 90 90

Interrupt overhead entering the kernel 352 (342) 356 (344)

Interrupt overhead NOT entering the kernel 233 233

Context switch 100 102

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 33

8 Appendix A: Build Options for Code Size

8.1 Case 0: Minimum build

Table 8-1: Case 0 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 2 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 2 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 0 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 34

8.2 Case 1: + Runtime service creation / static memory

Table 8-2: Case 1 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 2 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 2 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 0 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 35

8.3 Case 2: + Multiple tasks at same priority

Table 8-3: Case 2 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 36

8.4 Case 3: + Priority change / Priority inheritance / FCFS / Task suspend

Table 8-4: Case 3 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 37

8.5 Case 4: + Timer & timeout / Timer call back / Round robin

Table 8-5: Case 4 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 38

8.6 Case 5: + Events / Mailboxes

Table 8-6: Case 5 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 39

8.7 Case 6: Full feature Build (no names)

Table 8-7: Case 6 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 40

8.8 Case 7: Full feature Build (no names / no runtime creation)

Table 8-8: Case 7 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

Abassi RTOS Port – ColdFire – IAR 2012.06.26

Rev 1.1 Page 41

8.9 Case 8: Full build adding the optional timer services

Table 8-9: Case 8 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 1 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

