
Copyright Information

This document is copyright Code Time Technologies Inc. ©2011,2012. All rights reserved. No part of this document may be
reproduced or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of

Code Time Technologies Inc.

Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

Abassi RTOS

Porting Document

MSP430 – GCC

Disclaimer

Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,

but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the

document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in

the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

MSP430 and Code Composer Studio are registered trademarks of Texas Instruments. All other trademarks are the property of their
respective owners.

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 3

Table of Contents

1 INTRODUCTION .. 5

1.1 DISTRIBUTION CONTENTS ... 5
1.2 LIMITATIONS ... 5

2 TARGET SET-UP .. 6

2.1 INTERRUPT STACK SET-UP .. 7
2.2 INTERRUPT NESTING ... 7
2.3 OSCILLATOR CONTROL BITS PROPAGATION ... 8
2.4 INTERRUPT VECTOR TABLE .. 8

3 INTERRUPTS .. 9

3.1 INTERRUPT HANDLING .. 9
3.1.1 Interrupt Installer ... 9

3.2 UNUSED INTERRUPTS ...10
3.3 FAST INTERRUPTS ...11
3.4 NESTED INTERRUPTS ..14

4 STACK USAGE...15

5 SEARCH SET-UP ...16

6 CHIP SUPPORT ...19

7 MEASUREMENTS ...20

7.1 MEMORY ..20
7.2 LATENCY ..21

8 APPENDIX A: BUILD OPTIONS FOR CODE SIZE ...25

8.1 CASE 0: MINIMUM BUILD ...25
8.2 CASE 1: + RUNTIME SERVICE CREATION / STATIC MEMORY ..26
8.3 CASE 2: + MULTIPLE TASKS AT SAME PRIORITY ...27
8.4 CASE 3: + PRIORITY CHANGE / PRIORITY INHERITANCE / FCFS / TASK SUSPEND28
8.5 CASE 4: + TIMER & TIMEOUT / TIMER CALL BACK / ROUND ROBIN ..29
8.6 CASE 5: + EVENTS / MAILBOXES ..30
8.7 CASE 6: FULL FEATURE BUILD (NO NAMES) ...31
8.8 CASE 7: FULL FEATURE BUILD (NO NAMES / NO RUNTIME CREATION) ..32
8.9 CASE 8: FULL BUILD ADDING THE OPTIONAL TIMER SERVICES ...33

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 4

List of Tables
TABLE 1-1 DISTRIBUTION ... 5
TABLE 2-1 INTERRUPT STACK ENABLED ... 7
TABLE 2-2 INTERRUPT STACK DISABLED .. 7
TABLE 2-3 NESTED INTERRUPTS ENABLED .. 7
TABLE 2-4 NESTED INTERRUPTS DISABLED ... 7
TABLE 2-5 OSCILLATOR BITS NOT PROPAGATED ... 8
TABLE 2-6 OSCILLATOR BITS PROPAGATED .. 8
TABLE 2-7 INTERRUPT VECTOR WITH 16 ENTRIES ... 8
TABLE 2-8 INTERRUPT VECTOR WITH 32 ENTRIES ... 8
TABLE 2-9 INTERRUPT VECTOR WITH 64 ENTRIES ... 8
TABLE 3-1 ATTACHING A FUNCTION TO AN INTERRUPT .. 9
TABLE 3-2 ATTACHING A FUNCTION TO AN INTERRUPT ...10
TABLE 3-3 INVALIDATING AN ISR HANDLER ..10
TABLE 3-4 ENTRY IN THE INTERRUPT VECTOR TABLE ..11
TABLE 3-5 UNUSED INTERRUPT VECTOR TABLE ...11
TABLE 3-6 DO-NOTHING INTERRUPT HANDLER ..11
TABLE 3-7 INTERRUPT DISPATCHER PROLOGUE ...11
TABLE 3-8 MSP430F1611 TIMERA REGULAR INTERRUPT ..11
TABLE 3-9 MSP430F1611 TIMERA FAST INTERRUPT ..12
TABLE 3-10 FAST INTERRUPT WITH DEDICATED STACK ..13
TABLE 4-1 CONTEXT SAVE STACK REQUIREMENTS ...15
TABLE 5-1 SEARCH ALGORITHM CYCLE COUNT ..17
TABLE 7-1 “C” CODE MEMORY USAGE ...20
TABLE 7-2 ASSEMBLY CODE MEMORY USAGE ..21
TABLE 7-3 MEASUREMENT WITHOUT TASK SWITCH ..22
TABLE 7-4 MEASUREMENT WITHOUT BLOCKING ...22
TABLE 7-5 MEASUREMENT WITH TASK SWITCH ..22
TABLE 7-6 MEASUREMENT WITH TASK UNBLOCKING ..23
TABLE 7-7 LATENCY MEASUREMENTS ..24
TABLE 8-1: CASE 0 BUILD OPTIONS ..25
TABLE 8-2: CASE 1 BUILD OPTIONS ..26
TABLE 8-3: CASE 2 BUILD OPTIONS ..27
TABLE 8-4: CASE 3 BUILD OPTIONS ..28
TABLE 8-5: CASE 4 BUILD OPTIONS ..29
TABLE 8-6: CASE 5 BUILD OPTIONS ..30
TABLE 8-7: CASE 6 BUILD OPTIONS ..31
TABLE 8-8: CASE 7 BUILD OPTIONS ..32
TABLE 8-9: CASE 8 BUILD OPTIONS ..33

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 5

1 Introduction

This document details the port of the Abassi RTOS to the MSP430 processor. The software suite used for

this specific port is the “mspgcc” for MSP430; the version used for the port and all tests is Version 4.5.3.

NOTE: mspgcc does not yet support the MSP430 extended architecture, commonly known as MSP430X.

This port will work on such devices, but the code size remains limited to less than 64Kbytes.

1.1 Distribution Contents

The set of files supplied with this distribution are listed in Table 1-1 below:

Table 1-1 Distribution

File Name Description

Abassi.h Include file for the RTOS

Abassi.c RTOS “C” source file

Abassi_MSP430_GCC.s RTOS assembly file for the MSP430 to use with the GCC

Demo_2X_MSP430_GCC.c Demo code that runs on the Olimex MSP-5438STK

evaluation board using the LCD

Demo_3_MSP430_GCC.c Demo code that runs on the Olimex MSP430-P1611

evaluation board using the serial port

Demo_3X_MSP430_GCC.c Demo code that runs on the Olimex MSP-5438STK

evaluation board using the serial port

Demo_4X_MSP430_GCC.c Demo code that runs on the Olimex MSP-5438STK

evaluation board using joystick and the serial port

AbassiDemo.h Build option settings for the demo code

1.2 Limitations

None.

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 6

2 Target Set-up

Very little is needed to configure GCC for the MSP430 to use the Abassi RTOS in an application. All there

is to do is to add the files Abassi.c and Abassi_MSP430_GCC.s in the source files of the application

project, and make sure the configuration settings (described in the following subsections) in the file

Abassi_MSP430_GCC.s are set according to the needs of the application. As well, update the include file

path in the C/C++ compiler preprocessor options with the location of Abassi.h.

NOTE: The file Abassi_MSP430_GCC.s is the start-up file and also holds the interrupt vector table; the

standard start-up in GCC should not be used. This means it is necessary to specify the option

-nostartfile on the linker command line.

NOTE: The GCC libraries are not multithread-safe without the use of the –pthread command line

option. However, this option is not available for GCC built to generate MSP430 code. This

means calls to libraries functions that are non- multithread-safe should be protected by a mutex.

These functions are typically the dynamic memory management functions, some form of the

printf / scanf functions, file I/O, etc. If the GCC toolset used utilizes the newlib libraries

from Red Hat, you need to attach Abassi mutexes to the x_lock() and x_unlock() multithread

protections functions.

NOTE: If a hardware multiplier is available on the target device, the use of the multiplier must always be

protected by disabling/enabling the interrupts. This is true even when the multiplier is not

accessed inside an interrupt. The reason is that one or many task switches may be triggered by an

interrupt. So, if the preemption of a task occurs when it is in the process of using the multiplier,

and a newly running task also uses the multiplier, the multiplication result for the preempted task

will be erroneous.

 There is no possibility for the RTOS to protect the multiplier as the operation to perform is set

when the first operand is written to the desired “operation” register; there is no way to know which

of the “operation” registers was written last, specifying the type of operation, therefore the RTOS

cannot protect the multiplier registers.

 By default the GCC compiler generates code that protects the multiplier when using it. This

means the compiler option –mnoint-hwmul should not be used, as this option removes the

protection around the multiplier use.

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 7

2.1 Interrupt Stack Set-up

It is possible, and highly recommended, to use a hybrid stack when nested interrupts occur in an

application. Using this hybrid stack, specially dedicated to the interrupts, removes the need to allocate

extra room to the stack of every task in the application to handle the interrupt nesting. This feature is

controlled by the value set by the definition OS_ISR_STACK, located around line 30 in the file

Abassi_MSP430_GCC.s. To disable this feature, set the definition of OS_ISR_STACK to a value of zero.

To enable it, and specify the interrupt stack size, set the definition of OS_ISR_STACK to the desired size in

bytes (see Section 4 for information on stack sizing). As supplied in the distribution, the hybrid stack

feature is enabled, and a stack size of 128 bytes is allocated; this is shown in the following table:

Table 2-1 Interrupt Stack enabled

 .equ OS_ISR_STACK, 128 ; If using a dedicated stack for the ISRs

 ; 0 if not used, otherwise size of stack in bytes

Table 2-2 Interrupt Stack disabled

 .equ OS_ISR_STACK, 0 ; If using a dedicated stack for the ISRs

 ; 0 if not used, otherwise size of stack in bytes

2.2 Interrupt Nesting

The normal operation of the interrupt controller on the MSP430 family is to allow a single interrupt to

operate anytime. This means when the processor is servicing an interrupt, any new interrupts, even if their

priority is higher than the serviced interrupt level, remain pending until the processor finishes servicing the

current interrupt. The interrupt dispatcher allows the nesting of interrupts; this means an interrupt of any

priority can interrupt the processing of an interrupt currently being handled. Nested interrupts are enabled

by setting both the build option OS_NESTED_INTS and the token OS_NESTED_INTS in the

Abassi_MSP430_GCC.s file, around line 30, to a non-zero value, as shown in the following table:

Table 2-3 Nested Interrupts enabled

 .equ OS_NESTED_INTS, 1 ; To allow interrupt nesting, set to non zero

 ; To not allow interrupt nesting, set to zero

Interrupt nesting is disabled (in other words, the interrupts operate exactly as the MSP430 interrupt

controller operates) by setting both the build option OS_NESTED_INTS and the token OS_NESTED_INTS to

a zero value, as shown in the following table:

Table 2-4 Nested Interrupts disabled

 .equ OS_NESTED_INTS, 0 ; To allow interrupt nesting, set to non zero

 ; To not allow interrupt nesting, set to zero

NOTE: The build option OS_NESTED_INTS must be set to a non-zero value when the token

OS_NESTED_INTS in the file Abassi_MSP430_GCC.s is set to a non-zero value. If the token

OS_NESTED_INTS in the file Abassi_MSP430_GCC.s is set to a zero value, and the build option

OS_NESTED_INTS is non-zero, the application will properly operate, but with a tiny bit less

real-time efficiency when kernel requests are performed during an interrupt.

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 8

2.3 Oscillator control bits propagation

In the MSP430 status register, there are 3 bits that control the oscillators on the device. If any of these bits

is modified after the interrupts are enabled in the application, the change must be propagated across all

tasks and interrupts. This feature is controlled by the value set in the definition OS_HANDLE_OSC, located

around line 30 in the file Abassi_MSP430_GCC.s. To disable this feature, set the definition of the token

OS_HANDLE_OSC to a value of zero. To enable it, set the definition of OS_HANDLE_OSC to a non-zero

value. As supplied in the distribution, the oscillator control bits propagation is disabled; this is shown in

the following table:

Table 2-5 Oscillator bits not propagated

 .equ OS_HANDLE_OSC, 0 ; Set to non-zero to propagate oscillator control bits

 ; in SR from ISR to the background / tasks

Table 2-6 Oscillator bits propagated

 .equ OS_HANDLE_OSC,1 ; Set to non-zero to propagate oscillator control bits

 ; in SR from ISR to the background / tasks

2.4 Interrupt vector table

There are three different flavors for the MSP430 interrupt table: some devices have a table capable of

handling up to 16 interrupts sources, others have room for 32 interrupt sources, and others can deal with 64

interrupt sources. Abassi can support all three, but it must be configured to the correct size in order to

optimize the code footprint and properly map the interrupt priority to the interrupt vector table entry. The

information must be set in the file Abassi_MSP430_GCC.s around line 30; the token

OS_INT_VECT_SIZE must be set to 16, for a 16 entry table, to 32, for a 32 entry table, or set to 64 for a 64

entry table:

Table 2-7 Interrupt vector with 16 entries

 .equ OS_INT_VECT_SIZE, 16 ; Number of interrupts in the interrupt vector table

 ; Should be either 16 / 32 /64

Table 2-8 Interrupt vector with 32 entries

 .equ OS_INT_VECT_SIZE, 32 ; Number of interrupts in the interrupt vector table

 ; Should be either 16 / 32 /64

Table 2-9 Interrupt vector with 64 entries

 .equ OS_INT_VECT_SIZE, 64 ; Number of interrupts in the interrupt vector table

 ; Should be either 16 / 32 /64

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 9

3 Interrupts

The Abassi RTOS needs to be aware when kernel requests are performed inside or outside an interrupt

context. Normally, when coding with the GCC, an interrupt function is specified with the interrupt

directive. But for all interrupt sources (except for the reset), the Abassi RTOS provides an interrupt

dispatcher, which allows it to be interrupt-aware. This dispatcher achieves two goals. First, the kernel uses

it to know if a request occurs within an interrupt context or not. Second, using this dispatcher reduces the

code size, as all interrupts share the same code for the decision making of entering the kernel or not at the

end of the interrupt.

The distribution makes provision for 15 sources of interrupts, as specified by the build option

OS_N_INTERRUPTS, defined in the file Abassi.h, and the token OS_INT_VECT_SIZE, in the file

Abassi_MSP430_GCC.s. If the target device uses a 32 or 64 entries interrupt vector, consult Section 2.4

to understand how to set Abassi to support the larger interrupt vector table.

3.1 Interrupt Handling

3.1.1 Interrupt Installer

Attaching a function to an interrupt is quite straightforward. All there is to do is use the RTOS component

OSisrInstall() to specify the interrupt priority and the function to be attached to that interrupt priority.

For example, Table 3-1 shows the code required to attach the TIMERA interrupt (on a MSP430F1611) to the

RTOS timer tick handler (TIMtick):

Table 3-1 Attaching a Function to an Interrupt

#include “Abassi.h”

 …

 OSstart();

 …

 OSisrInstall(54, &TIMtick);

 /* Set-up the count reload and enable SysTick interrupt */

 … /* More ISR setup */

 OSeint(1); /* Global enable of all interrupts */

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 10

Alternatively, instead of using a hard coded number, the standard definition supplied by the file msp430.h

can be used. These definitions are set to the vector table index, specified in bytes; since OSisrIntall()

uses the priority value, these definitions must be divided by 2, as shown in the Table 3-2:

Table 3-2 Attaching a Function to an Interrupt

#include “Abassi.h”

#include <msp430.h>

 …

 OSstart();

 …

 OSisrInstall(TIMERA0_VECTOR/2, &TIMtick);

 /* Set-up the count reload and enable SysTick interrupt */

 … /* More ISR setup */

 OSeint(1); /* Global enable of all interrupts */

NOTE: The function to attach to an interrupt is a regular function, not one declared with the GCC specific

interrupt prefix statement.

NOTE: OSisrInstall() uses the interrupt priority number. As an example, the non-maskable interrupt

has a priority of 14 when the device uses a table of 16 interrupt, and a value of 30 when the device

uses a table of 32 interrupts.

At start-up, once OSstart() has been called, all OS_N_INTERRUPTS interrupt handler functions are set to

a “do nothing” function, named OSinvalidISR(). If an interrupt function is attached to an interrupt

number using the OSisrInstall() component before calling OSstart(), this attachment will be

removed by OSstart(), so OSisrInstall() should never be used before OSstart() has ran. When an

interrupt handler is removed, it is very important and necessary to first disable the interrupt source, then the

handling function can be set back to OSinvalidISR(). This is shown in Table 3-3:

Table 3-3 Invalidating an ISR handler

#include “Abassi.h”

 …

 /* Disable the interrupt source */

 OSisrInstall(Number, &OSinvalidISR);

 …

When an application needs to disable/enable the interrupts, the RTOS supplied functions OSdint() and

OSeint() should be used.

3.2 Unused Interrupts

The assembly file Abassi_MSP430_GCC.s, as supplied in the distribution, includes the prologue code for

the interrupt dispatcher for all sources of interrupts. If the code memory space is becoming a bit short,

removing the prologue for unused interrupts will help recover memory from that dead code.

Removing the interrupt dispatcher prologue for an unused interrupt is a three-step process. First, the

unused interrupt vector must be replaced in the interrupt vector table. This table is located at around line

150, at the label VectTbl, and each interrupt entry is defined as shown in the following:

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 11

Table 3-4 Entry in the interrupt vector table

 ISR_VECTOR XX ; Priority XX interrupt

The desired table entry must be attached to a do-nothing interrupt handler; it is preferable to attach a do-

nothing interrupt handler in case of spurious interrupts. To attach the do-nothing interrupt handler, replace

the desired vector table entry by the following:

Table 3-5 Unused interrupt vector table

 .word INT_NO_handler ; Priority XX interrupt

The second step is to create the do-nothing interrupt handler. This step only need to be performed once, as

the same do-nothing handler should be re-used for all unused interrupts. The do-nothing interrupt handler

code must be located in the ISR_CODE section. Therefore, insert the following code right after the

definition of the ISR_PROLOGUE macro, right before the ISR_HANDLR 0 statement; this should be around

line 230 in the file:

Table 3-6 Do-nothing interrupt handler

INT_NO_handler: ; Entry point of the do-nothing ISR handler

 reti ; Return from the interrupt

The last step is to remove the unused interrupt dispatcher prologue code. Each interrupt has an interrupt

dispatcher prologue, where the prologue is always defined as follows:

Table 3-7 Interrupt dispatcher prologue

 ISR_HANDLER XX

Deleting the ISR_HANDLER line for the unused interrupt will remove the prologue code.

3.3 Fast Interrupts

Fast interrupts are supported on this port. A fast interrupt is an interrupt that never uses any component

from Abassi and as the name says, is desired to operate as fast as possible. To set-up a fast interrupt, all

there is to do is to set the address of the interrupt function in the corresponding entry in the interrupt vector

table that is used by the MSP430 processor. The beginning of the interrupt vector table is located in the file

Abassi_MSP430_GCC.s around line 150, at the label VectTbl. For example, on a MSP430F1611 device,

TIMERA is set to the priority 6. This is the entry in the table for TIMERA in the distribution file:

Table 3-8 MSP430F1611 TIMERA Regular Interrupt

 ISR_VECTOR 6 ; Priority 6 interrupt

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 12

To attach a fast interrupt handler to the TIMERA, assuming the name of the interrupt function to attach is

TIMERA_handler(), replace the previous line with that shown in the Table 3-9:

Table 3-9 MSP430F1611 TIMERA Fast Interrupt

 .word TIMERA_handler ; Priority 6 interrupt

It is important to add the EXTERN statement otherwise there will be an error during the assembly of the file.

NOTE: If an Abassi component is used inside a fast interrupt, the application will misbehave.

NOTE: Fast interrupt handlers must use the GCC keyword interrupt, unless reti is used.

Even if the hybrid interrupt stack feature is enabled (see Section 2.1), fast interrupts will not use that stack.

This translates into the need to reserve room on all task stacks for the possible nesting of fast interrupts. To

make the fast interrupts use a hybrid interrupt stack, a prologue and epilogue must be used around the call

to the interrupt handler. The prologue and epilogue code to add is identical to what is done in the regular

interrupt dispatcher.

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 13

If the extra stack room required on all tasks is a burden on the data space, another way to reduce the impact

on the task stacks is to dedicate individual stacks to each one of the fast interrupts. Reusing the example of

the TIMERA on a MSP430F1611 device, this would look something like:

Table 3-10 Fast Interrupt with Dedicated Stack

 …

 …

 .word TIMERA_preHandler ; Priority 6 interrupt

 …

 …

 .section .text, “ax”, @progbits

 .global TIMERA_handler

TIMERA_preHandler:

 mov.w r1, #(TIMERA_stack-2) ; Memo current sp on the hybrid stack

 mov.w #(TIMERA_stack-2), r1 ; Set sp to the new stack

 push.w r15 ; Context save on the hybrid stack

 push.w r14

 push.w r13

 push.w r12

 call TIMERA_handler ; Enter the interrupt handler

 pop.w r12 ; Context restore

 pop.w r13

 pop.w r14

 pop.w r15

 pop.w r1 ; Recover original sp

 reti ; Exit from the interrupt

 …

 …

 .section .bss

 .balign 2

 .space 2*((TIMERA_stack_size+1)/2) ; Room for the fast interrupt stack

TIMERA_stack:

 …

The same code, with unique labels, must be repeated for each of the fast interrupts. As the use of the

hybrid stack creates the prologue-epilogue for the interrupt context, the function called must be a regular

“C” function, not one declared with the interrupt directive. If the GIE bit (global interrupt enable) in the

status register is not set in the interrupt function, and the nesting of interrupts is not allowed (Section 2.2),

then the same hybrid stack memory can be re-used, as, by default, the MSP430 interrupt controller only

allows the servicing of a single interrupt at any time.

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 14

3.4 Nested Interrupts

The interrupt dispatcher allows the nesting of interrupts; nested interrupt means an interrupt of any priority

will interrupt the processing of an interrupt currently being serviced. Refer to section 2.2 for information

on how to enable or disable interrupt nesting.

The Abassi RTOS kernel never disables interrupts, but there are a few very small regions within the

interrupt dispatcher where interrupts are temporarily disabled when nesting is enabled (a total of between

10 to 20 instructions).

The kernel is never entered as long as interrupt nesting is occurring. In all interrupt functions, when a

RTOS component that needs to access some kernel functionality is used, the request(s) is/are put in a

queue. Only once the interrupt nesting is over (i.e. when only a single interrupt context remains) is the

kernel entered at the end of the interrupt, when the queue contains one or more requests, and when the

kernel is not already active. This means that only the interrupt handler function operates in an interrupt

context, and only the time the interrupt function is using the CPU are other interrupts of equal or lower

level blocked by the interrupt controller.

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 15

4 Stack Usage

The RTOS uses the tasks’ stack for two purposes. When a task is blocked or ready to run but not running,

the stack holds the register context that was preserved when the task got blocked or preempted. Also, when

an interrupt occurs, the register context of the running task must be preserved in order for the operations

performed during the interrupt to not corrupt the contents of the registers used by the task when it got

interrupted. For the MSP430, the context save contents of a blocked or pre-empted task is different from

the one used in an interrupt. The following table lists the number of bytes required by each type of context

save operation:

Table 4-1 Context Save Stack Requirements

When sizing the stack to allocate to a task, there are three factors to take in account. The first factor is

simply that every task in the application needs at least the area to preserve the task context when it is

preempted or blocked. Second, one must take into account how many levels of nested interrupts exist in

the application. As a worst case, all levels of interrupts may occur and becoming fully nested. So, if N

levels of interrupts are used in the application, provision should be made to hold N times the size of an ISR

context save on each task stack, plus any added stack used by the interrupt handler functions. Finally, add

to all this the stack required by the code implementing the task operation.

NOTE: The MSP430 processor needs alignment on 2 bytes for some instructions accessing memory.

When stack memory is allocated, Abassi guarantees the alignment. This said, when sizing

OS_STATIC_STACK or OS_ALLOC_SIZE, make sure to take in account that all allocation

performed through these memory pools are by block size multiple of 2 bytes.

If the hybrid interrupt stack (see Section 2.1) is enabled, then the above description changes: it is only

necessary to reserve room on task stacks for a single interrupt context save and not the worst-case nesting.

With the hybrid stack enabled, the second, third, and so on interrupts use the stack dedicated to the

interrupts. The hybrid stack is enabled when the ISR_STACK token in the file Abassi_MSP430_GCC.s is

set to a non-zero value (Section 2.1).

Description Context save

Blocked/Preempted task context save 16 bytes

Interrupt dispatcher context save 14 bytes

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 16

5 Search Set-up

The Abassi RTOS build option OS_SEARCH_FAST offers four different algorithms to quickly determine the

next running task upon task blocking. The following table shows the measurements obtained for the

number of CPU cycles required when a task at priority 0 is blocked, and the next running task is at the

specified priority. The number of cycles includes everything, not just the search cycle count. The number

of cycles was measured using the TIMERA peripheral, which was set to increment the counter once every

CPU cycle. The second column is when OS_SEARCH_FAST is set to zero, meaning a simple array

traversing. The third column, labeled Look-up, is when OS_SEARCH_FAST is set to 1, which uses an 8 bit

look-up table. Finally, the last column is when OS_SEARCH_FAST is set to 4 (MSP430 int are 16 bits, so

2^4), meaning a 16 bit look-up table, further searched through successive approximation. The compiler

optimization for this measurement was set to –O3. The RTOS build options were set to the minimum

feature set, except for option OS_PRIO_CHANGE set to non-zero. The presence of this extra feature

provokes a small mismatch between the result for a difference of priority of 1, with OS_SEARCH_FAST set

to zero, and the latency results in Section 7.2.

When the build option OS_SEARCH_ALGO is set to a negative value, indicating to use a 2-dimensional

linked list search technique instead of the search array, the number of CPU is constant at 293 cycles.

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 17

Table 5-1 Search Algorithm Cycle Count

Priority Linear search Look-up Approximation

1 292 337 436

2 301 343 441

3 307 349 451

4 313 355 451

5 319 361 461

6 325 367 466

7 331 373 476

8 337 337 471

9 343 346 481

10 349 352 486

11 355 358 496

12 361 364 496

13 367 370 506

14 373 376 511

15 379 382 521

16 385 346 446

17 391 355 456

18 397 361 461

19 403 367 471

20 409 373 471

21 415 379 481

22 421 385 486

23 427 391 496

24 433 355 491

The third option, when OS_SEARCH_FAST is set to 4, never achieves a lower CPU usage than when

OS_SEARCH_FAST is set to zero or 1. This is understandable, as the MSP430 does not possess a barrel

shifter for variable shift. When OS_SEARCH_FAST is set to zero, each extra priority level to traverse

requires exactly 6 CPU cycles. When OS_SEARCH_FAST is set to 1, each extra priority level to traverse

also requires exactly 6 CPU cycles, except when the priority level is an exact multiple of 8; then there is a

sharp reduction of CPU usage. Overall, setting OS_SEARCH_FAST to 1 adds an extra 42 cycles of CPU for

the search compared to setting OS_SEARCH_FAST to zero. But when the next ready to run priority is less

than 8, 16, 24, … then there is an extra 9 cycles needed, but without the 8 times 16 cycles accumulation.

What does this mean? Using 20 or 30 tasks on the MSP430 may be an exception due to the limited

memory space, so one could assume the number of tasks will remain small. If that is the case, then

OS_SEARCH_FAST should be set to 0. If an application is created with 20 or 30 tasks, then setting

OS_SEARCH_FAST to 1 may be better choice.

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 18

Setting the build option OS_SEARCH_ALGO to a non-negative value minimizes the time needed to change

the state of a task from blocked to ready to run, but not the time needed to find the next running task upon

blocking/suspending of the running task. If the application needs are such that the critical real-time

requirement is to get the next running task up and running as fast as possible, then set the build option

OS_SEARCH_ALGO to a negative value.

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 19

6 Chip Support

No chip support is provided with the distribution code because the MSP430Ware software library is

available from Texas Instruments and it includes a high level API for all the peripherals available on the

MSP430 devices. Even though the primary target for the MSP430Ware software library is with Code

Composer Studio as the GUI, a standalone version is also available.

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 20

7 Measurements

This section gives an overview of the memory requirements and the CPU latency encountered when the

RTOS is used on the MSP430 and compiled with GCC. The CPU cycles are exactly the CPU clock cycles,

not a conversion from a duration measured on an oscilloscope then converted to a number of cycles.

7.1 Memory

The memory numbers are supplied for the two limit cases of build options (and some in-between): the

smallest footprint is the RTOS built with only the minimal feature set, and the other with almost all the

features. For both cases, names are not part of the build. This feature was removed from the metrics

because it is highly probable that shipping products utilizing this RTOS will not include the naming of

descriptors, as its usefulness is mainly limited to debugging and making the opening/creation of

components run-time safe.

The code size numbers are expressed with “less than” as they have been rounded up to multiples of 25 for

the “C” code. These numbers were obtained using the beta release of the RTOS and may change. One

should interpret these numbers as the “very likely” numbers for the released version of the RTOS.

The code memory required by the RTOS includes the “C” code and assembly language code used by the

RTOS. The code optimization settings for the memory measurements used the option -Os.

Table 7-1 “C” Code Memory Usage

Description Code Size

Minimal Build < 725 bytes

+ Runtime service creation / static memory < 1025 bytes

+ Multiple tasks at same priority < 1125 bytes

+ Runtime priority change

+ Mutex priority inheritance

+ FCFS

+ Task suspension

< 1650 bytes

+ Timer & timeout

+ Timer call back

+ Round robin

< 2225 bytes

+ Events

+ Mailbox

< 3025 bytes

Full Feature Build (no names) < 3600 bytes

Full Feature Build (no names / no runtime creation) < 3125 bytes

Full Feature Build (no names / no runtime creation)

+ Timer services module

< 3600 bytes

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 21

Table 7-2 Assembly Code Memory Usage

Description Size

Assembly code size 158 bytes

Vector Table (per interrupt) 2 bytes

Interrupt prologue (per interrupt) 8 bytes

Start-up code (replacement for crt0.s) 66 bytes

Hybrid Stack Enabled +10 bytes

Nested interrupts Enabled + 8 bytes

Oscillator bits preservation Enabled +14 bytes

There are two aspects when describing the data memory usage by the RTOS. First, the RTOS needs its

own data memory to operate, and second, most of the services offered by the RTOS require data memory

for each instance of the service. As the build options affect either the kernel memory needs or the service

descriptors (or both), an interactive calculator has been made available on Code Time Technologies web

site.

7.2 Latency

Latency of operations has been measured on an Olimex Evaluation board populated with an 8 MHz

MSP430F1611 device. All measurements have been performed on the real platform, using the timer

peripheral TIMERA set-up to be clocked at the same rate as the CPU. This means the interrupt latency

measurements had to be instrumented to read the TIMERA counter value. This instrumentation can add up

to 5 or 6 cycles to the measurements. The code optimization settings for the latency measurements used the

option -Os.

There are 5 types of latencies that are measured, and these 5 measurements are expected to give a very

good overview of the real-time performance of the Abassi RTOS for this port. For all measurements, three

tasks were involved:

1. Adam & Eve set to a priority value of 0;

2. A low priority task set to a priority value of 1;

3. The Idle task set to a priority value of 20.

The sets of 5 measurements are performed on a semaphore, on the event flags of a task, and finally on a

mailbox. The first 2 latency measurements use the component in a manner where there is no task

switching. The third measurements involve a high priority task getting blocked by the component. The

fourth measurements are about the opposite: a low priority task getting pre-empted because the component

unblocks a high priority task. Finally, the reaction to unblocking a task, which becomes the running task,

through an interrupt is provided.

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 22

The first set of measurements counts the number of CPU cycles elapsed starting right before the component

is used until it is back from the component. For these measurement there is no task switching. This means:

Table 7-3 Measurement without Task Switch

 Start CPU cycle count

 SEMpost(…); or EVTset(…); or MBXput();

 Stop CPU cycle count

The second set of measurements, as for the first set, counts the number of CPU cycles elapsed starting right

before the component is used until it is back from the component. For these measurement there is no task

switching. This means:

Table 7-4 Measurement without Blocking

 Start CPU cycle count

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 Stop CPU cycle count

The third set of measurements counts the number of CPU cycles elapsed starting right before the

component triggers the unblocking of a higher priority task until the latter is back from the component used

that blocked the task. This means:

Table 7-5 Measurement with Task Switch

 main()

 {

 …

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 Stop CPU cycle count

 …

 }

 TaskPrio1()

 {

 …

 Start CPU cycle count

 SEMpost(…); or EVTset(…); or MBXput(…);

 …

 }

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 23

The forth set of measurements counts the number of CPU cycles elapsed starting right before the

component blocks of a high priority task until the next ready to run task is back from the component it was

blocked on; the blocking was provoked by the unblocking of a higher priority task. This means:

Table 7-6 Measurement with Task unblocking

 main()

 {

 …

 Start CPU cycle count

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 …

 }

 TaskPrio1()

 {

 …

 SEMpost(…); or EVTset(…); or MBXput(…);

 Stop CPU cycle count

 …

 }

The fifth set of measurements counts the number of CPU cycles elapsed from the beginning of an interrupt

using the component, until the task that was blocked becomes the running task and is back from the

component used that blocked the task. The interrupt latency measurement includes everything involved in

the interrupt operation, even the cycles the processor needs to push the interrupt context before entering the

interrupt code. The interrupt function, attached with OSisrInstall(), is simply a two line function that

uses the appropriate RTOS component followed by a return.

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 24

Table 7-7 lists the results obtained, where the cycle count is measured using the TIMERA peripheral on the

MSP430. This timer increments its counter by 1 at every CPU cycle. As was the case for the memory

measurements, these numbers were obtained with a beta release of the RTOS. It is possible the released

version of the RTOS may have slightly different numbers.

The interrupt latency is the number of cycles elapsed when the interrupt trigger occurred and the ISR

function handler is entered. This includes the number of cycles used by the processor to set-up the interrupt

stack and branch to the address specified in the interrupt vector table. For this measurement, the MSP30

TIMERA is used to trigger the interrupt and measure the elapsed time.

The interrupt overhead without entering the kernel is the measurement of the number of CPU cycles used

between the entry point in the interrupt vector and the return from interrupt, with a “do nothing” function in

the OSisrInstall(). The interrupt overhead when entering the kernel is calculated using the results

from the third and fifth tests. Finally, the OS context switch is the measurement of the number of CPU

cycles it takes to perform a task switch, without involving the wrap-around code of the synchronization

component.

The hybrid interrupt stack feature was not enabled, neither was the oscillator bit preservation, nor the

interrupt nesting, in any of these tests.

In the following table, the latency numbers between parentheses are the measurements when the build

option OS_SEARCH_ALGO is set to a negative value. The regular number is the latency measurements when

the build option OS_SEARCH_ALGO is set to 0.

Table 7-7 Latency Measurements

Description Minimal Features Full Features

Semaphore posting no task switch 170 (170) 258 (269)

Semaphore waiting no blocking 169 (169) 281 (295)

Semaphore posting with task switch 286 (286) 457 (486)

Semaphore waiting with blocking 273 (273) 498 (501)

Semaphore posting in ISR with task switch 473 (473) 658 (696)

Event setting no task switch n/a 247 (259)

Event getting no blocking n/a 306 (317)

Event setting with task switch n/a 486 (516)

Event getting with blocking n/a 528 (534)

Event setting in ISR with task switch n/a 687 (725)

Mailbox writing no task switch n/a 328 (341)

Mailbox reading no blocking n/a 329 (341)

Mailbox writing with task switch n/a 516 (547)

Mailbox reading with blocking n/a 574 (578)

Mailbox writing in ISR with task switch n/a 713 (752)

Interrupt Latency 31 31

Interrupt overhead entering the kernel 187 (187) 201 (210)

Interrupt overhead NOT entering the kernel 59 59

Context switch 68 68

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 25

8 Appendix A: Build Options for Code Size

8.1 Case 0: Minimum build

Table 8-1: Case 0 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 2 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 2 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 0 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 26

8.2 Case 1: + Runtime service creation / static memory

Table 8-2: Case 1 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 2 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 2 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 0 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 27

8.3 Case 2: + Multiple tasks at same priority

Table 8-3: Case 2 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 28

8.4 Case 3: + Priority change / Priority inheritance / FCFS / Task suspend

Table 8-4: Case 3 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 29

8.5 Case 4: + Timer & timeout / Timer call back / Round robin

Table 8-5: Case 4 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 30

8.6 Case 5: + Events / Mailboxes

Table 8-6: Case 5 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 31

8.7 Case 6: Full feature Build (no names)

Table 8-7: Case 6 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 32

8.8 Case 7: Full feature Build (no names / no runtime creation)

Table 8-8: Case 7 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

Abassi RTOS Port – MSP430 – GCC 2012.04.14

Rev 1.5 Page 33

8.9 Case 8: Full build adding the optional timer services

Table 8-9: Case 8 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 1 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

