
Copyright Information

This document is copyright Code Time Technologies Inc. ©2012-2016. All rights reserved. No part of this document may be
reproduced or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of

Code Time Technologies Inc.

Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

mAbassi RTOS

Porting Document

SMP / ARM Cortex-A9 – CCS

Disclaimer

Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,

but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the

document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in

the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

ARM and Cortex are registered trademarks of ARM Limited. Code Composer Studio is a registered trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 3

Table of Contents

1 INTRODUCTION .. 6

1.1 DISTRIBUTION CONTENTS ... 6
1.2 LIMITATIONS ... 6
1.3 FEATURES .. 6

2 TARGET SET-UP .. 8

2.1 STACKS SET-UP ... 8
2.2 NUMBER OF CORES ...11
2.3 PRIVILEGED MODE ..12
2.4 SATURATION BIT SET-UP ..14
2.5 VFP / NEON SET-UP ..15

3 INTERRUPTS ...17

3.1 INTERRUPT HANDLING ...17
3.1.1 Interrupt Table Size ...17
3.1.2 Interrupt Installer ..18

3.2 FAST INTERRUPTS ...19
3.3 NESTED INTERRUPTS ..19

4 STACK USAGE...20

5 MEMORY CONFIGURATION ..21

6 SEARCH SET-UP ...22

7 API ..23

7.1 DATAABORT_HANDLER ..24
7.2 FIQ_HANDLER ...25
7.3 PFABORT_HANDLER ..26
7.4 SWI_HANDLER ..27

8 CHIP SUPPORT ...28

8.1 GICENABLE ..29
8.2 GICINIT ..29

9 MEASUREMENTS ...31

9.1 MEMORY ..31

10 APPENDIX A: BUILD OPTIONS FOR CODE SIZE ..36

10.1 CASE 0: MINIMUM BUILD ...36
10.2 CASE 1: + RUNTIME SERVICE CREATION / STATIC MEMORY + MULTIPLE TASKS AT SAME PRIORITY .37
10.3 CASE 2: + PRIORITY CHANGE / PRIORITY INHERITANCE / FCFS / TASK SUSPEND38
10.4 CASE 3: + TIMER & TIMEOUT / TIMER CALL BACK / ROUND ROBIN ..39
10.5 CASE 4: + EVENTS / MAILBOXES ..40
10.6 CASE 5: FULL FEATURE BUILD (NO NAMES) ...41
10.7 CASE 6: FULL FEATURE BUILD (NO NAMES / NO RUNTIME CREATION) ..42
10.8 CASE 7: FULL BUILD ADDING THE OPTIONAL TIMER SERVICES ...43

11 REFERENCES ...44

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 4

List of Figures
FIGURE 2-1 PROJECT FILE LIST ... 8
FIGURE 2-2 GUI SETTING OF ADAM & EVE STACK SIZE .. 9
FIGURE 2-3 GUI SET OF OS_IRQ_STACK_SIZE ..10
FIGURE 2-4 GUI SET OF OS_N_CORE ...12
FIGURE 2-5 GUI SET OF OS_RUN_PRIVILEGE ...13
FIGURE 2-6 GUI SET OF SATURATION BIT CONFIGURATION ...15
FIGURE 2-7 GUI ENABLING OF VFP ...16
FIGURE 3-1 GUI SET OF OS_N_INTERRUPTS ...18
FIGURE 9-1 DEBUG OPTIONS SETTINGS..32
FIGURE 9-2 OPTIMIZATION SETTINGS ..33
FIGURE 9-3 PROCESSOR OPTIONS SETTINGS ..34

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 5

List of Tables
TABLE 1-1 DISTRIBUTION ... 6
TABLE 2-1 STACK SIZE TOKENS .. 8
TABLE 2-2 OS_IRQ_STACK_SIZE MODIFICATION... 9
TABLE 2-3 COMMAND LINE SET OF OS_IRQ_STACK_SIZE ...10
TABLE 2-4 OS_N_CORE MODIFICATION ...11
TABLE 2-5 COMMAND LINE SET OF OS_N_CORE ..11
TABLE 2-6 OS_RUN_PRIVILEGE MODIFICATION ..13
TABLE 2-7 COMMAND LINE SET OF OS_RUN_PRIVILEGE ..13
TABLE 2-8 SATURATION BIT CONFIGURATION ...14
TABLE 2-9 COMMAND LINE SET OF SATURATION BIT CONFIGURATION ..14
TABLE 2-10 COMMAND LINE ENABLING OF THE VFPV3...16
TABLE 2-11 COMMAND LINE ENABLING OF THE VFPV3D16 ..16
TABLE 2-12 COMMAND LINE ENABLING OF THE NEON ...16
TABLE 3-1 COMMAND LINE SET THE INTERRUPT TABLE SIZE ..17
TABLE 3-2 ATTACHING A FUNCTION TO AN INTERRUPT ...18
TABLE 3-3 INVALIDATING AN ISR HANDLER ..19
TABLE 4-1 CONTEXT SAVE STACK REQUIREMENTS ...20
TABLE 9-1 “C” CODE MEMORY USAGE ...35
TABLE 9-2 ASSEMBLY CODE MEMORY USAGE ..35
TABLE 10-1: CASE 0 BUILD OPTIONS ..36
TABLE 10-2: CASE 1 BUILD OPTIONS ..37
TABLE 10-3: CASE 2 BUILD OPTIONS ..38
TABLE 10-4: CASE 3 BUILD OPTIONS ..39
TABLE 10-5: CASE 4 BUILD OPTIONS ..40
TABLE 10-6: CASE 5 BUILD OPTIONS ..41
TABLE 10-7: CASE 6 BUILD OPTIONS ..42
TABLE 10-8: CASE 7 BUILD OPTIONS ..43

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 6

1 Introduction

This document details the port of the SMP / BMP multi-core mAbassi RTOS to the ARM Cortex-A9

processor, commonly known as the Arm9. The port should also be valid for the ARMv4, ARMv5, ARMv6

and ARMv7 core architectures. The software suite used for this specific port is the Code Composer Studio

from Texas Instruments (abbreviated CCS); the version used for the port and all tests is Version

5.2.0.00069.

1.1 Distribution Contents

The set of files supplied with this distribution are listed in Table 1-1 below:

Table 1-1 Distribution

File Name Description

mAbassi.h Include file for the RTOS

mAbassi.c RTOS “C” source file

cmsis.h Optional CMSIS V 3.0 RTOS API include file

cmsis.c Optional CMSIS V 3.0 RTOS API source file

mAbassi_SMP_CORTEXA9_CCS.s RTOS assembly file for the SMP ARM Cortex-A9 to use

with Code Composer Studio

Demo_3_SMP_PANDA_A9_CCS.c Demo code that runs on the Pandaboard 4460 ES evaluation

board

AbassiDemo.h Build option settings for the demo code

1.2 Limitations

The RTOS reserves the SWI (software interrupts) numbers 0 to 7. A hook is made available for the

application to use the SWI, as long as the numbers used are above 7.

Some linker issues have been found when the test suite was run. One should avoid setting the optimization

level to 4, as it was found a few times that calls to the library function strcpy() were replaced by faulty

code. When the optimization is set to 4, it enables the linker to inline function code that is called once, or

when in-lining the code produces a smaller than a function call. This optimizer problem is not unique to

the Abassi code.

If the TI ABIs (-abi=ti_arm9_abi or –abi=tiabi) are used, the COREstart# functions cannot be

overloaded, as these ABIs recognize but do not support the .weak declaration in assembler.

The port does not support the ARMv4 with 16 bits (-code_state=16) for the TI ABI (–abi=tiabi). All

other combinations of versions, instruction sizes and ABIs are supported

1.3 Features

Depending on the selected build configuration, the application can operate either in privileged or user

mode. Operating in privileged mode eliminates almost all sections that need to disable interrupts, as SWIs

are not required to access privileged registers or peripherals. It also generates more real-time optimal code.

Fast Interrupts (FIQ) are not handled by the RTOS, and are left untouched by the RTOS to fulfill their

intended purpose of interrupts not requiring kernel access. Only the interrupts mapped to the IRQ interrupt

are handled by the RTOS.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 7

The hybrid stack is not available in this port, as ARM’s GIC (Generic Interrupt Controller) does not allow

nesting of the interrupts (except FIQ nesting the IRQ). The ARM A9 intrinsically supports exactly the

same functionality delivered by the hybrid stack. This is because the interrupts (IRQ) use a dedicated stack

when in this processor mode.

The assembly file was coded using only ARMv4 non-superseded instructions. This means the RTOS for

the Arm9 should also be usable with ARMv4, ARMv5, ARMv6, and ARMv7; so the Arm5, Arm8, Arm9

and the Arm15 are supported with this port.

The assembly file does not use the BL or BLX instructions when branching or calling any module. This

was done to allow the assembly file to access the whole 4 GBytes address space.

The RTOS assembly file is coded with 32 bit instructions but co-exists with 16 bits instruction modules,

either Thumb, Thumb2, or ThumbEE (Jazelle RCT).

The VFPv3 or VPFv3D16, and NEON, are supported and their registers are optionally saved as part of the

task context save and / or interrupt context save.

Every one of the Code Composer application binary interfaces (tiabi, ti_arm9_abi, and eabi) are supported

in the assembly file.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 8

2 Target Set-up

Very little is needed to configure the Code Composer Studio development environment to use the mAbassi

RTOS in an application. All there is to do is to add the files mAbassi.c and

mAbassi_SMP_CORTEXA9_CCS.s in the source files of the application project, and make sure the

configuration settings in the file mAbassi_SMP_CORTEXA9_CCS.s (described in the following sub-

sections) are set according to the needs of the application. As well, update the include file path in the

C/C++ compiler preprocessor options with the location of mAbassi.h. There is no need to include a

start-up file, as the file mAbassi_SMP_CORTEXA9_CCS.s takes care of all the start-up operations required

for an application operating on a multi-core processor.

Figure 2-1 Project File List

NOTE: By default, the Code Composer Studio runtime libraries are not multithread-safe, but Code

Composer Studio has a rudimentary hook to make some part of the libraries multithread-safe. The

required hooks are applied in the file mAbassi.h by attaching the mAbassi internal mutex

(G_OSmutex) during runtime in OSstart(). This implies that any of the Code Composer Studio

runtime libraries protected against multi-threading cannot be used in an interrupt as locking a

mutex in an interrupt is an invalid kernel request.

2.1 Stacks Set-up

The Cortex Arm9 processor handles 6 individual stacks, which are selected according to the processor

mode. The following table describes each stack and the build token used to define the size of the

associated stack:

Table 2-1 Stack Size Tokens

Description Token Name

User / System mode N/A

Supervisor mode OS_SUPER_STACK_SIZE

Abort mode OS_ABORT_STACK_SIZE

Undefined mode OS_UNDEF_STACK_SIZE

Interrupt mode OS_IRQ_STACK_SIZE

Fast Interrupt mode OS_FIQ_STACK_SIZE

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 9

The User / System mode stack size is defined with the linker line option –stack_size. Or through the

GUI in the “Properties” menu “Build / ARM Linker / Basic Options / Set C system stack size (--stack_size,

-stack)”. That linker-set stack is assigned to the Adam & Eve task, which is the element of code executing

upon start-up on core #0. The other cores start with the COREstartN() functions, which are fully

described in the mAbassi User’s Guide [R1], and their stack sizes are defined as part of the mAbassi

standard build options.

Figure 2-2 GUI setting of Adam & Eve stack size

The other stack sizes are individuality controlled by the values set by the OS_?????_STACK_SIZE

definitions, located between line 40 and 60 in the file mAbassi_SMP_CORTEXA9_CCS.s. To not reserve a

stack for a processor mode, set the definition of OS_?????_STACK_SIZE to a value of zero. To specify the

stack size, set the definition of OS_?????_STACK_SIZE to the desired size in bytes (see Section 4 for more

information on stack sizing). Note that each core on the device (up to the number specified by the build

option OS_N_CORE) will use the same stack sizes for a processor mode. This equal distribution of stack

size may not be optimal; if a non-equal distribution is required, contact Code Time Technologies for

additional information.

To modify the size of a stack, taking the IRQ stack for example and reserving a stack size of 256 bytes for

the IRQ processor mode, all there is to do is to change the numerical value associated with the token; this is

shown in the following table:

Table 2-2 OS_IRQ_STACK_SIZE modification

 .if !($$defined(OS_IRQ_STACK_SIZE))

OS_IRQ_STACK_SIZE .equ 256

 .endif

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 10

Alternatively, it is possible to overload the OS_?????_STACK_SIZE value set in

mAbassi_SMP_CORTEXA9_CCS.s by using the assembler command line option –asm_define and

specifying the desired stack size as shown in the following example, where the IRQ stack size is set to 128

bytes:

Table 2-3 Command line set of OS_IRQ_STACK_SIZE

cl470 … -asm_define=OS_IRQ_STACK_SIZE=128 …

The stack size can also be set through the GUI, in the “Build / ARM Compiler / Advanced Options /

Assembler Options” menu, as shown in the following figure:

Figure 2-3 GUI set of OS_IRQ_STACK_SIZE

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 11

2.2 Number of cores

When operating the mAbassi RTOS on a platform, the RTOS needs to be configured for the number of

cores it has access to, or will use. This number is most of the time the same as the number of cores the

device has, but it also can be set to a value less than the total number of cores on the device, but not larger.

This must be done in both the mAbassi.c file and the mAbassi_SMP_CORTEXA9_CCS.s file, by setting

the build option OS_N_CORE. In the case of the file mAbassi.c, OS_N_CORE is one of the standard build

options. In the case of the file mAbassi_SMP_CORTEXA9_CCS.s, to modify the number of cores, all there

is to do is to change the numerical value associated to the token, located around line 30; this is shown in the

following table:

Table 2-4 OS_N_CORE modification

 .if !($$defined(OS_N_CORE))

OS_N_CORE .equ 4

 .endif

Alternatively, it is possible to overload the OS_N_CORE value set in mAbassi_SMP_CORTEXA9_CCS.s by

using the assembler command line option –asm_define and specifying the required number of cores as

shown in the following example, where the number of cores is set to 3:

Table 2-5 Command line set of OS_N_CORE

cl470 … -asm_define=OS_N_CORE=3 …

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 12

The number of cores can also be set through the GUI, in the “Build / ARM Compiler / Advanced Options /

Assembler Options” menu, as shown in the following figure:

Figure 2-4 GUI set of OS_N_CORE

NOTE: mAbassi can be configured to operate as the single core Abassi by setting OS_N_CORE to 1, or

setting OS_MP_TYPE to 0 or 1. When configured for single core on the Cortex A9 MPCore, the

application must execute on core #0.

2.3 Privileged mode

It is possible to configure mAbassi for the Cortex A9 MPCore to make the application execute in the USER

processor mode (un-privileged) or in the SYS processor mode (privileged). Having the application

executing in the SYS processor mode (privileged) delivers two main advantages over having it executing in

the USER mode (un-privileged). The first one is, when in the SYS mode, Software interrupts (SWI) are

needed to read or write the registers and peripherals only accessible in privileged mode. Having to use

SWI disables the interrupts during the time the SWI executes. The second advantage of executing the

application in SYS mode is again related to the SWI, but this time it is one of CPU efficiency: the code

required to replace the functionality of the SWI is much smaller, therefore less CPU is needed to execute

the same operation.

There is no fundamental reason why an application should be executing in the un-privileged mode with

mAbassi. First, even though the mAbassi kernel is a single function, it always executes within the

application context. There are no service requests, alike the A9 SWI, involved to access the kernel. And

second, mAbassi was architected to be optimal for embedded application, where the need to control

accesses to peripherals or other resources, as in the case of a server level OS, is not applicable.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 13

Only the file mAbassi_SMP_CORTEXA9_CCS.s requires the information if the application executes in the

privileged mode or not. To select if the application executes in privileged mode or not, all there is to do is

to change the value associated to the definition of the token OS_RUN_PRIVILEGE, located around line 30.

Associating a numerical value of zero to the build option configures mAbassi to let the application execute

in the USER processor mode, which is un-privileged. Associating a numerical value different than zero to

the build option configures mAbassi to let the application execute in the SYS processor mode, which is

privileged. The latter case is shown in the following table:

Table 2-6 OS_RUN_PRIVILEGE modification

 .if !($$defined(OS_RUN_PRIVILEGE))

OS_RUN_RPIVILEGE .equ 1

 .endif

Alternatively, it is possible to overload the OS_RUN_RPIVILEGE value set in

mAbassi_SMP_CORTEXA9_CCS.s by using the assembler command line option –asm_define and

specifying the required number of cores as shown in the following example, where the number of cores is

set to 3:

Table 2-7 Command line set of OS_RUN_PRIVILEGE

cl470 … -asm_define=OS_RUN_PRIVILEGE=1 …

The selection between privileged mode or un-privileged mode can also be set through the GUI, in the

“Build / ARM Compiler / Advanced Options / Assembler Options” menu, as shown in the following figure:

Figure 2-5 GUI set of OS_RUN_PRIVILEGE

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 14

2.4 Saturation Bit Set-up

In the ARM Cortex-A9 status register, there is a sticky bit to indicate if an arithmetic saturation or overflow

has occurred during a DSP instruction; this is the Q flag in the status register (bit #27). By default, this bit

is not kept localized at the task level, as extra processing is required during a context switch to do so;

instead, it is propagated across all tasks. This choice was made because most applications do not care

about the value of this bit.

If this bit is relevant for an application, even in a single task, then it must be kept locally in each task. To

keep the meaning of the saturation bit localized, the token OS_HANDLE_PSR_Q must be set to a non-zero

value; to disable the localization, it must be set to a zero value. This is located at around line 35 in the file

mAbassi_SMP_CORTEXA9_CCS.s. The distribution code disables the localization of the Q bit, setting the

token HANDLE_PSR_Q to zero, as shown in the following table:

Table 2-8 Saturation Bit configuration

 .if !($$defined(OS_HANDLE_PSR_Q))

OS_HANDLE_PSR_Q .equ 0 ; If we keep the Q bit (saturation) on per tasks

 .endif

Alternatively, it is possible to overload the OS_HANDLE_PSR_Q value set in

mAbassi_SMP_CORTEXA9_CCS.s by using the assembler command line option –asm_define and

specifying the desired setting with the following:

Table 2-9 Command line set of Saturation Bit configuration

cl470 … -asm_define=OS_HANDLE_PSR_Q=0 …

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 15

The saturation bit configuration can also be set through the GUI, in the “Build / ARM Compiler / Advanced

Options / Assembler Options” menu, as shown in the following figure:

Figure 2-6 GUI set of Saturation Bit configuration

NOTE: The saturation bit is not supported by the ARMv4 architecture. The setting of the build option

OS_HANDLE_PSR_Q is ignored with ARMv4 architecture.

2.5 VFP / NEON set-up

The assembly file mAbassi_SMP_CORTEXA9_CCS.s, depending on its configuration, handle four different

types of VFP. They are:

 No VPU coprocessor

 VPUv3FPU

 VPUv3D16

 NEON

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 16

The file mAbassi_SMP_CORTEXA9_CCS.s is aware of the presence of a VFP, and the type of VFP, when

the assembler command line option –float_support is used, or when set through the GUI, in the “Build /

ARM Compiler / Processor Options Options” menu, as shown in the following figure:

Figure 2-7 GUI enabling of VFP

Table 2-10 Command line enabling of the VFPv3

The following 3 tables show the command line setting for each of the supported floating point units:

Cl470 … --float_support=vfpv3 …

Table 2-11 Command line enabling of the VFPv3D16

Cl470 … --float_support=vfpv3d16 …

Table 2-12 Command line enabling of the NEON

Cl470 … --neon …

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 17

3 Interrupts

The mAbassi RTOS needs to be aware when kernel requests are performed inside or outside an interrupt

context. For all IRQ sources the mAbassi RTOS provides an interrupt dispatcher, which allows it to be

interrupt-aware. This dispatcher achieves two goals. First, the kernel uses it to know if a request occurs

within an interrupt context or not. Second, using this dispatcher reduces the code size, as all interrupts

share the same code for the decision making of entering the kernel or not at the end of the interrupt.

The distribution makes provision for 256 sources of interrupts, as specified by the token

OX_N_INTERRUPTS in the file mAbassi.h1, and the value of OX_N_INTERRUPTS is the internal default

value used by mAbassi.c. Even though the Generic Interrupt Controller (GIC) peripheral supports a

maximum of 1024 interrupts, it was decided to set the distribution value to 256, as this seems to be a

typical maximum supported by the different devices on the market.

3.1 Interrupt Handling

3.1.1 Interrupt Table Size

Most devices do not require all 256 interrupts, as they typically only handle between 64 and 128 sources of

interrupts; or some very large device require more than 256. The interrupt table can be easily reduced to

recover data space. All there is to do is to define the build option OS_N_INTERRUPTS (OS_N_INTERRUPTS

is used to overload the internal value of OX_N_INTERRUPTS) to the desired value. This can be done by

using the compiler command line option -D and specifying the desired setting with the following:

Table 3-1 Command line set the interrupt table size

Cl470 … -d=OS_N_INTERRUPTS=49 …

1 This is located in the port-specific definition area.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 18

The interrupt table look-up size can also be set through the GUI, in the “Build / ARM Compiler / Advance

Options / Predefined Symbols” menu, as shown in the following figure:

Figure 3-1 GUI set of OS_N_INTERRUPTS

3.1.2 Interrupt Installer

Attaching a function to a regular interrupt is quite straightforward. All there is to do is use the RTOS

component OSisrInstall() to specify the interrupt number and the function to be attached to that

interrupt number. For example, Table 3-2 shows the code required to attach the private timer interrupt on

an OMAP4460 (ID #29) to the RTOS timer tick handler (TIMtick):

Table 3-2 Attaching a Function to an Interrupt

#include “mAbassi.h”

 …

 OSstart();

 …

 OSisrInstall(29, &TIMtick);

 /* Set-up the count reload and enable SysTick interrupt */

 … /* More ISR setup */

 OSeint(1); /* Global enable of all interrupts */

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 19

At start-up, once OSstart() has been called, all OS_N_INTERRUPTS (truly OX_N_INTERRUPTS if not

overloaded) interrupt handler functions are set to a “do nothing” function, named OSinvalidISR(). If an

interrupt function is attached to an interrupt number using the OSisrInstall() component before calling

OSstart(), this attachment will be removed by OSstart(), so OSisrInstall() should never be used

before OSstart() has executed. When an interrupt handler is removed, it is very important and necessary

to first disable the interrupt source, then the handling function can be set back to OSinvalidISR(). This

is shown in Table 3-3:

Table 3-3 Invalidating an ISR handler

#include “mAbassi.h”

 …

 /* Disable the interrupt source */

 OSisrInstall(Number, &OSinvalidISR);

 …

When an application needs to disable/enable the interrupts, the RTOS supplied functions OSdint() and

OSeint() should be used.

The interrupt number indicated by Generic Interrupt Controller (GIC) is acknowledged by the ISR

dispatcher, but the dispatcher does not remove the request by a peripheral if the peripheral generate a level

interrupt.

One has to remember the mAbassi interrupt table is shared across all the cores. Therefore, if the same

interrupt number is used on multiple cores, but the processing is different amongst the cores, a single

function to handle the interrupt must be used in which the core ID controls the processing dispatch. The

core ID is obtained through the COREgetID() component of mAbassi. One example of such situation is if

the private timer is used on each of two cores, but each core timer has a different purpose, e.g.:

 1- on one core, it is the RTOS timer base

 2- on the other core, it is the real-time clock tick.

At the application level, when the core ID is used to select specific processing, a critical region exists that

must be protected by having the interrupts disabled (see mAbassi User’s Guide [R1]). But within an

interrupt handler, as nested interrupts are not supported for the Cortex A9, there is no need to add a critical

region protection, as interrupts are disabled when processing an interrupt.

3.2 Fast Interrupts

Fast interrupts are supported on this port as the FIQ interrupts. The ISR dispatcher is designed to only

handle the IRQ interrupts. A default do-nothing FIQ handler is supplied with the distribution; the

application can overload the default handler (Section 7.2).

3.3 Nested Interrupts

Interrupt nesting, other than a FIQ nesting an IRQ, is not supported on this port. The reason is simply

based on the fact the Generic Interrupt Controller is not a nested controller. Supporting nesting becomes

real-time inefficient as the interrupt context save is not stack based, but register bank based.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 20

4 Stack Usage

The RTOS uses the tasks’ stack for two purposes. When a task is blocked or ready to run but not running,

the stack holds the register context that was preserved when the task got blocked or preempted. Also, when

an interrupt occurs, the register context of the running task must be preserved in order for the operations

performed during the interrupt to not corrupt the contents of the registers used by the task when it got

interrupted. For the Cortex-A9, the context save contents of a blocked or pre-empted task is different from

the one used in an interrupt. The following table lists the number of bytes required by each type of context

save operation:

Table 4-1 Context Save Stack Requirements

Description Context save

Blocked/Preempted task context save 48 bytes

Blocked/Preempted task context save / VFP enable (VFPv3 or VFPv3D16) 112 bytes

Interrupt dispatcher context save (IRQ stack) 48 bytes

Interrupt dispatcher context save (User Stack) 64 bytes

Interrupt dispatcher context save (User Stack) / VFPv3D16 enable 128 bytes

Interrupt dispatcher context save (User Stack) / VFPv3 enable 256 bytes

When sizing the stack to allocate to a task, there are three factors to take in account. The first factor is

simply that every task in the application needs at least the area to preserve the task context when it is

preempted or blocked. Second, add to all this the stack required by the code implementing the task

operation, or the interrupt operation.

NOTE: The ARM Cortex-A9 processor needs alignment on 8 byes for some instructions accessing

memory. When stack memory is allocated, mAbassi guarantees the alignment. This said, when

sizing OS_STATIC_STACK or OS_ALLOC_SIZE, make sure to take in account that all allocation

performed through these memory pools are by block size multiple of 8 bytes.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 21

5 Memory Configuration

The mAbassi kernel is not a kernel entered though a service request, such as the SWI on the Cortex-A9.

The kernel is a regular function, protected against re-entrance or multiple core entrance. The kernel code

executes as part of the application code, with the same processor mode and access privileges.

A fair amount of the effort to use an embedded RTOS on a multi-core platform involves configuring the

cache and sharing of the memory. As a starting point, because the kernel is used by all the tasks in the

application and, assuming SMP, not BMP, the task can execute on any core, this implies that the whole

application code, including the mAbassi code, must share the memory. From a data point of view, exactly

the same applies. From a cache point of view, the Cortex-A9 caches are coherent, so caching can be used,

except that there is a single variable (G_OSstate) that needs to be non-cached, as the ldrex & strex

instructions are used to give mutually exclusive access to the kernel amongst the different cores. The

distribution does not treat this variable differently than the rest as it was determined that as a starting point,

the mAbassi RTOS should be brought up and running on the target platform with caching disabled and with

full memory sharing. Doing so eliminates many issues. Then, once the RTOS is up and running, the

designer can start modifying the caching and sharing set-up according to the needs of the application.

The memory caching / sharing set-up is done in the file mAbassi_SMP_CORTEXA9_CCS.s around line 190.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 22

6 Search Set-up

The search results are identical to the single core Cortex-A9 port as Abassi and mAbassi use the same code

for the search algorithm. Please refer to the single core Cortex-A9 port document [R2] for the

measurements.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 23

7 API

The ARM Cortex-A9 supports multiple types of exceptions. Defaults exception handlers are supplied with

the distribution code, but each one of them can be overloaded by an application specific function. The

default handlers are simply an infinite loop (except FIQ, which is a do-nothing with return from exception).

The choice of an infinite loop was made as this allows full debugging, as all registers are left untouched by

the defaults handlers. The following sub-sections describe each one of the default exception handlers.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 24

7.1 DATAabort_Handler

Synopsis

#include “mAbassi.h”

void DATAabort_Handler(void);

Description

DATAabort_Handler() is the exception handler for a data abort fault. In the distribution

code, this is implemented as an infinite loop. If the application needs to perform special

processing when a data fault occurs, all there is to do is to include a function with the above

function prototype, and it will overload the supplied data abort handler. As this is an

exception, the return must be performed with a “movs pc, lr”.

Availability

Always.

Arguments

void

Returns

void

Component type

Function

Options

Notes

This is an exception function, executing in the abort processor mode. This means the abort

stack is in use instead of the user stack, and the IRQ interrupts are disabled.

See also

FIQ_Handler() (Section 7.2)

PFabort_Handler() (Section 7.3)

SWI_Handler() (Section 7.4)

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 25

7.2 FIQ_Handler

Synopsis

#include “mAbassi.h”

void FIQ_Handler(void);

Description

FIQ_Handler() is the handler for a fast interrupt request. In the distribution code, this is

implemented as a return only. If the application needs to handle fast interrupts, all there is to

do is to include a function with the above function prototype and it will overload the supplied

fast interrupt handler. As this is an exception, the return must be performed with a

“movs pc, lr”.

Availability

Always.

Arguments

void

Returns

void

Component type

Function

Options

Notes

This is an exception function, executing in the FIQ processor mode. This means the FIQ

stack is in use instead of the user stack, and the FIQ are now disabled and IRQ interrupts are

also disabled.

See also

DATAabort_Handler() (Section 7.1)

PFabort_Handler() (Section 7.3)

SWI_Handler() (Section 7.4)

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 26

7.3 PFabort_Handler

Synopsis

#include “mAbassi.h”

void PFabort_Handler(void);

Description

PFabort_Handler() is the exception handler for a pre-fetch abort fault. In the distribution

code, this is implemented as an infinite loop. If the application needs to perform special

processing when a pre-fetch fault occurs, all there is to do is to include a function with the

above function prototype and it will overload the supplied data abort handler. As this is an

exception, the return must be performed with a “movs pc, lr”.

Availability

Always.

Arguments

void

Returns

void

Component type

Function

Options

Notes

This is an exception function, executing in the abort processor mode. This means the abort

stack is in use instead of the user stack, and the IRQ interrupts are disabled.

See also

DATAabort_Handler() (Section 7.1)

FIQ_Handler() (Section 7.2)

SWI_Handler() (Section 7.4)

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 27

7.4 SWI_Handler

Synopsis

#include “mAbassi.h”

void SWI_Handler(int SWInmb);

Description

SWI_Handler() is the exception handler for software interrupts that are not handled or

reserved by mAbassi. The number of the software interrupt is passed through the function

argument SWInmb. This is a regular function; do not use the exception instruction

“movs pc, lr”.

Availability

Always.

Arguments

SWInmb Number of the software interrupt. The interrupt numbers 0 to 7 must not be

used by the application as they are used / reserved by the RTOS.

Returns

void

Component type

Function

Options

Notes

This is a regular function, but executing in the supervisor processor mode. This means the

supervisor stack is in use instead of the user stack, and the IRQ interrupts are disabled.

If the TI ABIs (-abi=ti_arm9_abi) or (–abi=tiabi) are used when overloading

SWI_Handler(), the section of code implementing SWI_Handler() in the file

mAbassi_SMP_CORTEXA9_CCS.s must be either commented or removed as these ABIs

recognize but do not support the .weak declaration in assembler

See also

DATAabort_Handler() (Section 7.1)

FIQ_Handler() (Section 7.2)

FPabort_Handler() (Section 7.3)

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 28

8 Chip Support

Basic support for the Generic Interrupt Controller (GIC) is provided in this port as SMP/BMP multi-core

on the Cortex-A9 MPCore device requires the use of interrupts. The following sub-sections describe the

two support components.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 29

8.1 GICenable

Synopsis

#include “mAbassi.h”

void GICenable(int IntNmb);

Description

GICenable() is the component used to enable an interrupt number (called IDnn in the

literature) on the Generic Interrupt Controller (GIC). The interrupt configuration is the

following:

- Level sensitive

- Mapped to the core where GICenable() is excuting.

Availability

Always.

Arguments

IntNmb Interrupt number to enable

Returns

void

Component type

Function

Options

Notes

On the Cortex-A9 MPCore, some GIC registers are local to the core, while others are global

across all cores. Care must be taken when using GICenable().

When the interrupt number (argument IntNmb) is non-negative, then the GIC is programmed

to target the interrupt to the core it’s currently operating on. If the interrupt number is

negative, then the interrupt number –IntNmb is targeted to all cores.

The function GICenable() is implemented in assembly language, in the file

mAbassi_SMP_CORTEXA9_CCS.s as it avoids supplying 2 port files in the distribution. If

the supplied functionality does not fulfill the application needs, GICenable() can be

overloaded by adding a new GICenable() function in the application. The equivalent “C”

code of the distribution implementation is supplied in comments in the assembly file.

See also

GICinit() (Section 8.2)

8.2 GICinit

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 30

Synopsis

#include “mAbassi.h”

void GICinit(void);

Description

GICinit() is the component used to initialize the Generic Interrupt Controller (GIC) for the

needs of mAbassi. It must be used after using the OSstart() component and before

GICenable() and / or OSeint() components. Also, it must be used in every

COREstartN() function.

Consult the mAbassi User guide for more information on this topic [R1].

Availability

Always.

Arguments

void

Returns

void

Component type

Function

Options

Notes

The function GICinit() is implemented in assembly language, in the file

mAbassi_SMP_CORTEXA9_CCS.s as it avoids supplying 2 port files in the distribution. If

the supplied functionality does not fulfill the application needs, GICinit() can be

overloaded by adding a new GICinit() function in the application. The equivalent “C”

code of the distribution implementation is supplied in comments in the assembly file.

See also

GICenable() (Section 8.1)

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 31

9 Measurements

This section gives an overview of the memory requirements encountered when the RTOS is used on the

Arm9e and compiled with Code Composer Studio. No CPU latency measurements are provided simply

because latency measurements are highly dependent on 3 factors. Latency depends on how many cores are

used, if mAbassi is configured in SMP or BMP, and if the load balancing algorithm is the True or the

Packed one. All these possible configurations are one part of the complexity. A second part of the

complexity is where the task switch was detected and on which core(s) the task switch will occur due to

that change of state. Finally, the third factor is if a core is already executing in the kernel when another

needs to enter the kernel. Any combination of these dynamic factors affects differently the CPU latency of

mAbassi.

Although the latency measurements are not provided for mAbassi, if one looks for latency measurements

affecting everything on one and only one core, then the single core measurements are very representative

[R2]. The multi-core mAbassi implementation increases the cycle count by around 5% over the single

core.

9.1 Memory

The memory numbers are supplied for the two limit cases of build options (and some in-between): the

smallest footprint is the RTOS built with only the minimal feature set, and the other with almost all the

features. For both cases, names are not part of the build. This feature was removed from the metrics

because it is highly probable that shipping products utilizing this RTOS will not include the naming of

descriptors, as its usefulness is mainly limited to debugging and making the opening/creation of

components runtime safe.

The code size numbers are expressed with “less than” as they have been rounded up to multiples of 25 for

the “C” code. These numbers were obtained using the beta release of the RTOS and may change. One

should interpret these numbers as the “very likely” numbers for the released version of the RTOS.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 32

The code memory required by the RTOS includes the “C” code and assembly language code used by the

RTOS. The code optimization settings of the compiler that were used for the memory measurements are:

1. Debugging model: Off2

2. Optimization level: 33

3. Optimize for speed: 0

4. Instruction size 16

5. Target 5e

Figure 9-1 Debug Options Settings

2 Debugging is turned off as it restricts the optimizer.
3 The highest optimization level on Code Composer is 4, but level 4 adds linker optimization over what

optimization level 3 does. The linker optimization is not used for the memory measurements as it converts

small function into in-line operations, removing these functions from the memory map, skewing the

memory sizing measurements.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 33

Figure 9-2 Optimization Settings

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 34

Figure 9-3 Processor Options Settings

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 35

Table 9-1 “C” Code Memory Usage

Description Code Size

Minimal Build < 1375 bytes

+ Runtime service creation / static memory < 1650 bytes

+ Runtime priority change

+ Mutex priority inheritance

+ FCFS

+ Task suspension

< 2150 bytes

+ Timer & timeout

+ Timer call back

+ Round robin

< 2925 bytes

+ Events

+ Mailbox

< 3550 bytes

Full Feature Build (no names) < 4175 bytes

Full Feature Build (no name / no runtime creation) < 3775 bytes

Full Feature Build (no names / no runtime creation)

+ Timer services module

< 4175 bytes

The selection of load balancing type does not really affect the “C” code size; there is a difference of no

more than 4 to 8 bytes between True and Packed load balancing; the latter requiring less code space. In the

measurements, True load balancing was used in SMP mode. The same does not apply when selecting BMP

instead of SMP. With BMP, the “C” code size increases by around 200 bytes compared to SMP.

Table 9-2 Assembly Code Memory Usage

Description Size

Assembly code size (non-privilege / >1 core) 1588 bytes

Assembly code size (non-privilege / ==1 core) 1088 bytes

Assembly code size (privilege / >1 core) 1436 bytes

Assembly code size (privilege / ==1 core) 952 bytes

VFPv3 +128 bytes

VFPv3D16 +116 bytes

Saturation Bit Enabled +36 bytes

GICinit() 136 bytes

GICenable() 104 bytes

There are two aspects when describing the data memory usage by the RTOS. First, the RTOS needs its

own data memory to operate, and second, most of the services offered by the RTOS require data memory

for each instance of the service. As the build options affect either the kernel memory needs or the service

descriptors (or both), an interactive calculator has been made available on the Code Time Technologies

website.

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 36

10 Appendix A: Build Options for Code Size

10.1 Case 0: Minimum build

Table 10-1: Case 0 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 2 /* Maximum number of requests in ISRs */

#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_N_CORE 2 /* Number of cores to handle */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 2 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 37

10.2 Case 1: + Runtime service creation / static memory + Multiple tasks at
same priority

Table 10-2: Case 1 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_N_CORE 2 /* Number of cores to handle */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 38

10.3 Case 2: + Priority change / Priority inheritance / FCFS / Task suspend

Table 10-3: Case 2 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_N_CORE 2 /* Number of cores to handle */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 39

10.4 Case 3: + Timer & timeout / Timer call back / Round robin

Table 10-4: Case 3 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_N_CORE 2 /* Number of cores to handle */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 40

10.5 Case 4: + Events / Mailboxes

Table 10-5: Case 4 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_N_CORE 2 /* Number of cores to handle */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 41

10.6 Case 5: Full feature Build (no names)

Table 10-6: Case 5 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_N_CORE 2 /* Number of cores to handle */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 42

10.7 Case 6: Full feature Build (no names / no runtime creation)

Table 10-7: Case 6 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_N_CORE 2 /* Number of cores to handle */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 43

10.8 Case 7: Full build adding the optional timer services

Table 10-8: Case 7 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_N_CORE 2 /* Number of cores to handle */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 1 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-A9 – CCS 2016.06.23

Rev 1.5 Page 44

11 References

[R1] mAbassi RTOS – User Guide, available at http://www.code-time.com

[R2] Abassi Port – Cortex A9, available at http://www.code-time.com

http://www.code-time.com/
http://www.code-time.com/

