
Copyright Information

This document is copyright Code Time Technologies Inc. ©2012. All rights reserved. No part of this document may be reproduced
or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of Code Time

Technologies Inc.

Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

mAbassi RTOS

Porting Document

SMP / ARM Cortex-M3 – CCS

Disclaimer

Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,

but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the

document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in

the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

ARM and Cortex are registered trademarks of ARM Limited. Code Composer Studio is a registered trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 3

Table of Contents

1 INTRODUCTION .. 6

1.1 DISTRIBUTION CONTENTS ... 6
1.2 LIMITATIONS ... 6
1.3 FEATURES .. 6

2 TARGET SET-UP .. 7

2.1 PLATFORM SET-UP .. 7
2.2 INTERRUPT STACK SET-UP .. 9
2.3 SATURATION BIT SET-UP ..10
2.4 STACKS SET-UP ..11
2.5 NUMBER OF CORES...12

3 INTERRUPTS ...14

3.1 INTERRUPT HANDLING ...14
3.1.1 Interrupt Table Size ...14
3.1.2 Interrupt Installer ..16

3.2 INTERRUPT PRIORITY AND ENABLING ..17
3.3 FAST INTERRUPTS ...18
3.4 NESTED INTERRUPTS ..20

4 STACK USAGE...21

5 MEMORY CONFIGURATION ..22

6 SEARCH SET-UP ...23

7 API ..24

7.1 BUSFAULT_HANDLER ..25
7.2 HARDFAULT_HANDLER ...26
7.3 MEMMANAGE_HANDLER ..27
7.4 NMIFAULT_HANDLER ...28
7.5 SVC_HANDLER ..29
7.6 USAGEFAULT_HANDLER..30

8 CHIP SUPPORT ...31

9 MEASUREMENTS ...32

9.1 MEMORY ..32

10 APPENDIX A: BUILD OPTIONS FOR CODE SIZE ..36

10.1 CASE 0: MINIMUM BUILD ...36
10.2 CASE 1: + RUNTIME SERVICE CREATION / STATIC MEMORY + MULTIPLE TASKS AT SAME PRIORITY .37
10.3 CASE 2: + PRIORITY CHANGE / PRIORITY INHERITANCE / FCFS / TASK SUSPEND38
10.4 CASE 3: + TIMER & TIMEOUT / TIMER CALL BACK / ROUND ROBIN ..39
10.5 CASE 4: + EVENTS / MAILBOXES ..40
10.6 CASE 5: FULL FEATURE BUILD (NO NAMES) ...41
10.7 CASE 6: FULL FEATURE BUILD (NO NAMES / NO RUNTIME CREATION) ..42
10.8 CASE 7: FULL BUILD ADDING THE OPTIONAL TIMER SERVICES ...43

11 REFERENCES ...44

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 4

List of Figures
FIGURE 2-1 PROJECT FILE LIST ... 7
FIGURE 2-2 GUI SET OF OS_PLATFORM .. 8
FIGURE 2-3 GUI SET OF OS_ISR_STACK ..10
FIGURE 2-4 GUI SET OF SATURATION BIT CONFIGURATION ...11
FIGURE 2-5 GUI SETTING OF ADAM & EVE STACK SIZE ...12
FIGURE 2-6 GUI SET OF OS_N_CORE ...13
FIGURE 3-1 GUI SET OF OS_N_INTERRUPTS ...15
FIGURE 3-2 GUI SET OF OS_N_INTERRUPTS ...16
FIGURE 9-1 DEBUG OPTIONS SETTINGS..33
FIGURE 9-2 OPTIMIZATION SETTINGS ..33
FIGURE 9-3 PROCESSOR OPTIONS SETTINGS ..34

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 5

List of Tables
TABLE 1-1 DISTRIBUTION ... 6
TABLE 2-1 OS_PLATFORM MODIFICATION ... 7
TABLE 2-2 COMMAND LINE SET OF OS_PLATFORM .. 8
TABLE 2-3 OS_ISR_STACK .. 9
TABLE 2-4 COMMAND LINE SET OF OS_ISR_STACK .. 9
TABLE 2-5 SATURATION BIT CONFIGURATION ...10
TABLE 2-6 COMMAND LINE SET OF SATURATION BIT CONFIGURATION ..11
TABLE 2-7 OS_N_CORE MODIFICATION ...12
TABLE 2-8 COMMAND LINE SET OF OS_N_CORE ..13
TABLE 3-1 MABASSI_CORTEXM3_CCS.S INTERRUPT TABLE SIZING ..14
TABLE 3-2 COMMAND LINE SET THE INTERRUPT TABLE SIZE ..14
TABLE 3-3 OVERLOADING THE INTERRUPT TABLE SIZING FOR MABASSI.C ..15
TABLE 3-4 ATTACHING A FUNCTION TO AN INTERRUPT ...16
TABLE 3-5 INVALIDATING AN ISR HANDLER ..17
TABLE 3-6 DISTRIBUTION INTERRUPT TABLE CODE ..18
TABLE 3-7 OMAP4460 CTM 1 / 2 FAST INTERRUPTS ..18
TABLE 3-8 FAST INTERRUPT WITH DEDICATED STACK ..19
TABLE 3-9 REMOVING INTERRUPT NESTING ...20
TABLE 3-10 PROPAGATING INTERRUPT NESTING ..20
TABLE 4-1 CONTEXT SAVE STACK REQUIREMENTS ...21
TABLE 9-1 “C” CODE MEMORY USAGE ...34
TABLE 9-2 ASSEMBLY CODE MEMORY USAGE ..35
TABLE 9-3 DEVICE DEPENDENT CODE ..35
TABLE 10-1: CASE 0 BUILD OPTIONS ..36
TABLE 10-2: CASE 1 BUILD OPTIONS ..37
TABLE 10-3: CASE 2 BUILD OPTIONS ..38
TABLE 10-4: CASE 3 BUILD OPTIONS ..39
TABLE 10-5: CASE 4 BUILD OPTIONS ..40
TABLE 10-6: CASE 5 BUILD OPTIONS ..41
TABLE 10-7: CASE 6 BUILD OPTIONS ..42
TABLE 10-8: CASE 7 BUILD OPTIONS ..43

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 6

1 Introduction

This document details the port of the SMP / BMP multi-core mAbassi RTOS to the ARM Cortex-M3. The

software suite used for this specific port is the Code Composer Studio from Texas Instruments (abbreviated

CCS); the version used for the port and all tests is Version 5.2.0.00069.

1.1 Distribution Contents

The set of files supplied with this distribution are listed in Table 1-1 below:

Table 1-1 Distribution

File Name Description

mAbassi.h Include file for the RTOS

mAbassi.c RTOS “C” source file

cmsis.h Optional CMSIS V 3.0 RTOS API include file

cmsis.c Optional CMSIS V 3.0 RTOS API source file

mAbassi_SMP_CORTEXM3_CCS.s RTOS assembly file for the SMP ARM Cortex-M3 to use

with Code Composer Studio

Demo_3_SMP_PANDA_M3_CCS.c Demo code that runs on the Pandaboard 4460 ES evaluation

board

AbassiDemo.h Build option settings for the demo code

1.2 Limitations

The RTOS reserves SVC (Supervisor call, interrupt vector #11) numbers 0 to 7. A hook is made available

for the application to use a SVC, as long as the numbers used are above 7.

To optimize reaction time of the mAbassi RTOS components, it was decided to require the processor to

always operate in privileged mode (which is the default mode for Cortex-M microcontrollers) and to

always use the main stack pointer (MSP). The start-up code supplied in the distribution fulfills these

constraints and one must be careful to not change these settings in the application.

1.3 Features

The assembly file does not use the BL instruction when calling any modules. This was done to allow the

assembly file access the whole program address space when it is larger than 16 Mbytes. One has to

remember that the BL instruction has a limited addresses range, which is between 16 Mbytes.

Every one of the Code Composer application binary interfaces (legacy coff, ti_arm9_abi, and eabi; tiabi

cannot be used with the Cortex-M3) are supported in the assembly file.

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 7

2 Target Set-up

Very little is needed to configure the Code Composer Studio development environment to use the mAbassi

RTOS in an application. All there is to do is to add the files mAbassi.c and

mAbassi_SMP_CORTEXM3_CCS.s in the source files of the application project, and make sure the

configuration settings in the file mAbassi_SMP_CORTEXM3_CCS.s (described in the following sub-

sections) are set according to the needs of the application. As well, update the include file path in the

C/C++ compiler preprocessor options with the location of mAbassi.h. There is no need to include a

start-up file, as the file mAbassi_SMP_CORTEXM3_CCS.s takes care of all the start-up operations required

for an application operating on a multi-core processor.

Figure 2-1 Project File List

NOTE: By default, the Code Composer Studio runtime libraries are not multithread-safe, but Code

Composer Studio has a rudimentary hook to make some part of the libraries multithread-safe. The

required hooks are applied in the file mAbassi.h by attaching the mAbassi internal mutex

(G_OSmutex) during runtime in OSstart(). This implies that any of the Code Composer Studio

runtime libraries protected against multi-threading cannot be used in an interrupt as locking a

mutex in an interrupt is an invalid kernel request.

2.1 Platform Set-up

The ARM Cortex-M3, contrary to the Arm9, Arm11 or Arm15, does not have a predefined multi-core

interface. So, the different multi-core Cortex-M3 devices use different techniques to implement a

multi-core version, based on the intrinsically single core Cortex-M3. These unique techniques include, but

are not limited to, inter-core interrupts, identification of the core (core ID), reset handling, etc. The build

option OS_PLATFORM is needed by mAbassi to identify and properly handle the different devices.

The definition of the build option OS_PLATFORM must be done for both the mAbassi.c file and the

mAbassi_SMP_CORTEXM3_CCS.s file. In the case of the file mAbassi.c, OS_PLATFORM is one of the

rare extra build options. In the case of the file mAbassi_SMP_CORTEXM3_CCS.s, to modify the target

platform, all there is to do is to change the numerical value associated to the token, located around line 45;

this is shown in the following table:

Table 2-1 OS_PLATFORM modification

 .if !($$defined(OS_PLATFORM))

OS_PLATFORM .equ 4460

 .endif

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 8

The supported platforms are described in comments to the right of the definition of OS_PLATFORM.

Alternatively, it is possible to overload the OS_PLATFORM value set in mAbassi_SMP_CORTEXM3_CCS.s

by using the assembler command line option –asm_define and specifying the required number of cores as

shown in the following example, where the number of cores is set to 3:

Table 2-2 Command line set of OS_PLATFORM

cl470 … -asm_define=OS_PLATFORM=4460 …

The target platform can also be set through the GUI, in the “Build / ARM Compiler / Advanced Options /

Assembler Options” menu, as shown in the following figure:

Figure 2-2 GUI set of OS_PLATFORM

OS_PLATFORM must be also defined for mAbassi.c using either the GUI or the command line –D option

as with any other build option for mAbassi.

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 9

2.2 Interrupt Stack Set-up

It is possible, and is highly recommended, to use a hybrid stack when nested interrupts occur in an

application. Using this hybrid stack, specially dedicated to the interrupts, removes the need to allocate

extra room to the stack of every task in the application to handle the interrupt nesting. This feature is

controlled by the value set by the definition OS_ISR_STACK, located around line 30 in the file

mAbassi_CORTEXM3_CCS.s. To disable this feature, set the definition of OS_ISR_STACK to a value of

zero. To enable it, and specify the hybrid stack size, set the definition of OS_ISR_STACK to the desired

size in bytes (see Section 4 for information on stack sizing). As supplied in the distribution, the hybrid

stack feature is enabled, and a stack size of 256 bytes is allocated; this is shown in the following table:

Table 2-3 OS_ISR_STACK

 .if !($$defined(OS_ISR_STACK))

OS_ISR_STACK .equ 256 ; If using a dedicated stack for the nested ISRs

 .endif ; 0 if not used, otherwise size of stack in bytes

Alternatively, it is possible to overload the OS_ISR_STACK value set in mAbassi_CORTEXM3_CCS.s by

using the assembler command line option –asm_define and specifying the desired hybrid stack size as

shown in the following example, where the hybrid stack size is set to 512 bytes:

Table 2-4 Command line set of OS_ISR_STACK

cl470 … -asm_define=OS_ISR_STACK=512 …

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 10

The hybrid stack size can also be set through the GUI, in the “Build / ARM Compiler / Advanced Options /

Assembler Options” menu, as shown in the following figure:

Figure 2-3 GUI set of OS_ISR_STACK

2.3 Saturation Bit Set-up

In the ARM Cortex-M3 status register, there is a sticky bit to indicate if an arithmetic saturation or

overflow has occurred during a DSP instruction; this is the Q flag in the status register (bit #27). By

default, this bit is not kept localized at the task level as it needs extra processing during a context switch to

do so; instead, it is propagated across all tasks. This choice was made because most applications do not

care about the value of this bit.

If this bit is relevant for an application, even in a single task, then it must be kept locally in each task. To

keep the meaning of the saturation bit localized, the token OS_HANDLE_PSR_Q must be set to a non-zero

value; to disable it, it must be set to a zero value. This is located at around line 40 in the file

mAbassi_CORTEXM3_CCS.s. The distribution code disables the localization of the Q bit, setting the token

HANDLE_PSR_Q to zero, as shown in the following table:

Table 2-5 Saturation Bit configuration

 .if !($$defined(OS_HANDLE_PSR_Q))

OS_HANDLE_PSR_Q .equ 0 ; If we keep the Q bit (saturation) on per tasks

 .endif

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 11

Alternatively, it is possible to overload the OS_HANDLE_PSR_Q value set in mAbassi_CORTEXM3_CCS.s

by using the assembler command line option –asm_define and specifying the desired setting with the

following:

Table 2-6 Command line set of Saturation Bit configuration

cl470 … -asm_define=OS_HANDLE_PSR_Q=0 …

The saturation bit configuration can also be set through the GUI, in the “Build / ARM Compiler / Advanced

Options / Assembler Options” menu, as shown in the following figure:

Figure 2-4 GUI set of Saturation Bit configuration

2.4 Stacks Set-up

The start-up stack size is defined with the linker line option –stack_size. Or through the GUI in the

“Properties” menu “Build / ARM Linker / Basic Options / Set C system stack size (--stack_size, -stack)”.

That linker-set stack is assigned to the Adam & Eve task, which is the element of code executing upon

start-up on core #0. The other cores start with the COREstartN() functions, which are fully described in

the mAbassi User’s Guide [R1], and their stack sizes are defined as part of the mAbassi standard build

options.

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 12

Figure 2-5 GUI setting of Adam & Eve stack size

2.5 Number of Cores

When operating the mAbassi RTOS on a platform, the RTOS needs to be configured for the number of

cores it has access to, or will use. This number is most of the time the same as the number of cores the

device has, but it also can be set to a value less than the total number of cores on the device, but not larger.

This must be done in both the mAbassi.c file and the mAbassi_SMP_CORTEXM3_CCS.s file, by setting

the build option OS_N_CORE. In the case of the file mAbassi.c, OS_N_CORE is one of the standard build

options. In the case of the file mAbassi_SMP_CORTEXM3_CCS.s, to modify the number of cores, all there

is to do is to change the numerical value associated to the token, located around line 30; this is shown in the

following table:

Table 2-7 OS_N_CORE modification

 .if !($$defined(OS_N_CORE))

OS_N_CORE .equ 4

 .endif

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 13

Alternatively, it is possible to overload the OS_N_CORE value set in mAbassi_SMP_CORTEXM3_CCS.s by

using the assembler command line option –asm_define and specifying the required number of cores as

shown in the following example, where the number of cores is set to 3:

Table 2-8 Command line set of OS_N_CORE

cl470 … -asm_define=OS_N_CORE=3 …

The number of cores can also be set through the GUI, in the “Build / ARM Compiler / Advanced Options /

Assembler Options” menu, as shown in the following figure:

Figure 2-6 GUI set of OS_N_CORE

NOTE: mAbassi can be configured to operate as the single core Abassi by setting OS_N_CORE to 1, or

setting OS_MP_TYPE to 0 or 1. When configured for single core on the Cortex-M3 MPCore, the

application must execute on core #0.

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 14

3 Interrupts

The mAbassi RTOS needs to be aware when kernel requests are performed inside or outside an interrupt

context. For all interrupt sources (except interrupt numbers less than -1) the mAbassi RTOS provides an

interrupt dispatcher, which allows it to be interrupt-aware. This dispatcher achieves two goals. First, the

kernel uses it to know if a request occurs within an interrupt context or not. Second, using this dispatcher

reduces the code size, as all interrupts share the same code for the decision making of entering the kernel or

not at the end of the interrupt.

The distribution makes provision for 241 sources of interrupts, as specified by the token

OS_N_INTERRUPTS in the file mAbassi_CortexM3_CCS.s, and the internal default value used by

mAbassi.c. Even though the Nested Vectored Interrupt Controller (NVIC) peripheral supports a

maximum of 256 interrupts on the Cortex-M3, the first 15 entries of the interrupt vector table are hard

mapped to dedicated handlers (the interrupt number -1, which is attached to SysTick, is not hard mapped

but is handled by the ISR dispatcher).

3.1 Interrupt Handling

3.1.1 Interrupt Table Size

Most devices do not require all 256 interrupts, as they typically only handle between 64 and 128 sources of

interrupts. The interrupt table can be easily reduced to recover code space, and at the same time recover the

same amount of data memory. There are two files affected: in mAbassi_CortexM3_CCS.s, the ARM

interrupt table itself must be shrunk, and the value used in the file mAbassi.c, in order to reduce the ISR

dispatcher table look-up. The interrupt table size is defined by the token OS_N_INTERRUPTS in the file

mAbassi_CortexM3_CCS.s around line 35. For the value used by mAbassi.c, the default value can be

overloaded by defining the token OS_N_INTERRUPTS when compiling mAbassi.c . The distribution table

size is set to 241; that is the NVIC maximum of 256 minus the 15 hard mapped exceptions.

For example, the Cortex-M3s on the OMAP4460 device from Texas Instruments use only the first 80

entries of the interrupt table (64 external interrupts plus the standard 16 exceptions). The 256 entry table

can therefore be reduced to 80. The value to set in mAbassi_CortexM3_CCS.s files is 65, which is

the total of 80 entries minus 15 (there are 15 hard mapped exceptions). The change is shown in the

following table:

Table 3-1 mAbassi_CortexM3_CCS.s interrupt table sizing

 …

 .if !($$defined(OS_N_INTERRUPTS)) ; # of entries in the interupt table mapped to

OS_N_INTERRUPTS .equ 65 ; ISRdispatch()

 .endif

 …

Alternatively, it is possible to overload the OS_N_INTERRUPTS value set in mAbassi_CORTEXM3_CCS.s

by using the compiler command line option –asm_define and specifying the desired setting with the

following:

Table 3-2 Command line set the interrupt table size

Cl470 … -asm_define=OS_N_INTERRUPTS=65 …

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 15

The overloading of the default interrupt vector look-up table used by mAbassi.c is done by using the

compiler command line option –D and specifying the desired setting with the following:

Table 3-3 Overloading the interrupt table sizing for mAbassi.c

cl470 … -DOS_N_INTERRUPTS=65 …

The interrupt table size used by mAbassi_CORTEXM3_CCS.s can also be set through the GUI, in the

“Build / ARM Compiler / Advanced Options / Assembler Options” menu, as shown in the following figure:

 Figure 3-1 GUI set of OS_N_INTERRUPTS

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 16

The interrupt table look-up size used by mAbassi.c can also be overloaded through the GUI, in the “Build

/ ARM Compiler / Advance Options / Predefined Symbols” menu, as shown in the following figure:

 Figure 3-2 GUI set of OS_N_INTERRUPTS

3.1.2 Interrupt Installer

Attaching a function to a regular interrupt is quite straightforward. All there is to do is use the RTOS

component OSisrInstall() to specify the interrupt number and the function to be attached to that

interrupt number. For example, Table 3-4 shows the code required to attach the SysTick interrupt to the

RTOS timer tick handler (TIMtick):

Table 3-4 Attaching a Function to an Interrupt

#include “mAbassi.h”

 …

 OSstart();

 …

 OSisrInstall(-1, &TIMtick);

 /* Set-up the count reload and enable SysTick interrupt */

 … /* More ISR setup */

 OSeint(1); /* Global enable of all interrupts */

NOTE: OSisrInstall() uses the interrupt number, NOT the interrupt vector number.

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 17

At start-up, once OSstart() has been called, all OS_N_INTERRUPTS interrupt handler functions are set to

a “do nothing” function, named OSinvalidISR(). If an interrupt function is attached to an interrupt

number using the OSisrInstall() component before calling OSstart(), this attachment will be

removed by OSstart(), so OSisrInstall() should never be used before OSstart() has ran. When an

interrupt handler is removed, it is very important and necessary to first disable the interrupt source, then the

handling function can be set back to OSinvalidISR(). This is shown in Table 3-5:

Table 3-5 Invalidating an ISR handler

#include “mAbassi.h”

 …

 /* Disable the interrupt source */

 OSisrInstall(Number, &OSinvalidISR);

 …

When an application needs to disable/enable the interrupts, the RTOS supplied functions OSdint() and

OSeint() should be used.

The Nested Vectored Interrupt Controller (NVIC) on the Cortex-M3 does not clear the interrupt generated

by a peripheral; neither does the RTOS. If the generated interrupt is a pulse (as for the SysTick interrupt),

there is nothing to do to clear the interrupt request. However, if the generated interrupt is a level interrupt,

the peripheral generating the interrupt must be informed to remove the interrupt request. This operation

must be performed in the interrupt handler, otherwise the interrupt will be re-entered over and over.

One has to remember the mAbassi interrupt table is shared across all the cores. Therefore, if the same

interrupt number is used on multiple cores, but the processing is different amongst the cores, a single

function to handle the interrupt must be used in which the core ID controls the processing dispatch. The

core ID is obtained through the COREgetID() component of mAbassi. One example of such situation is if

the private timer is used on each of two cores, but each core timer has a different purpose, e.g.:

 1- on one core, it is the RTOS timer base

 2- on the other core, it is the real-time clock tick.

At the application level, when the core ID is used to select specific processing, a critical region exists that

must be protected by having the interrupts disabled (see mAbassi User’s Guide [R1]). But within an

interrupt handler, as nested interrupts are not supported for the Cortex M3, there is no need to add a critical

region protection, as interrupts are disabled when processing an interrupt.

3.2 Interrupt Priority and Enabling

To properly configure interrupts, the interrupt priority must be set, and the peripheral configured to

generate interrupts and enable them. There is no software provided to perform these operations, as this

functionality is already available. First, Code Composer Studio supports the Cortex Microcontroller

Software Interface Standard (CMSIS), which provides everything required to program the processor

peripherals. Second, most chip manufacturers provide code to configure the specifics on their devices.

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 18

3.3 Fast Interrupts

Fast interrupts are supported on this port. A fast interrupt is an interrupt that never uses any component

from mAbassi, and as the name says, is desired to operate as fast as possible. To set-up a fast interrupt, all

there is to do is to set the address of the interrupt function in the corresponding entry in the interrupt vector

table used by the Cortex-M3 processor. The area of the interrupt vector table to modify is located in the

file mAbassi_CORTEXM3_CCS.s around line 70. For example, on a Texas Instruments OMAP4460

device, CTM timer #1 is attached to interrupt number 2 (interrupt vector number 18) and the CTM timer #2

is attached to the interrupt number 6 (interrupt vector number 22). The code to modify is located in the

macro loop that initializes the interrupt table to set the ISR dispatcher as the default interrupt handler. All

there is to do is add checks on the token holding the interrupt number, such that, when the interrupt number

value matches the desired interrupt number, the appropriate address gets inserted in the table instead of the

address of ISRdispatch(). The original macro loop code and modified one are shown in the following

two tables:

Table 3-6 Distribution interrupt table code

 .eval -1, INT_NMB

 .loop OS_N_INTERRUPTS ; Map all external interrupts to ISRdispatch()

 .field ISRdispatch, 32

 .eval INT_NMB+1, INT_NMB

 .endloop

Attaching a fast interrupt handler to the CTM timer #1 and another one to CTM timer #2, assuming the

names of the interrupt functions to attach are respectively CTM1_IRQhandler() and

CTM2_IRQhandler(), is shown in the following table:

Table 3-7 OMAP4460 CTM 1 / 2 Fast Interrupts

 .ref CTM1_IRQhandler

 .ref CTM2_IRQhandler

 …

 .eval -1, INT_NMB

 .loop OS_N_INTERRUPTS ; Map all external interrupts to ISRdispatch()

 .if INT_NMB == 2 ; When is interrupt #2, set CTM #1 handler

 .long CTM1_IRQhandler

 .elseif INT_NMB == 6 ; When is interrupt #6, set CTM #2 handler

 .long CTM2_IRQhandler

 .else ; All others interrupt # set to ISRdispatch()

 .field ISRdispatch, 32

 .endif

 .eval INT_NMB+1, INT_NMB

 .endloop

 …

It is important to add the .ref statement, otherwise there will be an error during the assembly of the file.

NOTE: If an mAbassi component is used inside a fast interrupt, the application will misbehave.

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 19

Even if the hybrid interrupt stack feature is enabled (see Section 2.1), fast interrupts will not use that stack.

This translates into the need to reserve room on all task stacks for the possible nesting of fast interrupts. To

make the fast interrupts also use a hybrid interrupt stack, a prologue and epilogue must be used around the

call to the interrupt handler. The prologue and epilogue code to add is almost identical to what is done in

the regular interrupt dispatcher. Reusing the example of the CTM #1 on the OMAP4460 device, this would

look something like:

Table 3-8 Fast Interrupt with Dedicated Stack

 …

 .if INT_NMB == 2 ; When is interrupt #1, set CTM #1 handler

 .long CTM1prehandler

 …

 …

 .text

 .align 4

 .thumb

 .ref UART0handler

CTM1preHandler:

 cpsid I ; Disable ISR to protect against nesting

 mov r0, sp ; Memo current stack pointer

 ldr sp, $$CTM1_stack ; Stack dedicated to this fast interrupt

 cpsie I ; The stack is now hybrid, nesting safe

 push {r0, lr} ; Preserve original sp & EXC_RETURN

 bl CTM1handler ; Enter the interrupt handler

 pop {r0, lr} ; Recover original sp & EXC_RETURN

 mov sp, r0 ; Recover pre-isr stack

 bx lr ; Exit from the interrupt

$$UART0_stack:

 .field CTM1_s_base+CTM1_stack_size, 32

 .bss CTM1_s_base, CTM1_stack_size, 8 ; Room for the fast interrupt stack

 …

The same code, with unique labels, must be repeated for each of the fast interrupts.

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 20

3.4 Nested Interrupts

The interrupt controller allows nesting of interrupts; this means an interrupt of higher priority will interrupt

the processing of an interrupt of lower priority. Individual interrupt sources can be set to one of 8 levels,

where level 0 is the highest and 7 is the lowest. This implies that the RTOS build option

OS_NESTED_INTS must be set to a non-zero value. The exception to this is in an application where all

enabled interrupts handled by the RTOS ISR dispatcher are set, without exception, to the same priority;

then interrupt nesting will not occur. In that case, and only that case, can the build option

OS_NESTED_INTS be set to zero. As this latter case is quite unlikely, the build option OS_NESTED_INTS

is always overloaded when compiling the RTOS for the ARM Cortex-M3. If the latter condition is

guaranteed, the overloading located after the pre-processor directive can be modified. The code affected in

mAbassi.h is shown in Table 3-9 below and the line to modify is the one with #define

OX_NESTED_INTS 1:

Table 3-9 Removing interrupt nesting

#elif defined(__TI_COMPILER_VERSION__) && defined(__TI_TMS470_V7M3__)

 #define OX_NESTED_INTS 0 /* The ARM has 8 nested (NIVC) interrupt levels */

Or if the build option OS_NESTED_INTS is desired to be propagated:

Table 3-10 Propagating interrupt nesting

#elif defined(__TI_COMPILER_VERSION__) && defined(__TI_TMS470_V7M3__)

 #define OX_NESTED_INTS OS_NESTED_INTS

The mAbassi RTOS kernel never disables interrupts, but there is a few very small regions within the

interrupt dispatcher where interrupts are temporarily disabled due to the nesting (a total of between 10 to 20

instructions).

The kernel is never entered as long as interrupt nesting exists. In all interrupt functions, when a RTOS

component that needs to access some kernel functionality is used, the request(s) is/are put in a queue. Only

once the interrupt nesting is over (i.e. when only a single interrupt context remains) is the kernel entered at

the end of the interrupt, when the queue contains one or more requests, and when the kernel is not already

active. This means that only the interrupt handler function operates in an interrupt context, and only the

time the interrupt function is using the CPU are other interrupts of equal or lower level blocked by the

interrupt controller.

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 21

4 Stack Usage

The RTOS uses the tasks’ stack for two purposes. When a task is blocked or ready to run but not running,

the stack holds the register context that was preserved when the task got blocked or preempted. Also, when

an interrupt occurs, the register context of the running task must be preserved in order for the operations

performed during the interrupt to not corrupt the contents of the registers used by the task when it got

interrupted. For the Cortex-M3, the context save contents of a blocked or pre-empted task is different from

the one used in an interrupt. The following table lists the number of bytes required by each type of context

save operation:

Table 4-1 Context Save Stack Requirements

Description Context save

Blocked/Preempted task context save 40 bytes

Interrupt dispatcher context save (OS_ISR_STACK == 0) 40 bytes

Interrupt dispatcher context save (OS_ISR_STACK != 0) 48 bytes
1

When sizing the stack to allocate to a task, there are three factors to take in account. The first factor is

simply that every task in the application needs at least the area to preserve the task context when it is

preempted or blocked. Second, add to all this the stack required by the code implementing the task

operation, or the interrupt operation.

NOTE: The ARM Cortex-M3 processor needs alignment on 8 byes for some instructions accessing

memory. When stack memory is allocated, mAbassi guarantees the alignment. This said, when

sizing OS_STATIC_STACK or OS_ALLOC_SIZE, make sure to take in account that all allocation

performed through these memory pools are by block size multiple of 8 bytes.

1
 This number included the 8 word context save performed by the processor upon servicing an interrupt.

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 22

5 Memory Configuration

The mAbassi kernel is not a kernel entered though a service request, such as the SVC on the Cortex-M3.

The kernel is a regular function, protected against re-entrance or multiple core entrance. The kernel code

executes as part of the application code, with the same processor mode and access privileges.

A fair amount of the effort to use an embedded RTOS on a multi-core platform involves configuring the

cache and sharing of the memory. As a starting point, because the kernel is used by all the tasks in the

application and, assuming SMP, not BMP, the task can execute on any core, this implies that the whole

application code, including the mAbassi code, must share the memory. From a data point of view, exactly

the same applies. From a cache point of view, the Cortex-M3 caches are coherent, so caching can be used,

except that there is a single variable (G_OSstate) that needs to be non-cached, as the ldrex & strex

instructions are used to give mutually exclusive access to the kernel amongst the different cores. The

distribution does not treat this variable differently than the rest as it was determined that as a starting point,

the mAbassi RTOS should be brought up and running on the target platform with caching disabled and with

full memory sharing. Doing so eliminates many issues. Then, once the RTOS is up and running, the

designer can start modifying the caching and sharing set-up according to the needs of the application.

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 23

6 Search Set-up

The search results are identical to the single core Cortex-M3 port as Abassi and mAbassi use the same code

for the search algorithm. Please refer to the single core Cortex-M3 port document [R2] for the

measurements.

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 24

7 API

The ARM Cortex-M3 supports multiple types of exceptions. Defaults exception handlers are supplied with

the distribution code, but each one of them can be overloaded by an application specific function. The

default handlers are simply an infinite loop (except SVC, which is a do-nothing with return). The choice of

an infinite loop was made as this allows full debugging, as all registers are left untouched by the defaults

handlers. The following sub-sections describe each one of the default exception handlers.

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 25

7.1 BusFault_Handler

Synopsis

#include “mAbassi.h”

void BusFault_Handler(void);

Description

BusFault_Handler() is the exception handler for a bus fault. In the distribution code, this

is implemented as an infinite loop. If the application needs to perform special processing

when a data fault occurs, all there is to do is to include a function with the above function

prototype, and it will overload the supplied bus fault handler.

Availability

Always.

Arguments

void

Returns

void

Component type

Function

Options

Notes

See also

HardFault_Handler() (Section 7.2)

MemMenage_Handler() (Section 7.3)

NMIfault_Handler() (Section 7.4)

SVC_Handler() (Section 7.5)

UsageFault_Handler() (Section 7.6)

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 26

7.2 HardFault_Handler

Synopsis

#include “mAbassi.h”

void HardFault_Handler(void);

Description

HardFault_Handler() is the handler for a hardware fault. In the distribution code, this is

implemented as a return only. If the application needs to perform special processing when a

data fault occurs, all there is to do is to include a function with the above function prototype,

and it will overload the supplied memory fault handler.

Availability

Always.

Arguments

void

Returns

void

Component type

Function

Options

Notes

See also

BusFault_Handler() (Section 7.1)

MemMenage_Handler() (Section 7.3)

NMIfault_Handler() (Section 7.4)

SVC_Handler() (Section 7.5)

UsageFault_Handler() (Section 7.6)

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 27

7.3 MemManage_Handler

Synopsis

#include “mAbassi.h”

void MemManage_Handler(void);

Description

MemManage_Handler() is the exception handler for a memory management fault. In the

distribution code, this is implemented as an infinite loop. If the application needs to perform

special processing when a pre-fetch fault occurs, all there is to do is to include a function

with the above function prototype and it will overload the supplied memory management

fault handler.

Availability

Always.

Arguments

void

Returns

void

Component type

Function

Options

Notes

See also

BusFault_Handler() (Section 7.1)

HardFault_Handler() (Section 7.2)

NMIfault_Handler() (Section 7.4)

SVC_Handler() (Section 7.5)

UsageFault_Handler() (Section 7.6)

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 28

7.4 NMIfault_Handler

Synopsis

#include “mAbassi.h”

void NMIfault_Handler(void);

Description

NMIfault_Handler() is the exception handler for the non-maskable interrupt In the

distribution code, this is implemented as an infinite loop. If the application needs to perform

special processing when a pre-fetch fault occurs, all there is to do is to include a function

with the above function prototype and it will overload the supplied non-maskable interrupt

handler.

Availability

Always.

Arguments

void

Returns

void

Component type

Function

Options

Notes

See also

BusFault_Handler() (Section 7.1)

HardFault_Handler() (Section 7.2)

MemMenage_Handler() (Section 7.3)

SVC_Handler() (Section 7.5)

UsageFault_Handler() (Section 7.6)

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 29

7.5 SVC_Handler

Synopsis

#include “mAbassi.h”

void SVC_Handler(int SVCnmb, int *Stack);

Description

SVC_Handler() is the exception handler for service calls that are not handled or reserved by

mAbassi. The number of the service call is passed through the function argument SVCnmb.

The sevrice call context save, holding r0, r1, r2, r3, r12, lr, pc and xPSR is accessible through

the argument Stack.

Availability

Always.

Arguments

SWInmb Number of the software interrupt. The interrupt numbers 0 to 7 must not be

used by the application as they are used / reserved by the RTOS.

Stack Exception context save. The saved registers are accessible using the following:

 Stack[0] : R0

 Stack[1] : R1

 Stack[2] : R2

 Stack[3] : R3

 Stack[4] : R12

 Stack[5] : LR

 Stack[6] : PC

 Stack[7] : xPSR

Returns

void

Component type

Function

Options

Notes

See also

BusFault_Handler() (Section 7.1)

HardFault_Handler() (Section 7.2)

MemMenage_Handler() (Section 7.3)

NMIfault_Handler() (Section 7.4)

UsageFault_Handler() (Section 7.6)

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 30

7.6 UsageFault_Handler

Synopsis

#include “mAbassi.h”

void UsageFault_Handler(void);

Description

UsageFault_Handler() is the exception handler for a usage access fault. In the

distribution code, this is implemented as an infinite loop. If the application needs to perform

special processing when a usage fault occurs, all there is to do is to include a function with

the above function prototype and it will overload the supplied usage fault handler.

Availability

Always.

Arguments

void

Returns

void

Component type

Function

Options

Notes

See also

BusFault_Handler() (Section 7.1)

HardFault_Handler() (Section 7.2)

MemMenage_Handler() (Section 7.3)

NMIfault_Handler() (Section 7.4)

SVC_Handler() (Section 7.5)

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 31

8 Chip Support

No chip support is provided with the distribution code because Code Composer Studio for the ARM

supports the Cortex Microcontroller Software Interface Standard (CMSIS). Therefore, all peripherals on

the Cortex-M3 can be accessed through the CMSIS. Also, most device manufacturers provide code to

configure the peripherals on their devices.

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 32

9 Measurements

This section gives an overview of the memory requirements encountered when the RTOS is used on the

Cortex-M3 and compiled with Code Composer Studio. No CPU latency measurements are provided

simply because latency measurements are highly dependent on 3 factors. Latency depends on how many

cores are used, if mAbassi is configured in SMP or BMP, and if the load balancing algorithm is the True or

the Packed one. All these possible configurations are one part of the complexity. A second part of the

complexity is where the task switch was detected and on which core(s) the task switch will occur due to

that change of state. Finally, the third factor is if a core is already executing in the kernel when another

needs to enter the kernel. Any combination of these dynamic factors affects differently the CPU latency of

mAbassi.

Although the latency measurements are not provided for mAbassi, if one looks for latency measurements

affecting everything on one and only one core, then the single core measurements are very representative

[R2]. The multi-core mAbassi implementation increases the cycle count by around 5% over the single

core.

9.1 Memory

The memory numbers are supplied for the two limit cases of build options (and some in-between): the

smallest footprint is the RTOS built with only the minimal feature set, and the other with almost all the

features. For both cases, names are not part of the build. This feature was removed from the metrics

because it is highly probable that shipping products utilizing this RTOS will not include the naming of

descriptors, as its usefulness is mainly limited to debugging and making the opening/creation of

components runtime safe.

The code size numbers are expressed with “less than” as they have been rounded up to multiples of 25 for

the “C” code. These numbers were obtained using the beta release of the RTOS and may change. One

should interpret these numbers as the “very likely” numbers for the released version of the RTOS.

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 33

The code memory required by the RTOS includes the “C” code and assembly language code used by the

RTOS. The code optimization settings of the compiler that were used for the memory measurements are:

1. Debugging model: Off
2

2. Optimization level: 3
3

3. Optimize for speed: 0

4. Instruction size 16

5. Target 7M3

Figure 9-1 Debug Options Settings

Figure 9-2 Optimization Settings

2
 Debugging is turned off as it restricts the optimizer.

3
 The highest optimization level on Code Composer is 4, but level 4 adds linker optimization over what

optimization level 3 does. The linker optimization is not used for the memory measurements as it converts

small function into in-line operations, removing these functions from the memory map, skewing the

memory sizing measurements.

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 34

Figure 9-3 Processor Options Settings

Table 9-1 “C” Code Memory Usage

Description Code Size

Minimal Build < 1375 bytes

+ Runtime service creation / static memory < 1675 bytes

+ Runtime priority change

+ Mutex priority inheritance

+ FCFS

+ Task suspension

< 2200 bytes

+ Timer & timeout

+ Timer call back

+ Round robin

< 2950 bytes

+ Events

+ Mailbox

< 3575 bytes

Full Feature Build (no names) < 4200 bytes

Full Feature Build (no name / no runtime creation) < 3800 bytes

Full Feature Build (no names / no runtime creation)

+ Timer services module

< 4175 bytes

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 35

The selection of load balancing type does not really affect the “C” code size; there is a difference of no

more than 4 to 8 bytes between True and Packed load balancing; the latter requiring less code space. In the

measurements, True load balancing was used in SMP mode. The same does not apply when selecting BMP

instead of SMP. With BMP, the “C” code size increases by around 200 bytes compared to SMP.

Table 9-2 Assembly Code Memory Usage

Description Size

Assembly code size (>1 core) 724 bytes

Assembly code size (==1 core) 288 bytes

Vector table (per interrupt handler entry) +4 bytes

Hybrid Stack Enabled +24 bytes

Saturation Bit Enabled +24 bytes

These memory usage numbers are for the OMPA4460 port. Depending on the target device, the following

sections of code may slightly change the memory requirements:

Table 9-3 Device dependent code

Description

Start-up code

Setting-up / Accessing the core number

Core initialization

Inter-core interrupt triggering / handling

Spinlock

There are two aspects when describing the data memory usage by the RTOS. First, the RTOS needs its

own data memory to operate, and second, most of the services offered by the RTOS require data memory

for each instance of the service. As the build options affect either the kernel memory needs or the service

descriptors (or both), an interactive calculator has been made available on the Code Time Technologies

website.

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 36

10 Appendix A: Build Options for Code Size

10.1 Case 0: Minimum build

Table 10-1: Case 0 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 2 /* Maximum number of requests in ISRs */

#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_N_CORE 2 /* Number of cores to handle */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 2 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 37

10.2 Case 1: + Runtime service creation / static memory + Multiple tasks at
same priority

Table 10-2: Case 1 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_N_CORE 2 /* Number of cores to handle */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 38

10.3 Case 2: + Priority change / Priority inheritance / FCFS / Task suspend

Table 10-3: Case 2 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_N_CORE 2 /* Number of cores to handle */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 39

10.4 Case 3: + Timer & timeout / Timer call back / Round robin

Table 10-4: Case 3 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_N_CORE 2 /* Number of cores to handle */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 40

10.5 Case 4: + Events / Mailboxes

Table 10-5: Case 4 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_N_CORE 2 /* Number of cores to handle */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 41

10.6 Case 5: Full feature Build (no names)

Table 10-6: Case 5 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_N_CORE 2 /* Number of cores to handle */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 42

10.7 Case 6: Full feature Build (no names / no runtime creation)

Table 10-7: Case 6 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_N_CORE 2 /* Number of cores to handle */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 43

10.8 Case 7: Full build adding the optional timer services

Table 10-8: Case 7 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MP_TYPE 2 /* SMP vs BMP and load balancing selection */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_N_CORE 2 /* Number of cores to handle */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STACK_START 256 /* Stack sie of the start-up / ilde functions */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 1 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

mAbassi RTOS Port – SMP / ARM Cortex-M3 – CCS 2012.09.20

Rev 1.0 Page 44

11 References

[R1] mAbassi RTOS – User Guide, available at http://www.code-time.com

[R2] Abassi Port – Cortex M3, available at http://www.code-time.com

http://www.code-time.com/
http://www.code-time.com/

